

ffirs.indd iiffirs.indd ii 4/18/2011 3:07:34 PM4/18/2011 3:07:34 PM

Automating Microsoft®
Windows Server® 2008

R2 with Windows
PowerShell® 2.0

ffirs.indd iffirs.indd i 4/18/2011 3:07:28 PM4/18/2011 3:07:28 PM

ffirs.indd iiffirs.indd ii 4/18/2011 3:07:34 PM4/18/2011 3:07:34 PM

Automating
Microsoft®
Windows

Server® 2008 R2
with Windows

PowerShell® 2.0
Matthew Hester

Sarah Dutkiewicz

ffirs.indd iiiffirs.indd iii 4/18/2011 3:07:34 PM4/18/2011 3:07:34 PM

Acquisitions Editor: Agatha Kim

Development Editor: Dick Margulis

Technical Editor: Sarah Dutkiewicz

Production Editor: Liz Britten

Copy Editor: Kim Wimpsett

Editorial Manager: Pete Gaughan

Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley

Vice President and Publisher: Neil Edde

Book Designer: Franz Baumhackl

Proofreader: Word One, New York

Indexer: Jack Lewis

Project Coordinator, Cover: Katie Crocker

Cover Designer: Ryan Sneed

Cover Image: © Petrovich9 / iStockPhoto

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis,

Indiana

Published simultaneously in Canada

ISBN: 978-1-118-01386-1 (Cloth)

ISBN: 978-1-118-10306-7 (ebk)

ISBN: 978-1-118-10308-1 (ebk)

ISBN: 978-1-118-10309-8 (ebk)

No part of this publication may be reproduced, stored in a

retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scan-

ning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either

the prior written permission of the Publisher, or authoriza-

tion through payment of the appropriate per-copy fee to the

Copyright Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600. Requests

to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,

or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: Th e publisher and

the author make no representations or warranties with respect

to the accuracy or completeness of the contents of this work and

specifi cally disclaim all warranties, including without limitation

warranties of fi tness for a particular purpose. No warranty may

be created or extended by sales or promotional materials. Th e

advice and strategies contained herein may not be suitable for

every situation. Th is work is sold with the understanding that

the publisher is not engaged in rendering legal, accounting, or

other professional services. If professional assistance is required,

the services of a competent professional person should be

sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. Th e fact that an organization or Web

site is referred to in this work as a citation and/or a potential

source of further information does not mean that the author or

the publisher endorses the information the organization or Web

site may provide or recommendations it may make. Further,

readers should be aware that Internet Web sites listed in this

work may have changed or disappeared between when this work

was written and when it is read.

For general information on our other products and services or

to obtain technical support, please contact our Customer Care

Department within the U.S. at (877) 762-2974, outside the U.S.

at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats.

Some content that appears in print may not be available in

 electronic books.

Library of Congress Cataloging-in-Publication Data is available

from the publisher.

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are

trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries,

and may not be used without written permission. Microsoft ,

Windows Server, and Windows PowerShell are trademarks

or registered trademarks of Microsoft Corporation. All other

trademarks are the property of their respective owners. Wiley

Publishing, Inc., is not associated with any product or vendor

mentioned in this book.

10 9 8 7 6 5 4 3 2 1

ffirs.indd ivffirs.indd iv 4/18/2011 3:07:34 PM4/18/2011 3:07:34 PM

http://www.wiley.com/go/permissions

Dear Reader,

Th ank you for choosing Automating Windows Server 2008 R2 with Windows

PowerShell 2.0. Th is book is part of a family of premium-quality Sybex books, all of

which are written by outstanding authors who combine practical experience with a

gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to

 producing consistently exceptional books. With each of our titles, we’re working

hard to set a new standard for the industry. From the paper we print on, to the

authors we work with, our goal is to bring you the best books available.

I hope you see all that refl ected in these pages. I’d be very interested to hear your

comments and get your feedback on how we’re doing. Feel free to let me know what

you think about this or any other Sybex book by sending me an email at nedde@

wiley.com. If you think you’ve found a technical error in this book, please visit

http://sybex.custhelp.com. Customer feedback is critical to our eff orts at

Sybex.

 Best regards,

 Neil Edde

 Vice President and Publisher

 Sybex, an Imprint of Wiley

ffirs.indd vffirs.indd v 4/18/2011 3:07:34 PM4/18/2011 3:07:34 PM

To Deb, my strength and heart, thank you

so much for all of your unwavering love

and support. I would not be who I am today

without you. I love you.

To Nicole, Mitchell, and Caitlin, thank you for

teaching me the meaning of grace. I love you

all very much.

—Matt

To Kevin, my wonderful husband who

survived my talks about PowerShell from a

developer’s perspective while writing, off ered

suggestions when I needed another person’s

real-world IT perspective, and has been very

supportive of me through my “wrediting”

process.

—Sarah

ffirs.indd viffirs.indd vi 4/18/2011 3:07:35 PM4/18/2011 3:07:35 PM

A C K N O W L E D G M E N T S
eing able to write this book has been a blessing, and I could not have done it without

a lot of top-notch help. First, I would like to thank my fabulous technical editor

and coauthor, Sarah, for going on this journey with me. Sarah, your knowledge and

insight are inspiring. Th ank you for making sure this book is rock solid. Second, I

would like to thank Dick Margulis. Dick, you truly are an editor extraordinaire who

I have thoroughly enjoyed working with. I hope I did not drive you to nutty with all

of my “great new features.” Th ank you, sir. Lastly, a huge thanks to Agatha Kim not

only for giving me my fi rst opportunity to write a book but also for encouraging me

to write this book. Th ank you so much for your guidance and support over the past

few years.

Matt

I would like to thank my IT friends for encouraging me and inspiring me as I

explored many of the topics in this book. Th anks to Jay R. Wren, my tech editor

for the appendixes. As always, Jay made sure I didn’t stray technically and inspired

new changes. Th anks to all of our editors at Sybex, and especially thanks to Dick

Margulis, our development editor, who shepherded us when we got carried away.

Most of all, I would like to thank my awesome coauthor and great friend, Matt

Hester, for the many commas and “great features” that I had to cut out while

tech editing, the laughs throughout the process, and the advice when it came to

writing the appendixes. Matt inspired me to create the term wrediting—writing

and editing, as I had originally been set as a tech editor for Chapters 1–12 and later

was added as a coauthor. It has been a great adventure, and I look forward to more

adventures with Matt!

Sarah

B

ffirs.indd viiffirs.indd vii 4/18/2011 3:07:35 PM4/18/2011 3:07:35 PM

A B O U T T H E A U T H O R S
Matt Hester is a seasoned Information Technology Professional Evangelist for

Microsoft . Matt has been involved in the IT Pro community for more than 15 years.

Matt is a skilled and experienced evangelist presenting to audiences nationally and

internationally. Prior to joining Microsoft , Matt was a highly successful Microsoft

Certifi ed Trainer for more than eight years. Aft er joining Microsoft , Matt has con-

tinued to be heavily involved in IT Pro community as an IT Pro Evangelist. In his

role at Microsoft , Matt has presented to audiences in excess of 5,000 and as small

as 10. Matt has also written four articles for TechNet magazine, and his fi rst book

was Microsoft Windows Server 2008 R2 Administration Instant Reference. Matt is a

movie buff with a massive DVD collection; he also runs marathons and dreams of

joining the PGA tour. Matt cites his father as his role model: “Th e older I get, the

smarter he gets.” Funny how that works.

Sarah Dutkiewicz is a seasoned technology professional and has been working in a

variety of technologies for more than eight years. Sarah’s well-rounded background

includes roles in technical support, desktop support, database administrator, system

administrator, and professional developer. Sarah’s true passion comes from devel-

oping and writing code. Currently Sarah develops for a Cleveland, Ohio–based

company, focusing mostly on ASP.NET development and improving processes

using various .NET solutions. Sarah is currently a Microsoft MVP in Visual C#

and is deeply passionate about the technical community. Sarah’s many commu-

nity activities include blogging, running a technical community website, planning

events, and speaking at regional and national conferences.

ffirs.indd viiiffirs.indd viii 4/18/2011 3:07:35 PM4/18/2011 3:07:35 PM

C O N T E N T S AT A G L A N C E
Introduction xv

 Chapter 1 What Is PowerShell, and Why Do You Need It? 1

 Chapter 2 Installing and Configuring PowerShell 2.0 19

 Chapter 3 PowerShell Grammar Lesson 37

 Chapter 4 Aliases, Functions, and the Pipe, Oh My! 65

 Chapter 5 Creating Your Own Scripts 97

 Chapter 6 Remoting with PowerShell 2.0 125

 Chapter 7 Server Essentials in PowerShell 147

 Chapter 8 Managing Active Directory with PowerShell 173

 Chapter 9 Managing Desktops with PowerShell 197

 Chapter 10 Managing IIS Web Server with PowerShell 223

 Chapter 11 PowerShell and Deployment Services 243

 Chapter 12 PowerShell and Virtualization 267

 Appendix A Solutions to Exercises 289

 Appendix B Developing at a Command Prompt 299

 Appendix C Providing for PowerShell 311

 Appendix D Custom Cmdlets and Advanced Functions 339

 Appendix E Packaging PowerShell Extensions 357

 Appendix F Building Your Own GUI with PowerShell 379

Index 399

ffirs.indd ixffirs.indd ix 4/18/2011 3:07:35 PM4/18/2011 3:07:35 PM

ffirs.indd xffirs.indd x 4/18/2011 3:07:35 PM4/18/2011 3:07:35 PM

T A B L E O F C O N T E N T S
Introduction xvii

 Chapter 1 What Is PowerShell, and Why Do You Need It? 1

Why PowerShell? . 2
Overview of PowerShell . 3
The Power Behind PowerShell . 5
What About the Learning Curve? . 6

What’s New in PowerShell 2.0?. 7
PowerShell in the Enterprise . 8
PowerShell with a GUI .10

PowerShell Has Something for Everyone . 13
What’s in It for IT Professionals? . 14
What’s in It for Developers? . 15

 Chapter 2 Installing and Configuring PowerShell 2.0 19

Configure PowerShell 2.0 on Windows Server 2008 R2 .20
Install the ISE on Windows Server 2008 R2 .22

Install PowerShell 2.0 on Windows Server 2008 R2 Core .24
Install .NET Framework Support on Windows Server 2008 R2 Core 26
Install PowerShell 2.0 on Windows Server 2008 R2 Core .26

Install PowerShell 2.0 on Other Operating Systems .29
Set Up the Prerequisites. .29
Obtain and Install PowerShell 2.0 . 31

 Chapter 3 PowerShell Grammar Lesson 37

Break Down PowerShell: A Lesson on Cmdlets .38
Learn the Verbs .39
Learn the Nouns. .40
Put Verbs and Nouns Together: Cmdlets . 41
Use Parameters .42
Use Wildcards .45
Understand Properties .46

Help Yourself with PowerShell .48
Learn How to Help Yourself. .48
Use Tab Autocomplete .53
Leverage Online Resources .54

Use Even More Commands with Modules .55
Use and Understand Modules. .55

ftoc.indd xiftoc.indd xi 4/18/2011 3:09:23 PM4/18/2011 3:09:23 PM

X I I T A B L E O F C O N T E N T S

Get to Know Your Modules .58
Create a Custom PowerShell Shell .60

 Chapter 4 Aliases, Functions, and the Pipe, Oh My! 65

Use Aliases. .66
Use Built-in Aliases .67
Create Your Own Aliases .69

Use Functions .77
Understand Functions .78
Use Existing Functions .79
Create Your Own Function. .80

Work with the Pipe Operator .81
Use the Pipe Operator to Combine PowerShell Cmdlets .81
Control PowerShell Output .82

 Chapter 5 Creating Your Own Scripts 97

Create Your Own Scripts. .98
PowerShell Scripting Overview .99
Create a PowerShell Script. .100
Run Your Scripts. .106
Find Scripts .107

Understand Security and PowerShell Scripts .108
Work with Default Execution Policy of Scripts .109
Understand the RemoteSigned PowerShell Execution Policy . 110
Set the PowerShell Execution Policy . 111
Understand Digital Signing. 116

Work with the GUI and the Shell . 116
Understand What the ISE Is . 116
Use the ISE with Scripts . 119
Display the Call Stack with Scripts Requiring Parameters .123

 Chapter 6 Remoting with PowerShell 2.0 125

Configure PowerShell Remoting .126
Learn the Requirements. .126
Enable PowerShell Remoting .128
Disable PowerShell Remoting. .133

Run Commands on Remote Systems .138
Use Invoke-Command .140
Use PowerShell Remote Sessions. .140
Use Remoting in the ISE .143

 Chapter 7 Server Essentials in PowerShell 147

Work with Your Server in PowerShell .148

ftoc.indd xiiftoc.indd xii 4/18/2011 3:09:24 PM4/18/2011 3:09:24 PM

 T A B L E O F C O N T E N T S X I I I

Work with Server Manager Cmdlets .148
Analyze Your Server .150

Add Reliability to Your Server .156
Install the Backup Tools .156
Perform a Backup with PowerShell .156
Load-Balance Your Network .159

Use Other PowerShell Utilities for the Server .163
Use the Registry with PowerShell .163
Use PowerShell Troubleshooting Packs .166
Schedule PowerShell Scripts. .169

 Chapter 8 Managing Active Directory with PowerShell 173

Work with Active Directory . 174
Load the AD PowerShell Module . 174
Understand PowerShell Active Directory Basics .178
Work with Users, Groups, and OUs .182

Understand Managed Service Accounts. .185
Understand Managed Service Accounts .185
Create Managed Service Accounts .186
Install and Use Managed Service Accounts .188

Work with the Active Directory Recycle Bin .189
Understand How the Recycle Bin Works .190
Enable the AD Recycle Bin .191
Use the AD Recycle Bin. .193

 Chapter 9 Managing Desktops with PowerShell 197

Access Group Policy .198
Understand Group Policy. .199
Understand How Group Policy Works. 200

Manage Group Policy .201
Create Group Policy Objects . 204
Use Starter GPOs . 206
Work with Settings . 208
Understand the Difference Between Policies and Preferences. 209
Work with Domain Password Policies .210
Understand Order of Precedence . 212
Control Group Policy Order of Precedence .213
Work with RSOP .215
Back Up and Restore Group Policy Objects .216

Manage AppLocker . 217
Understand AppLocker . 217
Understand AppLocker Policy .218
Configure AppLocker .219

ftoc.indd xiiiftoc.indd xiii 4/18/2011 3:09:24 PM4/18/2011 3:09:24 PM

X I V T A B L E O F C O N T E N T S

 Chapter 10 Managing IIS Web Server with PowerShell 223

Use PowerShell and IIS .224
Work with Configuration Files . 225
Back Up and Recover IIS Configuration . 229

Deploy Websites, Application Pools, and Virtual Directories with PowerShell231
Manage Sites with PowerShell .231
Work with Web Application Pools . 236
Work with Virtual Directories .240

 Chapter 11 PowerShell and Deployment Services 243

Work with Windows Deployment Services . 244
Understand WDS .245
Install WDS .246
Work with WDS in PowerShell .247
Use WDSUTIL .248

Work with the Microsoft Deployment Toolkit .253
Understand the MDT. .253
Deploy with Windows Imaging Format . 254
Install MDT . 256
Work with MDT in PowerShell. .257
Put It All Together .265

 Chapter 12 PowerShell and Virtualization 267

Install and Access Hyper-V. 268
Install Hyper-V .269
Access Hyper-V in PowerShell. .270

Work with Hyper-V .276
Work with Virtual Networks .276
Configure Virtual Machines. .278
Connect to Virtual Machines. .283
Work with Snapshots .285

 Appendix A Solutions to Exercises 289

Solution 1: Inventory Your Scripts . 290
Solution 2: Install PowerShell . 290
Solution 3: Create a PowerShell Profile. 290
Solution 4: Create Your Own Alias .291
Solution 5: Create a Script to Find Startup Programs .292
Solution 6: Set Up a Remote PowerShell Session .292
Solution 7: Create a Scheduled Backup with PowerShell .293
Solution 8: Populate an Active Directory Test Environment .293
Solution 9: Turn Off the Display Control Panel in Group Policy with PowerShell295
Solution 10: Create a Website with PowerShell . 296

ftoc.indd xivftoc.indd xiv 4/18/2011 3:09:25 PM4/18/2011 3:09:25 PM

 T A B L E O F C O N T E N T S X V

Solution 11: Create a Deployment Share . 296
Solution 12: Create a Virtual Machine and Take a Snapshot .297

 Appendix B Developing at a Command Prompt 299

Choose Between the ISE and the Command Prompt. 300
Write Code at a Command Prompt .301
Write Scripts in the ISE .302

Work with Objects in PowerShell . 304
Understand Properties .305
Create Your Own Custom Object .307

 Appendix C Providing for PowerShell 311

Work with Built-in Providers . 312
Understand Provider Basics .313
Use PowerShell-Specific Providers .314
Use Other Built-in Providers . 317

Work with Additional Providers .322
Install and Remove Providers .322
Create Your Own Provider .323

Understand Basic Provider Concepts .323
Build a Custom Provider. .327

 Appendix D Custom Cmdlets and Advanced Functions 339

Choose Between an Advanced Function and a Cmdlet . 340
Parameters and Attributes . 340
Output . 346
Runtime Life Cycle .347

Create an Advanced Function. 348
Create a Custom Cmdlet. .349

 Appendix E Packaging PowerShell Extensions 357

Work with Existing Snap-ins .358
Create a Custom Module .361

Understand Module Concepts .361
Build Your Module . 368

 Appendix F Building Your Own GUI with PowerShell 379

Choose Between WinForms and WPF . 380
Create a GUI in PowerShell .381

Create a WinForms Application .385
Create a WPF Application .391

Index 399

ftoc.indd xvftoc.indd xv 4/18/2011 3:09:25 PM4/18/2011 3:09:25 PM

flast.indd xviflast.indd xvi 4/18/2011 3:11:09 PM4/18/2011 3:11:09 PM

owerShell is a scripting language built into Windows Server 2008 R2 servers.

PowerShell is designed to help you perform routine and repetitive tasks in a script-

able fashion. PowerShell helps alleviate many of the time-consuming and tedious

tasks administrators have had to do in the past. You may have used various script-

ing technologies over the years to accomplish these tasks; however, in PowerShell

2.0, you have a better tool than you have ever had when working with Microsoft

environments. PowerShell 2.0 was launched with the release of Windows 7 and

Windows Server 2008 R2. You can now leverage tons of new built-in capabilities

to help make administering your server easier. It is quickly growing to become the

scripting tool of choice for Microsoft operating systems and applications. In many

cases, PowerShell has replaced former command prompt tools or has been incor-

porated into new tools. PowerShell provides a common language you can use to

 manage any of your Microsoft infrastructure that supports PowerShell scripting.

Who Should Read This Book

Th is book is for anyone who wants to learn more about PowerShell, from novices to

scripting afi cionados. If you are looking to learn PowerShell for the fi rst time or if

you are looking to learn how to manage Windows Server 2008 R2 with PowerShell,

then this book is for you. Whether you are an IT administrator, developer, scripta-

holic, or anyone else with an interest in PowerShell, you will fi nd something in this

book to help you use PowerShell to save you time. Th is book is designed to allow

you to use PowerShell to meet your everyday business needs.

What You Will Learn
In this book you will learn the foundation behind PowerShell and how to work with

this powerful scripting language. Th is book covers four main things:

 Th e foundation of PowerShell from the smallest components to how to create

your own scripts and a lesson in syntax and grammar. Th e foundation you

build here will enable you to work with PowerShell regardless of the operating

system or application.

I N T R O D U C T I O N

P

flast.indd xviiflast.indd xvii 4/18/2011 3:11:13 PM4/18/2011 3:11:13 PM

X V I I I I N T R O D U C T I O N

 How to practically apply PowerShell to your Windows Server 2008 R2 servers.

Topics include server essentials tasks such as backup to management of Active

Directory and many other Windows Server 2008 R2 server roles and features.

 Th e foundation of how to incorporate PowerShell into your application devel-

opment environment and how to take PowerShell to the next level.

 Th e new capabilities of PowerShell 2.0. Th roughout the chapters in this book

you will see many of the new built-in capabilities of PowerShell 2.0, from

new commands in Active Directory management to new functions such as

remoting.

At the end of each chapter, you will get to practice what you have learned and try

PowerShell with exercises designed to reinforce what you saw in the chapter. Most

importantly, this book will jump-start your learning of PowerShell. Once you learn

the essentials provided in the book, you can apply your knowledge to leverage

PowerShell not only in Windows Server 2008 R2 but also in other Windows oper-

ating systems and applications such as Microsoft Exchange Server and Microsoft

SharePoint Server, as well as anywhere else you fi nd PowerShell.

What Is Covered in This Book

Automating Microsoft Windows Server 2008 R2 with Windows PowerShell 2.0 is

organized to provide you with the knowledge to be successful with PowerShell.

Chapter 1: What Is PowerShell, and Why Do You Need It? talks about the

importance of learning PowerShell not only for IT professionals but also for

application developers. You will also see many of the new tools in PowerShell 2.0.

Chapter 2: Installing and Confi guring PowerShell 2.0 focuses on installing

and confi guring PowerShell 2.0, including other Microsoft operating systems

besides Windows Server 2008 R2 and Windows 7.

Chapter 3: PowerShell Grammar Lesson breaks down the PowerShell language

to its smallest parts. Th is chapter provides the background to cmdlets and how

you can work with them.

Chapter 4: Aliases, Functions, and the Pipe, Oh My! shows how to create

 shortcuts for your commands, called aliases. You will also learn the power of

functions, which give you the ability to create your own custom commands. You

will also see how to tie PowerShell commands together with the pipe (|).

flast.indd xviiiflast.indd xviii 4/18/2011 3:11:13 PM4/18/2011 3:11:13 PM

 I N T R O D U C T I O N X I X

Chapter 5: Creating Your Own Scripts focuses on creating and writing your

own scripts by combining your PowerShell commands.

Chapter 6: Remoting with PowerShell 2.0 shows how to use the new PowerShell

2.0 capability of being able to create remoting sessions and run PowerShell com-

mands remotely.

Chapter 7: Server Essentials in PowerShell shows how to use PowerShell to per-

form daily server administrative tasks such as backing up your server as well as

unlocking other data stores directly with PowerShell.

Chapter 8: Managing Active Directory with PowerShell takes a look at the new

built-in commands for working with Active Directory with PowerShell.

Chapter 9: Managing Desktops with PowerShell shows how to manage your

desktops via Group Policy and how to manage Group Policy with PowerShell.

Chapter 10: Managing IIS Web Server with PowerShell discusses how

you can use PowerShell to manage your web servers in Internet Information

Services (IIS).

Chapter 11: PowerShell and Deployment Services shows how to work with

Windows Deployment Services (WDS) and the free Microsoft Deployment

Toolkit (MDT) to deploy operating systems for your organization. Th e MDT has

native PowerShell support and allows you to build custom deployment images

for your environment.

Chapter 12: PowerShell and Virtualization gives you a brief tour of Hyper-V,

Microsoft ’s virtualization platform, and how you can manage it with PowerShell.

Appendix A: Solutions to Exercises gives the answers for the end-of-chapter

exercises.

Appendix B: Developing at a Command Prompt discusses choosing between

the Integrated Scripting Engine (ISE) and the command prompt and establishes

a foundation for working with objects in PowerShell.

Appendix C: Providing for PowerShell discusses the built-in providers and

 provides a basic example for creating your own provider in PowerShell.

Appendix D: Custom Cmdlets and Functions discusses how to create your own

cmdlets and functions, allowing you to extend PowerShell to meet your needs.

Appendix E: Packaging PowerShell Extensions discusses how to work with

modules and how to create your own custom module.

flast.indd xixflast.indd xix 4/18/2011 3:11:13 PM4/18/2011 3:11:13 PM

X X I N T R O D U C T I O N

Appendix F: Building Your Own GUI with PowerShell discusses the options

for creating a graphical user interface (GUI) from scratch in PowerShell and

shows examples for getting started in creating a GUI.

How to Contact the Author

We welcome feedback from you about this book or about books you’d like to see

from us in the future. You can reach us by writing to Matt at raid78@msn.com

or Sarah at sarah@sadukie.com or by contacting us on our blogs at http://

blogs.technet.com/matthewms or http://codinggeekette.com. You can

also follow Sarah on Twitter as @sadukie.

For more information about our work, please visit our websites at http://blogs

.technet.com/matthewms and http://codinggeekette.com.

Sybex strives to keep you supplied with the latest tools and information you need for

your work. Please check its website at www.sybex.com, where we’ll post additional

content and updates that supplement this book if the need arises. Enter Automating

Microsoft Windows Server 2008 R2 with Windows PowerShell 2.0 in the Search

box (or type the book’s ISBN—9781118013861), and click Go to get to the book’s

update page.

flast.indd xxflast.indd xx 4/18/2011 3:11:13 PM4/18/2011 3:11:13 PM

CHAPTER 1

What Is PowerShell,
and Why Do You Need It?

HERE ARE THE TOPICS COVERED IN THIS
CHAPTER:

WHY POWERSHELL? 2

Overview of PowerShell .3

The Power Behind PowerShell .5

What About the Learning Curve? .6

WHAT’S NEW IN POWERSHELL 2.0? 7

PowerShell in the Enterprise .8

PowerShell with a GUI. 10

POWERSHELL HAS SOMETHING FOR EVERYONE 13

What’s in It for IT Professionals? . 14

What’s in It for Developers?. 15

c01.indd 1c01.indd 1 4/21/2011 12:59:29 PM4/21/2011 12:59:29 PM

CH
APTER 1

I

T professionals have been looking for ways to automate and perform tasks in a

consistent manner for years. Th ere have been many techniques and technologies —

from simple batch fi les to third-party tools — to accomplish the tasks. Some IT

professionals have gone the extra step and learned developer languages, such as

Visual Basic or JavaScript, to give their scripts more power.

A majority of these tools were not integrated into the Microsoft environment. More

importantly, the documentation for these tools to accomplish common administra-

tive tasks was not readily available. As part of its eff ort over the years to improve the

scripting environment, Microsoft developed PowerShell to overcome the challenges

of previous scripting languages.

PowerShell provides a common language you can use throughout your Microsoft

infrastructure. You will spend less time on manual repetitive tasks by scripting

these tasks with PowerShell. PowerShell is used in a number of scenarios, including

system administration and soft ware development. PowerShell is ideal for remote

management, reporting, automation, and administration.

Th is book focuses on learning this powerful scripting language with real-world

examples and ways to perform common, everyday tasks. Tasks such as backing up

servers, maintaining web servers, analyzing your environment, and many more can

benefi t from PowerShell. Step-by-step instructions in the chapters that follow show

you how you can make PowerShell work for you.

Th e book is divided into two sections. In the fi rst few chapters, you will build the

foundation of your PowerShell knowledge. You will learn the basics of a building

block known as a cmdlet (pronounced “command-let”) and how to read script. Th e

second section of the book focuses on administrative tasks you can perform in

Windows Server 2008 R2. Although the book is geared to working on a Windows

Server 2008 R2 setup, the foundational knowledge provided in the book allows you

to leverage PowerShell regardless of the target Windows operating system. Th e goal

is to demystify PowerShell for you so you can use it in your day-to-day tasks.

Th is chapter gives an overview of PowerShell and why it is important.

Why PowerShell?

If you have been working in a Microsoft environment for the past few years, you

may have seen or heard about PowerShell. You may even remember its original code

name, Monad. It may have been discounted as “yet another scripting language” and

put aside to look at later. You may have even thought, why reinvent the wheel?

c01.indd 2c01.indd 2 4/21/2011 12:59:34 PM4/21/2011 12:59:34 PM

 W H Y P O W E R S H E L L ? 3

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

In other words, your environment was running smoothly, you were busy, and you

had no time to learn the language. You may have decided to wait to see whether

there would be a version 2 and whether Microsoft was really serious about this

language. Well, here we are with version 2, and PowerShell is getting better than

ever. Microsoft and communities such as http://powershellcommunity.org/

are creating native PowerShell commands and providers as well as the documenta-

tion for scripts to make your everyday work with PowerShell even easier. So, you are

not in this alone. Th e community is growing and vibrant!

Th e initial project Monad debuted in June 2005. In April 2006, Microsoft announced

that Monad’s name would be PowerShell, and PowerShell Release Candidate 1 was

released. PowerShell 1.0 was released in November 2006. It was well received in the

community, and with its integration into the Windows environment, this became a

new language for administrators to work with. In 2009, version 2 of PowerShell was

released and built into Windows 7 and Windows Server 2008 R2. PowerShell 2.0 is

also available for free download for systems newer than Windows XP SP3. Chapter 2

discusses how to install the tools on older, supported operating systems.

Overview of PowerShell
What is PowerShell?

 ▶ PowerShell is an extensible automation engine from Microsoft .

 ▶ PowerShell is a command-line shell and task-based scripting technology that

provides you with enhanced remote management and automation of system

administration tasks.

PowerShell can look like Figure 1.1, and it can look like Figure 1.2.

What can it do?

PowerShell enables you to perform via scripts virtually any task you can do in the

GUI for your local or remote Windows operating systems and your computers. With

PowerShell, you can script and automate your day-to-day administrative tasks.

 ▶ Do you need to get a list of all the computers on the network and create a

report on the service pack level for each operating system?

 ▶ Do you need to check to make sure that all the users in the domain are

 complying with the corporate password policy?

 ▶ Do you need to start a service on 500 computers?

 ▶ Do you need to add 100 user accounts to your domain?

c01.indd 3c01.indd 3 4/21/2011 12:59:34 PM4/21/2011 12:59:34 PM

4 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

 ▶ Do you need to collect all the critical and error events from the event logs of

all your servers?

F I G U R E 1.1 This is PowerShell.

F I G U R E 1. 2 This is PowerShell too.

PowerShell can do that.

Once you learn the language, you should be able to perform these tasks faster than

you have in the past.

By integrating PowerShell scripts into your environment, you can automate many

of the time-consuming, monotonous tasks required of system administrators. If

you look at tasks such as some of the previous examples that gather and parse large

amounts of information, it may take a long time to do them manually. Th ese types

of tasks are perfect candidates for PowerShell scripting.

PowerShell includes numerous system administration utilities, consistent syntax and

naming conventions, and improved navigation for common management data, such

c01.indd 4c01.indd 4 4/21/2011 12:59:34 PM4/21/2011 12:59:34 PM

 W H Y P O W E R S H E L L ? 5

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

as the registry, certifi cate store, and Windows Management Instrumentation (WMI).

WMI is a core technology for Windows system administration, because it exposes a

wide range of information in a uniform manner. PowerShell includes a cmdlet that

allows you to interface with WMI objects, enhancing your ability to do real work.

But isn’t PowerShell just a command-line tool? Yes, it is a command-line tool, but in

most cases PowerShell can accomplish all the tasks that graphic management tools can.

PowerShell is built upon a robust architecture that includes the following:

 ▶ A script parser that processes language constructs, such as scripts, predicates,

and conditionals

 ▶ A pipeline processor, which manages intercommand communication using

pipes (|)

 ▶ A command processor, which manages command execution, registration, and

associated metadata

In addition to those processors, the shell can also manage session state and has an

extended type system, which exposes a common interface for accessing properties

and methods independent of the underlying object type. Lastly, PowerShell includes

a robust error handler for managing error exceptions and error reporting.

The Power Behind PowerShell
PowerShell is built around an object-oriented language that lets you manage your

Windows infrastructure. It provides an interface and programming environment that

allows users and administrators to access and set system properties through .NET

objects and single-function command-line tools called cmdlets. Cmdlets are the building

blocks for PowerShell scripts. Chapter 3 explores cmdlets and the core PowerShell syntax.

Th e scripting language manipulates objects (not text) using the .NET Framework and

the .NET common language runtime. PowerShell is built on top of, and is integrated

with, the Microsoft .NET Framework. It accepts and returns .NET objects, allowing

for robust scripting that interfaces seamlessly with many line-of-business tools.

Th is is the main reason PowerShell is more than just a console application. It is a

robust scripting environment that supports a full range of logical program control,

including simple conditional statements and complex switch statements using

regular expressions to parse conditions. Scripts can be used independently or in

conjunction with other scripts, with .NET Framework or COM objects, or even in

code. PowerShell enables easy access to COM and WMI to provide an environment

for local and remote Windows systems.

c01.indd 5c01.indd 5 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

6 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

In many cases, a majority of the built-in roles and services (such as IIS or Active

Directory) that you may run on your Windows Server 2008 R2 server have

PowerShell providers and cmdlets to manage them. For example, the PowerShell

Provider for Internet Information Services (IIS) 7.5 allows you to easily automate

routine and complex IIS 7.5 administration tasks, such as creating websites and

managing confi guration and runtime data by using PowerShell. Chapter 10 shows

how to work with PowerShell and your websites.

All of the other major applications running on a Windows Server 2008 R2 server,

including Microsoft Exchange Server, Microsoft SQL Server, and Microsoft

SharePoint Server, have built-in support for PowerShell. (Exchange Server was the

fi rst major server application to get full support for PowerShell.) Th e SQL Server

2008 PowerShell snap-in supports more complex logic than Transact-SQL scripts,

allowing SQL Server administrators to build robust administration scripts not only

for server administration but also to extend the power of SQL databases. PowerShell

in some cases is also replacing existing tools for the command prompt manage-

ment of a server. With SharePoint Server, PowerShell is gradually replacing the

stsadm tool, which has been the main tool for command prompt administration

for SharePoint servers.

What About the Learning Curve?
One of the many benefi ts of PowerShell is that the learning curve to get started with

it is minimal. If you already know scripting languages, you have a good base for

working with PowerShell. Whether you have a background with command prompt

tools for Microsoft or non-Microsoft operating systems such as UNIX, PowerShell

lets you build on your existing command prompt knowledge. Th roughout this

book, you will see many examples of PowerShell that look similar to techniques

you have used in other shells. PowerShell includes single-function tools such as cd,

copy, and dir that you are familiar with from the Windows command interface.

You can also recognize these other PowerShell functions from a UNIX background,

such as ls or man.

If you have a UNIX administration background, you are familiar with the term

shell. A shell provides a powerful, fl exible, and scriptable command-line experience

that allows you to perform any administrative task that you can perform using the

console. Th e diff erence between using the shell and the PowerShell console is that

the PowerShell is ideally suited to repetitive tasks. PowerShell is not a text-based

shell but a console. PowerShell has a substantial number of built-in commands that

provide you with a powerful tool set for script-based administration.

c01.indd 6c01.indd 6 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

 W H A T ’ S N E W I N P O W E R S H E L L 2 . 0 ? 7

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

Th e formatting for commands that use the .NET Framework, COM objects, and WMI

are slightly diff erent from other scripting technologies, but in general those com-

mands are simpler in PowerShell. If you are not familiar with scripting techniques,

the base set of cmdlets is easy to learn, as you’ll see throughout this book. PowerShell

provides an intuitive scripting language specifi cally designed for day-to-day adminis-

trative of servers.

Cmdlets really showcase the intuitive nature of PowerShell. Cmdlets have a verb-

noun structure, so they are somewhat self-describing. For example, here is a simple

cmdlet that returns the current system date and time:

Get-Date

Your results will look similar to Figure 1.3.

F I G U R E 1. 3 A simple cmdlet

Th e cmdlets can also get more complex. In this book, you will start with the build-

ing blocks and get more in depth. Cmdlets can be used independently or scripted

together to create a powerful automation application. Lastly, the language also

provides a self-service help system, allowing you to learn the language quickly.

Chapter 3 will show you how to get help by using the Get-Help cmdlet.

What’s New in PowerShell 2.0?

With the launch of PowerShell 2.0, Microsoft began to take a deeper look into this

language. With PowerShell being built into operating systems, IT administrators

took notice. You may have been asking this question: “How can I leverage PowerShell

in my environment, and where do I start?”

Microsoft wanted to make PowerShell 2.0 more enterprise-friendly so IT adminis-

trators everywhere could run, learn, and share PowerShell easily from within the

GUI. PowerShell also had to be made to run safely and securely.

c01.indd 7c01.indd 7 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

8 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

One of the new features in PowerShell 2.0 that allows IT administrators

throughout the world to use PowerShell more easily is called internationaliza-

tion. Internationalization enables PowerShell scripts to display messages in the

language specified by the UI language setting on the user’s computer. Under

the hood, this features queries the operating system of the user to determine

what language is being used. This lets PowerShell display the appropriate

language.

Microsoft added more than 50 cmdlets for the core PowerShell sessions.

Although those new cmdlets are important, Microsoft also addressed many of

the server roles on Windows Server that did not have native PowerShell cmdlets

in PowerShell 1.0. One of the key roles on Windows Server 2008 R2 that got new

cmdlets was Active Directory (AD). Managing AD with PowerShell 1.0 was a

challenge. Th ere were no built-in cmdlets, so you had to know how to work with

LDAP in script. Chapter 8 takes a look at the new PowerShell cmdlets you can use

to manage your AD environment. Chapter 8 will also show you a couple of new

features — Recycle Bin and managed service accounts — you can manage only in

PowerShell.

PowerShell in the Enterprise
PowerShell 2.0 provides several new capabilities to make the tool more enterprise-

friendly. For example, running PowerShell commands on remote computers in

PowerShell 1.0 was not built in. A lot of administrators started remote desktop

sessions to run PowerShell commands. Th is was one of the challenges that was

addressed in PowerShell 2.0.

Remoting uses the WS-Management protocol and the Windows Remote

Management (WinRM) service that implements WS-Management in Windows.

Th is protocol is a standard-based, fi rewall-compatible communications proto-

col. Chapter 6 covers remoting and shows you how to confi gure and work with

PowerShell remoting.

Key to working with remoting is another new concept in PowerShell 2.0 called

sessions. A session is the environment where you run PowerShell commands. Every

time you start PowerShell, a new session is created. You can even create a new

session in your existing session for a local or remote computer.

Th e session cmdlet uses a parameter called ComputerName. Th is allows you to

specify the remote computer you want to start the PowerShell session on. For

c01.indd 8c01.indd 8 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

 W H A T ’ S N E W I N P O W E R S H E L L 2 . 0 ? 9

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

example, the following cmdlet would create and enter a new PowerShell session

on Server2:

Enter-PSSession -ComputerName Server2

Your results will look similar to Figure 1.4.

F I G U R E 1. 4 Remote session

Another key addition to PowerShell 2.0 is the ability to create and run background

jobs. Aft er you start a background job, you are returned almost immediately to

your interactive PowerShell session. Th is allows you to continue to do work in your

PowerShell session, and at any time you can see the status of your background

jobs. Th e following command starts a command in the background to get the

existing services:

Start-Job -name Services -scriptblock (Get-Service)

To see the status of background jobs you started in your PowerShell session, you

would run the following command:

Get-Job

Your results will look similar to Figure 1.5.

F I G U R E 1. 5 Background jobs

c01.indd 9c01.indd 9 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

1 0 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

PowerShell with a GUI
Th ere was no built-in GUI in PowerShell 1.0, so you had only the command console

for your PowerShell session. Th ere were third-party tools you could use, such as

PowerGUI (http://powergui.org/index.jspa).

With PowerShell 2.0, Microsoft added new features to take advantage of the GUI.

Th e following are two of the main ways you can use PowerShell’s GUI features:

 ▶ Integrated Scripting Environment (ISE)

 ▶ Out-GridView

Th e ISE shown in Figure 1.2 is a new GUI front-end application console for

PowerShell. However, the primary benefi t of the ISE is to create, edit, and debug

PowerShell scripts. Th e ISE provides an easy-to-use, syntax-highlighted way to work

with your scripts, as shown in Figure 1.6.

F I G U R E 1. 6 ISE with a script

Th ere are debugging tools built in to PowerShell 2.0. Scripts are created in many

diff erent tools, from the ISE to Notepad, and scripters have used a variety of

c01.indd 10c01.indd 10 4/21/2011 12:59:35 PM4/21/2011 12:59:35 PM

 W H A T ’ S N E W I N P O W E R S H E L L 2 . 0 ? 1 1

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

debugging tools with PowerShell. Th e new debugging features allow you set break-

points on the following:

 ▶ Lines

 ▶ Columns

 ▶ Variables

 ▶ Commands

If you are using the debugger with your scripts, you can step into, over, and out of

the scripts, and you can even display the call stack, oft en with a single keystroke.

Th ere are cmdlets to work with the debugger. You can also display the values of

variables and run standard commands in the debugger.

Th e ISE makes it easy to interact with the debugger. Figure 1.7 shows the Debug

menu.

F I G U R E 1.7 ISE’s Debug menu

You can also access the debugger in your PowerShell sessions. You can set break-

points using the Set-PSBreakpoint cmdlet, and you can list your breakpoints

c01.indd 11c01.indd 11 4/21/2011 12:59:36 PM4/21/2011 12:59:36 PM

1 2 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

with the Get-PSBreakpoint cmdlet for any of your PowerShell scripts. Figure 1.8

shows an example of a debugging session from the PowerShell console.

F I G U R E 1. 8 Debugging session in PowerShell

To learn more about the ISE, see Chapter 2 and Chapter 5. Chapter 2 shows you

how to install the ISE, which may not be installed by default. Chapter 5 shows how

to use this tool when working with PowerShell scripts.

Another way PowerShell leverages the Windows GUI is with the output cmdlet

Out-GridView. Th is cmdlet allows you to take the output from a PowerShell com-

mand and display it in a Windows Explorer–style window, which not only displays

your data but also allows you some interaction such as sorting and quickly fi ltering

the data. For example, if you ran the command Get-Process | Out-GridView,

your results would look similar to Figure 1.9.

You can click any of the column headings in the Out-Gridview window, and the

content will be sorted. You can also quickly fi lter the data by either adding criteria

or typing in the Filter text box. Chapter 4 takes a look at the Out-GridView cmdlet

as well as other ways to work with data from your PowerShell commands.

c01.indd 12c01.indd 12 4/21/2011 12:59:36 PM4/21/2011 12:59:36 PM

 P O W E R S H E L L H A S S O M E T H I N G F O R E V E R Y O N E 1 3

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

 F I G U R E 1. 9 Out-Gridview

PowerShell Has Something for Everyone

PowerShell has something for everyone, from IT professionals to developers to the

casual scripter. PowerShell is a tool that can save you time and show you a new way

to automate a task that was previously diffi cult or impossible. Unlocking PowerShell

to meet your needs always starts with the basics.

Before you can dive into PowerShell to meet your particular interest or business,

you need a solid foundation in PowerShell. You need to know the basics of installing

PowerShell and of reading and writing PowerShell scripts. Th at way, you can build

your knowledge for many other aspects of PowerShell. Whether your focus is IT

administration or development, you need the basics.

c01.indd 13c01.indd 13 4/21/2011 12:59:36 PM4/21/2011 12:59:36 PM

1 4 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

PowerShell needs to be installed on any system you want to be able to manage

with PowerShell. PowerShell can be installed on many Microsoft operating systems

(including XP mode on Windows 7). Th ere are third-party PowerShell add-ons

for non-Microsoft operating systems. Knowing what systems you want to manage

allows you to determine which is the best path to deploy PowerShell. Chapter 2

focuses on the proper way to enable and install PowerShell.PowerShell has a robust

and easy-to-use built-in help system that provides descriptions of the various

cmdlets, as well as examples in most cases.

Aft er PowerShell has been installed, you can learn to read the language. When you

see a command like the following, you should understand what it does:

Get-ADObject –SearchBase “CN=Deleted Objects,i
DC=your domain name,DC=Com” –Filter {lastKnownParent i
-eq “OU=marketing,DC=deploy,dc=com”} -includeDeletedObjectsi

| Restore-ADObject

Th is command restores deleted users from the marketing organizational unit (OU)

in the deploy.com domain.

You can then begin to combine multiple commands into one script. You need to

know how to shorten those commands and unlock many of the other administra-

tive aspects of PowerShell. Working with scripts involves combining the tasks in the

proper order and saving them in one fi le. Th ere are websites that have PowerShell

script repositories, and you can leverage the work of another PowerShell adminis-

trator. PowerShell also protects you from rogue PowerShell scripts and allows only

those scripts that are safe and secure

In Chapters 3–5, you will learn to master the basics. You will be able to break the

previous command down into its smallest parts so commands like these do not

scare you away from PowerShell. You will see how easy the language can be used to

perform complex tasks.

What ’s in It for IT Professionals?
With Windows Server 2008 R2, you can install many roles and features to provide

functionality to your infrastructure. From Active Directory to Hyper-V to IIS to

Deployment Services, you can perform day-to-day administration with PowerShell.

Aft er you learn the basics of the language, you need to put PowerShell in practice.

When you install the features on your Windows Server 2008 R2 server, nearly all of

c01.indd 14c01.indd 14 4/21/2011 12:59:36 PM4/21/2011 12:59:36 PM

 P O W E R S H E L L H A S S O M E T H I N G F O R E V E R Y O N E 1 5

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

them have their own set of PowerShell commands and functions to perform a vari-

ety of tasks specifi c to the particular role or feature.

Beginning with basic installation of the roles and features on your server,

PowerShell can be used to perform these functions for your full and core Windows

Server 2008 R2 servers. Performing and scheduling a task such as a backup can be

quickly created in a PowerShell script and tied to the Task Scheduler.

PowerShell can provide a consistent approach to the daily maintenance of servers.

In some cases, PowerShell may be the only utility you can use. Th is is the case with

the Active Directory Recycle Bin and managed service accounts, two features in

Windows Server 2008 R2 Active Directory.

IIS provides another scenario for IT professionals to use PowerShell. With

PowerShell, you can work with the core confi guration to manage sites and work

with web applications. Th is allows you to manage and quickly maintain web farms.

As an IT professional, you want PowerShell to be consistent when you work on

various tasks or when you download third-party tools. Th is is where you see the

pervasiveness of PowerShell. For example, when you download the Microsoft

Deployment Toolkit (MDT), this free tool has built-in PowerShell cmdlets.

What makes PowerShell a unique tool set is the strong community following the

language. In some cases, Microsoft did not provide cmdlets for a Windows Server

2008 R2 server role. Yet you can fi nd third-party ones with an Internet search. Th is

is the case with Hyper-V. With PowerShell 2.0, there are no built-in cmdlets to sup-

port working with Hyper-V, and you may have to use WMI to work directly with

Hyper-V via PowerShell. However, the PowerShell community has created a dedi-

cated provider for managing Hyper-V in PowerShell, making it easier than having

to use WMI to accomplish the same tasks.

Chapters 7–12 focus on many of the daily workloads you may encounter when you

manage a Windows Server 2008 R2 server with PowerShell. Th ese chapters will

show how to install server components; how to manage IIS, Hyper-V, and Active

Directory; and how to use many other roles and features you will fi nd in Windows

Server 2008 R2.

What ’s in It for Developers?
Although this book does focus on some of the IT professional and administrative

tasks performed on Windows Server 2008 R2 servers, there is a side of PowerShell

c01.indd 15c01.indd 15 4/21/2011 12:59:36 PM4/21/2011 12:59:36 PM

1 6 C H A P T E R 1 • W H A T I S P O W E R S H E L L , A N D W H Y D O Y O U N E E D I T ?

that developers can work with, making it that much more powerful and benefi cial

in your workplace. PowerShell is another development platform you can use to

automate many tasks via code. Aft er you have the foundational knowledge pre-

sented throughout this book, looking at the programmatic side of PowerShell will

allow you to take PowerShell to another level.

PowerShell provides you with a lightweight (when compared to Visual Studio or

other developer tools) programmatic interface. Many of the applications utilizing

PowerShell have a core set of APIs accessible with PowerShell. Th ere are features that

were designed in PowerShell 2.0, such as transactions, geared to be used in code.

For those who are new to development and unfamiliar with the basic concepts

of objects and properties, Appendix B explores objects and properties from a

PowerShell perspective.

It may seem odd to develop on the command prompt. PowerShell has many tools

to be able to extend the language into your developers’ code. Th e ISE allows you to

create full and robust scripts using PowerShell, with some familiar keyboard com-

mands from Visual Studio. Not only does PowerShell have the tools, but it also has

been designed to write your own advanced functions and cmdlets using program-

matic logic and constructs at the command prompt. Appendix D covers working

with advanced functions and cmdlets.

Being able to program with PowerShell allows you to create and work with your

own providers. Th ere are many providers built into your systems, but you may

have a particular scenario where there is a gap and PowerShell does not have a

tool set to help you. You can create your own custom providers, like the develop-

ers did for Hyper-V. Th ese providers allow you to access data stored inside data

stores such as the registry environment variables and certifi cate stores easier than

former methods with a command line. Appendix C provides a guide for creating

custom providers. PowerShell also provides the necessary tools and framework to

be able to deploy the custom tools you create in your infrastructure. In PowerShell

v1.0, these were called snap-ins; in PowerShell 2.0, modules make this even easier

to do. Appendix E explains how to work with existing snap-ins and how to create

your own.

Lastly, you can create GUIs in PowerShell. Whether you want to take advantage of

Windows Presentation Foundation (WPF), with the separation of design and code,

or continue the look of legacy applications with Windows Forms (WinForms),

PowerShell allows you to work with both of these technologies. Although it is

c01.indd 16c01.indd 16 4/21/2011 12:59:37 PM4/21/2011 12:59:37 PM

 P O W E R S H E L L H A S S O M E T H I N G F O R E V E R Y O N E 1 7

W
ha

t I
s P

ow
er

Sh
el

l,
an

d
W

hy
 D

o Y
ou

 N
ee

d
It?

CHAPTER 1

relatively easy to work with GUI technologies in PowerShell, there are also some

tools to make this easy process even easier. Appendix F explores creating GUIs

in PowerShell.

EXERCISE 1: INVENTORY YOUR SCRIPTS

Take an inventory of the tasks you are currently using scripts to perform. By the end
of the book you should be able to take the script or scripts you are currently using and
convert them to PowerShell.

c01.indd 17c01.indd 17 4/21/2011 12:59:37 PM4/21/2011 12:59:37 PM

c01.indd 18c01.indd 18 4/21/2011 12:59:37 PM4/21/2011 12:59:37 PM

CHAPTER 2

Installing and Configuring
PowerShell 2.0

IN THIS CHAPTER, YOU WILL LEARN TO:

CONFIGURE POWERSHELL 2.0 ON WINDOWS SERVER
2008 R2 20

Install the ISE on Windows Server 2008 R2. 22

INSTALL POWERSHELL 2.0 ON WINDOWS SERVER
2008 R2 CORE 24

Install .NET Framework Support on Windows Server
2008 R2 Core . 26

Install PowerShell 2.0 on Windows Server 2008 R2 Core 26

INSTALL POWERSHELL 2.0 ON OTHER OPERATING
SYSTEMS 29

Set Up the Prerequisites . 29

Obtain and Install PowerShell 2.0 . 31

c02.indd 19c02.indd 19 4/21/2011 1:00:41 PM4/21/2011 1:00:41 PM

CH
APTER 2

A

s you will learn throughout this book, PowerShell is a great tool, and the new

 version, PowerShell 2.0, has some exciting features to off er. In fact, many Microsoft

roles and servers, such as Microsoft Exchange and Microsoft SharePoint, require

PowerShell to be installed on the server.

Knowing how to install PowerShell 2.0 is an important skill and is sometimes

necessary to enable many key functions you may need to use in your infrastruc-

ture. For example, you can access the Active Directory recycle bin easily only via

PowerShell. (You will learn more about the recycle bin in Chapter 8.)

Installing PowerShell 2.0 is straightforward, and you can install it on several

 diff erent operating systems. You can even install PowerShell in XP mode on your

Windows 7 client systems. One of the key aspects of installing PowerShell correctly

is the systems you install it on. You will need to install PowerShell 2.0 on administra-

tive consoles, the systems from where you manage and monitor your infrastructure.

In addition to those systems, you will also need to install PowerShell on the system

that you want to manage with PowerShell.

PowerShell 2.0 has one key prerequisite, and that is the .NET Framework. Since

PowerShell is based on the .NET Framework, you need to make sure you have the

framework installed. Specifi cally, to enable the core functionality of PowerShell,

you need the Microsoft .NET Framework 2.0 with Service Pack 1. Depending

on what new features of PowerShell 2.0 you are leveraging, you may also need to

install the Microsoft .NET Framework 3.51. For example, the Integrated Scripting

Environment is an enhancement that provides a graphical user interface for

PowerShell 2.0, but it requires the Microsoft .NET Framework 3.51 server feature to

be installed in order for it to function.

Th is chapter describes how to install PowerShell 2.0, the prerequisites, and

some additional features you may need to make PowerShell 2.0 hum in your

environment.

Configure PowerShell 2.0 on Windows Server 2008 R2

PowerShell 2.0 is already built in on newer Microsoft systems. Specifi cally,

Windows 7 and Windows Server 2008 R2 (except the Server Core installations)

already have PowerShell 2.0 installed and ready to use. In those cases, you can start

using the tool right away.

c02.indd 20c02.indd 20 4/21/2011 1:00:44 PM4/21/2011 1:00:44 PM

 C O N F I G U R E P O W E R S H E L L 2 . 0 O N W I N D O W S S E R V E R 2 0 0 8 R 2 2 1

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

Even though you do not need to install PowerShell 2.0 on Windows 7 and Windows

Server 2008 R2, you need to do some confi guration to unlock the full power of

PowerShell 2.0 on both operating systems. On a Windows 7 system, all of the tools

for PowerShell 2.0 are located in the Accessories folder in the Start menu. Select

Start ‚ All Programs ‚ Accessories ‚ Windows PowerShell to fi nd them, as

shown in Figure 2.1.

F I G U R E 2 .1 Windows 7 PowerShell

On Windows Server 2008 R2, you may want to install the Integrated Scripting

Environment (ISE). Th e ISE provides a graphical user interface (GUI) for interacting

with PowerShell 2.0. Th e GUI provides you with an easy-to-use interface for creat-

ing, troubleshooting, and working with PowerShell 2.0 scripts. (In Chapter 5, you

will learn more about the ISE.)

PowerShell 2.0 (and the ISE, once it’s enabled) on Windows Server 2008 R2 is

located in the same location as on Windows 7. You can fi nd the PowerShell 2.0 tools

by selecting Start ‚ All Programs ‚ Accessories ‚ Windows PowerShell.

In the next section, you will learn how to install the ISE on your Windows Server

2008 R2 servers.

c02.indd 21c02.indd 21 4/21/2011 1:00:44 PM4/21/2011 1:00:44 PM

2 2 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

Install the ISE on Windows Server 2008 R2
To install the ISE on Windows Server 2008 R2, you need to add this feature via

Server Manager:

 1. On the Windows Server 2008 R2 server where you want to install the ISE,

open Server Manager.

 2. In the tree on the left , click Features.

 3. In the Features Summary pane, click Add Features.

 Th e Add Features Wizard appears.

 4. Scroll down the list to fi nd Windows PowerShell Integrated Scripting

Environment (ISE), as shown in Figure 2.2.

F I G U R E 2 . 2 Adding Windows PowerShell ISE

 5. Select Windows PowerShell Integrated Scripting Environment (ISE). If this is

the fi rst time you are working with your Windows Server 2008 R2 server, you

also need to install the Microsoft .NET Framework 3.51 feature, as shown in

Figure 2.3.

c02.indd 22c02.indd 22 4/21/2011 1:00:45 PM4/21/2011 1:00:45 PM

 C O N F I G U R E P O W E R S H E L L 2 . 0 O N W I N D O W S S E R V E R 2 0 0 8 R 2 2 3

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

F I G U R E 2 . 3 .NET Framework 3.51 features

 6. If you see the message shown in Figure 2.3, then click Add Required Features.

You are returned to the Add Features Wizard.

 7. Click Next, and confi rm your installation selections. Your screen should look

like Figure 2.4. Click Install.

F I G U R E 2 . 4 Feature confi rmation

c02.indd 23c02.indd 23 4/21/2011 1:00:45 PM4/21/2011 1:00:45 PM

2 4 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

 8. Review the installation results, and click Close.

Aft er you have installed the ISE, you can fi nd it by selecting Start ‚ All Programs

‚ Accessories ‚ Windows PowerShell, as shown in Figure 2.5.

F I G U R E 2 . 5 ISE on the Start menu

Install PowerShell 2.0 on Windows Server
2008 R2 Core

One of the exciting additions to the Server Core installations of Windows Server

2008 R2 is the support for the .NET Framework. Th is enables all kinds of capa-

bilities on a Server Core installation that in previous versions were not possible.

One of the best scenarios is that you can now run PowerShell 2.0 on Server Core

installations.

Unlike the full installations of Windows Server 2008 R2, the Server Core instal-

lations do not have PowerShell 2.0 already installed. So, you need to install

PowerShell 2.0, as well as the .NET Framework, on the Server Core installations by

hand. Note that Server Core installations do not support the ISE, because Server

Core installations lack a GUI.

c02.indd 24c02.indd 24 4/21/2011 1:00:45 PM4/21/2011 1:00:45 PM

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

 I N S T A L L P O W E R S H E L L 2 . 0 O N W I N D O W S S E R V E R 2 0 0 8 R 2 C O R E 2 5

In this section, you will learn how to install PowerShell 2.0 on a Server Core instal-

lation. You will use the Deployment Image Servicing and Management (DISM) tool

commands to install the necessary components to enable PowerShell 2.0. DISM is

the common tool used to install any of the features or roles on any Windows Server

2008 R2 Server Core installation. Whether you want to install Hyper-V or IIS, you

will use DISM.

Before you begin to install any features on your Windows Server 2008 R2 servers,

though, you should check to see what features are currently enabled on the server.

To see what features are installed, run the following command from the server’s

command console:

DISM /Online /Get-Features

You will see results similar to Figure 2.6.

F I G U R E 2 . 6 Features on Windows Server 2008 R2 Server Core

c02.indd 25c02.indd 25 4/21/2011 1:00:45 PM4/21/2011 1:00:45 PM

2 6 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

Install .NET Framework Support on Windows
Server 2008 R2 Core

Th e feature you are specifi cally looking for in order to support PowerShell 2.0 is

NetFx2-ServerCore. If NetFx2-ServerCore is not shown as enabled when you look

at the installed features, run the following command to enable it:

DISM /Online /Enable-Feature i
/FeatureName:NetFx2-ServerCore

Depending on the types of commands or scripts you need to run on your

server, you may need to support 32-bit; if you do, you will also need to run this

command:

DISM /Online /Enable-Feature i
/FeatureName:NetFx2-ServerCore-WOW64

Install PowerShell 2.0 on Windows Server 2008
R2 Core

Aft er you have installed the NetFx2-ServerCore feature, you then can install

PowerShell 2.0 on your Server Core installation. To install PowerShell 2.0 on

your Windows Server 2008 R2 Server Core installation, run the following

command:

DISM /Online /Enable-Feature i
/FeatureName:MicrosoftWindowsPowerShell

If you run the command on your Windows Server 2008 R2 Server Core installation

and you get an error message with error code 50, as shown in Figure 2.7, it means

either you did not install the .NET Framework or it did not install correctly. Repeat

the installation of the .NET Framework in the previous section to complete the

installation of PowerShell 2.0.

c02.indd 26c02.indd 26 4/21/2011 1:00:46 PM4/21/2011 1:00:46 PM

 I N S T A L L P O W E R S H E L L 2 . 0 O N W I N D O W S S E R V E R 2 0 0 8 R 2 C O R E 2 7

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

F I G U R E 2 .7 PowerShell 2.0 error 50

Just like with the .NET Framework, you may need to support 32-bit PowerShell on

your server. If so, run the following command:

DISM /Online /Enable-Feature i
/FeatureName:MicrosoftWindowsPowerShell-WOW64

Once PowerShell 2.0 has been successfully installed on your server, you should see a

screen similar to Figure 2.8.

F I G U R E 2 . 8 PowerShell 2.0 installed on a Server Core installation

c02.indd 27c02.indd 27 4/21/2011 1:00:46 PM4/21/2011 1:00:46 PM

2 8 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

Once you have installed PowerShell 2.0 on your server, you may be wondering

where it is located. PowerShell 2.0 is installed into the %windir%\system32

directory.

To test PowerShell on your Server Core installation, you can start PowerShell and

verify it has been installed correctly. To start Windows PowerShell, run the following

command:

C:\windows\system32\windowspowershell\v1.0\PowerShell.exe

POWERSHELL DIRECTORY V1.0

When you work with PowerShell on your systems, you will probably wonder why you
are running PowerShell out of the v1.0 directory. There is no need to worry; you are
actually getting PowerShell v2.0, not v1.0. To verify you are running PowerShell v2.0,
you can run this simple command in a PowerShell session:

$Host.Version

After you run the command, you will see the major version listed as 2, which verifi es
you are running PowerShell 2.0.

Figure 2.9 shows the result of running the command. Notice the PS before the

 command prompt.

F I G U R E 2 . 9 PowerShell on Windows Server 2008 R2 Server Core

Once you have started a PowerShell session, you can run a quick test to make sure

PowerShell is running correctly. Run the following command, which displays basic

system information about your Windows Server 2008 R2 Server Core installation:

Get-WMIObject Win32_ComputerSystem

Once you are fi nished with your PowerShell session and you want to return the

command shell of the Server Core installation, type exit at the PowerShell session,

and your PowerShell session will end.

c02.indd 28c02.indd 28 4/21/2011 1:00:46 PM4/21/2011 1:00:46 PM

 I N S T A L L P O W E R S H E L L 2 . 0 O N O T H E R O P E R A T I N G S Y S T E M S 2 9

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

If you will be using PowerShell frequently on your Windows Server 2008 R2 Server

Core system, you may want to add the PowerShell directory to the path statement of

the server. To do that, run the following command on your Server Core installation

at the command prompt of the server. Th is modifi es the local path, and you will no

longer need to navigate to the PowerShell directory to run PowerShell.

path=%path%;C:\windows\system32\windowspowershell\v1.0\

Install PowerShell 2.0 on Other Operating Systems

When you look at your entire infrastructure, most likely you will fi nd an assort-

ment of server and client operating systems. You may be wondering whether you

can install PowerShell 2.0 on these systems. Chances are the answer is yes, because

PowerShell 2.0 is supported on the following operating systems:

Windows Server 2008 with Service Pack 1

Windows Server 2008 with Service Pack 2

Windows Server 2003 with Service Pack 2

Windows Vista with Service Pack 2

Windows Vista with Service Pack 1

Windows XP with Service Pack 3

Windows Embedded POSReady 2009

Windows Embedded for Point of Service 1.1

Th e ability to run PowerShell 2.0 on legacy operating systems and platforms in your

infrastructure means you can leverage PowerShell 2.0 to manage your environment.

However, unlike with Windows 7 or Windows Server 2008 R2, PowerShell 2.0 is not

built into these legacy operating system, so you will need to install it. In this section,

you will learn how to set up the prerequisites for PowerShell 2.0 and how to install it

on other operating systems, including Windows XP mode on Windows 7.

Set Up the Prerequisites
Windows PowerShell 2.0 requires the Microsoft .NET Framework 2.0 with Service

Pack 1. If you try to install the Windows Management Framework — the package

that contains PowerShell — and you receive the message shown in Figure 2.10, then

you need to install the .NET Framework 2.0 Service Pack 1.

c02.indd 29c02.indd 29 4/21/2011 1:00:46 PM4/21/2011 1:00:46 PM

3 0 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

F I G U R E 2 .10 .NET Framework error

You can do a quick Internet search for the framework, or you can fi nd the version

for your operating system (x86 or x64) at the following locations.

You can download the x86 framework here:

www.microsoft.com/downloads/en/details.aspx?FamilyID=79bc3b77-

e02c-4ad3-aacf-a7633f706ba5&displaylang=en

You can download the x64 version of the framework here:

www.microsoft.com/downloads/en/details.aspx?FamilyId=029196ED-

04EB-471E-8A99-3C61D19A4C5A&displaylang=en

Aft er downloading the package, double-click the fi le to run the setup process to

install the .NET Framework 2.0. Aft er you double-click the fi le, you will see a screen

similar to Figure 2.11. When the screen appears, click Install and wait for the instal-

lation to complete. Th e installation may take a few minutes.

F I G U R E 2 .11 Installing the Microsoft .NET Framework 2.0 with Service Pack 1

c02.indd 30c02.indd 30 4/21/2011 1:00:46 PM4/21/2011 1:00:46 PM

 I N S T A L L P O W E R S H E L L 2 . 0 O N O T H E R O P E R A T I N G S Y S T E M S 3 1

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

ISE REQUIREMENTS ON POWERSHELL SYSTEMS

If you want to have the ISE installed on your other PowerShell systems, you will need
to install the .NET Framework 3.5 Service Pack 1. (You will learn more about the ISE in
Chapter 5.) You can download the required component here:

www.microsoft.com/downloads/en/details.aspx?familyid=AB99342F-

5D1A-413D-8319-81DA479AB0D7&displaylang=en

Obtain and Install PowerShell 2.0
Aft er you have the Microsoft .NET Framework 2.0 with Service Pack 1 installed,

you can install PowerShell 2.0.

Th e Windows Management Framework contains three components, listed in

Table 2.1. You can download the Windows Management Framework fi les here:

http://support.microsoft.com/kb/968929/en-us

TAB LE 2 .1 Windows Management Framework components

Compo nent Description

Windows Remote
Management (WinRM) 2.0

This is the Microsoft version of the WS-Management Protocol. WinRM
2.0 allows for interoperability between diff erent hardware and operating
systems. It is designed to be secure and easy to work with on fi rewalls. It
allows PowerShell remoting.

Windows PowerShell 2.0 This is the scripting language that this book is about.

Background Intelligent
Transfer Service (BITS) 4.0

This is a fi le transfer service that allows background fi le transfers (usually
updates or other client-side packages are examples of how BITS is used)
to occur quickly and securely to client-side systems. The transfers are
typically done in the background. For our discussion on PowerShell, it is
not necessary to download this component.

Windows Management Framework is available for download at http://support.microsoft.com/kb/968929/
en-us.

Th e main component you need is PowerShell 2.0, of course, and since the WinRM

component provides support for PowerShell 2.0 remoting, you’ll want to down-

load it too. (You will learn more about remoting in Chapter 6.) Th e Windows

Management Framework is broken down into two downloads:

Windows Management Framework Core, which includes WinRM 2.0 and

Windows PowerShell 2.0

Windows Management Framework BITS, which includes BITS 4.0

c02.indd 31c02.indd 31 4/21/2011 1:00:47 PM4/21/2011 1:00:47 PM

3 2 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

You need to download and install only the Windows Management Framework

Core. On the download page, select the appropriate package for the operating

 system on which you are installing PowerShell 2.0. Th e packages you will fi nd on

the Windows Management Framework website are similar to Figure 2.12.

F I G U R E 2 .12 Download

Aft er you have downloaded the appropriate fi le to your system, you are ready to

begin the installation.

 1. Double-click the Windows Management Framework fi le you downloaded,

and you will see a screen similar to Figure 2.13. Review the welcome screen,

and click Next.

 2. Read the license agreement, click I Agree, and then click Next.

 3. Review the summary screen, and then click Finish.

Once PowerShell 2.0 is installed, you will fi nd it in the same place as on other operating

systems, at Start ‚ All Programs ‚ Accessories ‚ Windows PowerShell. Figure 2.14

shows an example of PowerShell installed on an x86 version of Windows XP with SP 3.

c02.indd 32c02.indd 32 4/21/2011 1:00:47 PM4/21/2011 1:00:47 PM

 I N S T A L L P O W E R S H E L L 2 . 0 O N O T H E R O P E R A T I N G S Y S T E M S 3 3

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

F I G U R E 2 .13 Windows Management Framework installation

F I G U R E 2 .14 Windows XP and PowerShell

c02.indd 33c02.indd 33 4/21/2011 1:00:47 PM4/21/2011 1:00:47 PM

3 4 C H A P T E R 2 • I N S T A L L I N G A N D C O N F I G U R I N G P O W E R S H E L L 2 . 0

A QUICK NOTE ON WINDOWS XP MODE AND POWERSHELL

One of the great application compatibility additions to Windows 7 is Windows XP mode.
Windows XP mode is a free download for Windows 7 and provides a fully functional
32-bit version of Windows XP. The version installed in Windows XP is Service Pack 3,
so the operating system is ready to install PowerShell.

You might think since this is XP mode, you will have to perform the special installa-
tion steps to get PowerShell 2.0 installed and confi gured on the Windows XP mode
virtual system. In truth, you do not; you can perform the installation the same way
you did in this section. You will need to install the Microsoft .NET Framework 2.0 with
Service Pack 1 and install the Windows Management Framework Core package. Here
you can see the beginning of the Windows Management Framework Core installation
on Windows XP mode:

If you’re using Windows Vista, you may not need to download the fi les from the

Microsoft website; chances are, you already have the PowerShell tools available to

you via Windows Update. Figure 2.15 shows the Windows Update dialog box on a

Windows Vista system.

c02.indd 34c02.indd 34 4/21/2011 1:00:48 PM4/21/2011 1:00:48 PM

 I N S T A L L P O W E R S H E L L 2 . 0 O N O T H E R O P E R A T I N G S Y S T E M S 3 5

In
st

al
lin

g
an

d
Co

nfi
 g

ur
in

g
Po

w
er

Sh
el

l 2
.0

CHAPTER 2

 F I G U R E 2 .15 Windows Vista PowerShell

Notice that the listing for KB968930, for Windows PowerShell 2.0 and WinRM 2.0

for Windows Vista, is available as an optional update. To install the update, select

the option, and click OK.

Th ere will be some special confi gurations you will have to do to get remoting to

work properly, but they will be discussed in Chapter 6.

EXERCISE 2: INSTALLING POWERSHELL

In this exercise, you will need a test system or a system you are willing to install
PowerShell on. Install PowerShell in Windows XP mode on a Windows 7 system.

c02.indd 35c02.indd 35 4/21/2011 1:00:48 PM4/21/2011 1:00:48 PM

c02.indd 36c02.indd 36 4/21/2011 1:00:49 PM4/21/2011 1:00:49 PM

CHAPTER 3

PowerShell Grammar Lesson

IN THIS CHAPTER, YOU WILL LEARN TO:

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS 38

Learn the Verbs . 39

Learn the Nouns . 40

Put Verbs and Nouns Together: Cmdlets. .41

Use Parameters . 42

Use Wildcards . 45

Understand Properties . 46

HELP YOURSELF WITH POWERSHELL 48

Learn How to Help Yourself. 48

Use Tab Autocomplete . 53

Leverage Online Resources . 54

USE EVEN MORE COMMANDS WITH MODULES 55

Use and Understand Modules . 55

Get to Know Your Modules . 58

Create a Custom PowerShell Shell. 60

c03.indd 37c03.indd 37 4/21/2011 1:02:07 PM4/21/2011 1:02:07 PM

CH
APTER 3

P

owerShell 2.0 is a powerful language, having immense capabilities for you and your

environment. Almost anything you can do in the interface of your Windows oper-

ating systems, you can do with PowerShell 2.0. When you look at the vast array of

things you can accomplish with PowerShell 2.0, learning the language may seem

daunting, maybe even impossible. I am here to tell you that anyone can learn to

read, write, and — if they really want to — speak this great language. However,

speaking PowerShell 2.0 in your local supermarket may garner some odd looks or

stares, especially if you say something like this:

new-alias -name w -value get-wmiobject -description i
“quickwmi alias” -option ReadOnly

Th is line does not have anything to do with spies or getting a new identity. You

should look at the example as a puzzle you can learn from. Like any language you

may have learned in the past, you have to break PowerShell down into the individual

components in order to understand it. You have to start with the easiest parts fi rst

and then build from there. Once you learn to break the language into its smallest

components it will be easier to work with and understand.

In this chapter, you will learn how to break down the syntax for PowerShell 2.0. Th is

will give you the necessary building blocks to begin leveraging this powerful script-

ing tool, and by the end of this chapter, you will be able to start reading and writing

your own commands. In this chapter, you will also learn how to fi sh for the answers

in PowerShell 2.0 by using the built-in help system.

Th is chapter also covers how to get even more commands in PowerShell 2.0 by

working with the modules you have installed on your server. Modules can be

extremely useful for the diff erent workloads you may have installed on your server;

for example, there are modules for Active Directory, IIS, and many other roles.

Learning how to work with PowerShell 2.0 and the modules for these roles gives you

the administrative fl exibility to manage your environment.

Break Down PowerShell: A Lesson on Cmdlets

Cmdlets (pronounced “command-lets”) are the building blocks for all your

PowerShell 2.0 scripts. Building and writing cmdlets will allow you to start learning

this language.

Hundreds of cmdlets are built into PowerShell 2.0, and as you install more roles on

your Windows Server 2008 R2 server, you will get even more cmdlets to leverage.

c03.indd 38c03.indd 38 4/21/2011 1:02:14 PM4/21/2011 1:02:14 PM

 B R E A K D O W N P O W E R S H E L L : A L E S S O N O N C M D L E T S 3 9

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

In this section, you will look closely at the basics of PowerShell 2.0 cmdlets and

 command syntax.

A basic cmdlet looks like this:

Get-Service

Like all cmdlets, Get-Service is constructed from a verb and a noun and may

have some parameters. Th e verb (Get) and noun (Service) are separated by a

hyphen, and it doesn’t contain any spaces.

Learn the Verbs
Learning some of the basic verbs of PowerShell 2.0 will help you see the possibili-

ties of what you can accomplish in PowerShell 2.0. As in any language, verbs convey

action or doing something. In PowerShell, this is no diff erent, and most of the verbs

of the cmdlets are straightforward to understand and use. Table 3.1 describes some

of the more common verbs you will likely be using in PowerShell 2.0.

TAB LE 3 .1 Common verbs in PowerShell 2.0

Verb Description

Get The Get verb is useful when you want information about something on your system, such
as a service, a variable, or permissions. Get is also combined with other cmdlets, usually
via the pipe (|) symbol (which you will learn more about in Chapter 4), so you can per-
form more actions on the items that are returned with the Get command.

Set The Set command lets you defi ne the value for something on your system. You can set
permissions, locations, or the values of variables. Set is useful when you are working
with functions. (You will learn more about functions in Chapter 4.)

Out Out is the verb that lets you output data from PowerShell 2.0 into a variety of resources.
Typically you use the Out verb to take the data you received from PowerShell 2.0 and use
it in another form for analysis. For example, you might want to create a comma-delimited
fi le to use in Excel. (You will learn more about the Out verb in Chapter 4, where you will
look at using PowerShell to output to various forms of data.)

Start Start is a straightforward verb that allows you to start services currently not running.
You will use Start when you are working with services, process, websites, and so forth.

Stop Stop is another common verb allowing you to stop services, process, websites, and so forth.

Restart The Restart verb is for when you want to do a simple recycle of services or other
transactions.

Add Add is useful in a lot of areas in PowerShell 2.0, such as adding a user to Active Directory,
joining a domain, or doing other functions. (You will see some great examples of the
Add verb in action in Chapter 8, where you will see how you will use PowerShell 2.0 with
Active Directory.)

c03.indd 39c03.indd 39 4/21/2011 1:02:14 PM4/21/2011 1:02:14 PM

4 0 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

Table 3.1 lists just a few of the verbs you will use as you learn PowerShell 2.0. I am

sure throughout your adventures in PowerShell 2.0 that you will use plenty more.

Note that when you learn the core purpose of a verb, it has that same function

across the various nouns in PowerShell 2.0.

Learn the Nouns
Nouns (or objects, as you might sometimes see them referred to) are the things

you are looking to fi nd out more about, do something to, or just learn from inside

PowerShell. When you look at the nouns by themselves, they really do not do much.

Nouns are also typically unique to a role or aspect of the system. Th ere are some

common nouns, but as you become familiar with PowerShell, you may also fi nd

plenty of other nouns that you use on a daily basis.

In PowerShell 2.0, the nouns are, with a few exceptions, always singular. Even when

you want to look at multiple objects, the noun you use is still singular. For example,

if you are looking to learn about all the services running on your server, you run the

following cmdlet:

Get-Service

and not the following, which is incorrect:

Get-Services

Table 3.2 describes some of the nouns you may encounter when working with

PowerShell 2.0.

TAB LE 3 . 2 Common nouns

Noun Description

Command This is quite possibly the most useful noun you will encounter in PowerShell.
Command, when combined with the Get verb, allows you to list all of the commands
in your particular PowerShell session. This lets you learn PowerShell quickly. (See the
“Help Yourself with PowerShell” section in this chapter to see the Command noun in
action.)

Computer You can use Computer to add computer accounts to domains, modify access control
lists, or even specify a computer you want to have PowerShell aff ect.

PS… PowerShell 2.0 also has some great self-servicing administrative tools you can
leverage to work with PowerShell. A noun that begins with PS normally lets you
work with the PowerShell engine and gives you control over your PowerShell
environment.

Service This is the noun you use to interact with the services on your system, including when
you start, stop, or restart any service.

c03.indd 40c03.indd 40 4/21/2011 1:02:15 PM4/21/2011 1:02:15 PM

 B R E A K D O W N P O W E R S H E L L : A L E S S O N O N C M D L E T S 4 1

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

A LONG UNIQUE NOUN

One of my favorite nouns is ADDomainControllerPasswordReplicationPolicy,
because it is one of the longest nouns! In my opinion, it is the PowerShell equivalent
of supercalifragilisticexpialidocious. This particular noun allows you to work with a
read-only domain controller’s (RODC’s) password replication policy.

Put Verbs and Nouns Together: Cmdlets
Now that you have taken a look at the two big building blocks — verbs and

nouns — it is time to see what happens when they’re combined to form a cmdlet.

Cmdlets are the result of adding a hyphen (-) between a noun and a verb. Th is little

hyphen makes all the diff erence in PowerShell and allows you to begin to learn the

syntax. In this section, you learn some of the common cmdlets that are built into

PowerShell. (If you want to learn how to create your own cmdlets, check Appendix D.)

Although learning the verbs and nouns is very useful, you have probably realized

that on their own they really do not do much of anything. It is combining the two

that allows you to begin to unlock the magic and power of PowerShell. Table 3.3

describes some common cmdlets and explains how they can help you.

TAB LE 3 . 3 Common cmdlets

Cmdlet Description

Get-Command This cmdlet lists all the commands at your disposal in your current session. Along
with Get-Help (which you will learn in this chapter), Get-Command is a great
way to see what is possible in your PowerShell session.

Get-Service This cmdlet shows you all the services on your current system and can help you
fi nd out how to work with your services on your systems. Related to this cmdlet,
you can use Start-Service, Stop-Service, and Restart-Service to
manipulate the services running on your servers.

Add-Computer You can use this cmdlet if you need to be able to join a computer to a workgroup
or a domain. Use this command instead of going through the GUI when you want
to join a domain.

Get-Member This command is a must-have to take PowerShell to the next level. Developers can
use it to learn more about the programming side of PowerShell. In PowerShell you
are not dealing with text; rather, you are dealing with .NET objects. Get-Member
helps you learn about these objects by listing the type, properties, and methods
of the objects you are dealing with. This is helpful when coming to grips with how
to use a particular object.

c03.indd 41c03.indd 41 4/21/2011 1:02:15 PM4/21/2011 1:02:15 PM

4 2 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

Figure 3.1 shows how you can use Get-Member to list the Get-Service

resultant object’s properties. Th e returned object is of the .NET type System

.ServiceProcess.ServiceController. Note here that the pipe (|) opera-

tor is used to bring in the results of a command to the Get-Member cmdlet.

Th is is an example of PowerShell pipelining, which you will learn more about in

Chapter 4.

F I G U R E 3 .1 Get-Service | Get-Member

Use Parameters
Parameters give you control over cmdlets when they are run. When you execute

cmdlets, you get a set of results, and these results contain the properties and their

values from the nouns of your cmdlets. Parameters allow you to control what prop-

erties are returned in the resulting table for your command. In a sense, they extend

the power of your cmdlets, giving you even more fl exibility in how you work with

PowerShell and the results it gives you.

c03.indd 42c03.indd 42 4/21/2011 1:02:15 PM4/21/2011 1:02:15 PM

 B R E A K D O W N P O W E R S H E L L : A L E S S O N O N C M D L E T S 4 3

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

Parameters allow you to be more specifi c in how your cmdlets run and what you see

as a result. You can sort, remove, or even output specifi c properties and their values

by modifying the parameters. You will learn more about how to work with output-

ting data in Chapter 4. Parameters are unique to the nouns in your cmdlets, and

to see what parameters are available for a particular cmdlet, you can just run the

cmdlet. Th e default results normally show you some of the parameters available but

not all. You can ask the built-in help to see all the parameters available (see “Help

Yourself with PowerShell” in this chapter). Figure 3.2 shows how to use the -name

parameter to fi nd just the names of services with NET in their names. Th e cmdlet

used for the fi gure is Get-Service -name “*NET*”.

F I G U R E 3 . 2 Get-Service with the -name parameter

When you work with parameters, you usually use a hyphen (-) to precede the

parameter in your cmdlet. In Figure 3.2, the -name parameter was explicitly speci-

fi ed in the cmdlet. You do not always need to include the actual parameter name in

your cmdlet. Some parameters are positional, which means if you know the order of

the parameters, you do not have to use them explicitly by name. You could have run

the previous Get-Service example without the -name parameter, Get-Service

“*NET*”, and it would have yielded the same results because the name parameter

can be used in position for this command.

Keep two important things you in mind with positional parameters. First, with

positional parameters you have to know the exact position they need to be in when

you write your command to use them. Second, not all parameters are positional;

some are named parameters instead. Th is means you have to specify them explicitly

to use them. Figure 3.3 shows both types.

c03.indd 43c03.indd 43 4/21/2011 1:02:16 PM4/21/2011 1:02:16 PM

4 4 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

F I G U R E 3 . 3 Named and positional parameters

As you can see, the Name parameter has to be in position 1, and

RequiredServices is a named parameter.

To see the requirements for your parameters, you leverage the built-in help system

with the -full parameter. Figure 3.3 was the result of this command:

Get-Help Get-Service -full

Positional parameters help cut down on typing and sometimes can help with read-

ing the cmdlets. For example, look at this cmdlet:

Get-Service -name RemoteAccess -RequiredServices

Th e output of this cmdlet will show you the required services for the RemoteAccess

service. Th is cmdlet could have also been written as follows:

Get-Service RemoteAccess -RequiredServices

Figure 3.4 shows the results of this cmdlet.

F I G U R E 3 . 4 Positional parameter

c03.indd 44c03.indd 44 4/21/2011 1:02:16 PM4/21/2011 1:02:16 PM

 B R E A K D O W N P O W E R S H E L L : A L E S S O N O N C M D L E T S 4 5

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

When you are fi rst learning to use PowerShell, I caution against using the positional

nature of parameters. You will be able to troubleshoot and read your cmdlets much

easier if you specify all the parameters by name.

As your knowledge grows with PowerShell, positional parameters can provide a

quicker way to work with PowerShell.

Use Wildcards
To further work with parameters, PowerShell supports the use of wildcards. If you

have worked with any command prompt environment in the past, you will fi nd the

wildcards to be similar to other languages. If you are new to command prompts

and PowerShell, wildcards provide a quick and easy way to fi nd things you are

looking for if you are not quite sure of the exact name or spelling. Also, you can

use wildcards to save on typing. Table 3.4 describes the wildcard characters and

their uses.

TAB LE 3 . 4 PowerShell wildcards

Wildcard Usage

* Matches any character starting where you placed the *. For example, if you typed
h*, you would fi nd anything that started with the letter h.

? Matches a single character in the position of the ?. For example, m?tt could return
matt, mitt, or any other character in the position of the ?.

[] Allows you fi nd a range of or a certain character. For example, [k-s]arah could
return karah, marah, or sarah. Or you could be more specifi c with [osu]rocks,
which could result in orocks, srocks, or urocks.

Figure 3.5 shows the Get-Command s* cmdlet. As you can see, this returns just the

commands beginning with the letter s.

Notice, however, what happens when you use the Get-Command *s. It shows all

the services that have the letter s in the name. In Figure 3.6, you can see this in

action.

c03.indd 45c03.indd 45 4/21/2011 1:02:16 PM4/21/2011 1:02:16 PM

4 6 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

F I G U R E 3 . 5 Wildcard after letter

F I G U R E 3 . 6 Wildcard before letter

Understand Properties
Th ere are two parts to properties in PowerShell: property names and property

values. Names are the column headings in your output data, and property values

are the values. For example, in Figure 3.7, you see the Get-Service cmdlet. Th e

c03.indd 46c03.indd 46 4/21/2011 1:02:16 PM4/21/2011 1:02:16 PM

 B R E A K D O W N P O W E R S H E L L : A L E S S O N O N C M D L E T S 4 7

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

property names for this example are Status, Name, and DisplayName. Th e prop-

erty values are the listing of the results under the names.

F I G U R E 3 .7 Properties

Property names Property values

Although you cannot directly use properties in your PowerShell commands, you

can manipulate what properties are displayed in the output of your PowerShell

cmdlets by working with the parameters for a particular command. For example,

when you run the command Get-Service, you get some of the properties dis-

played. If you want to control what is displayed, you may need to take advantage

of the other parameter names to control what results you see, as you can see in

this example:

Get-Service RemoteAccess -RequiredServices

Even though you do not see RequiredServices in the property names, the prop-

erty values are fi ltered, showing only the required services. You will see in Chapter 4

how you can further control the results and how the properties are used to give you

the results you want. In Appendix B, you will learn how to do even more with prop-

erties and create your own custom objects and properties.

c03.indd 47c03.indd 47 4/21/2011 1:02:17 PM4/21/2011 1:02:17 PM

4 8 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

A WORD ON CASE FOR POWERSHELL

Although PowerShell 2.0 is a sensitive language in terms of spelling and syntax, it is
mostly case insensitive. When you are looking at help fi les or other forms of online
documentation, you see a mixed-case pattern, with the beginning of every word in
the cmdlet being capitalized. In the documentation, you will see the Get-Service
cmdlet written like this:

Get-Service

However, the following three versions of this cmdlet will do the same thing:

get-service

GEt-sErVIce

GET-SERVICE

You can type the cmdlet in all lowercase, or you can write your cmdlets in mixed case.
They will all do the same thing. Although I do not recommend all uppercase: while
it does make the PowerShell cmdlets stand out, it makes it harder to troubleshoot.

Although PowerShell is not case sensitive, PowerShell is still very much spelling and
syntax sensitive. There is no IntelliSense to help with spelling, but tab completion can
be very helpful if you struggle with spelling.

Help Yourself with PowerShell

To start building your PowerShell knowledge, you need to learn some commands.

Maybe you think you will discover what you need to know by pressing F1 for help.

But in a command prompt, pressing the F1 key does not get you much. So, how do

you ask for help in PowerShell? You use a cmdlet, of course! Th e cmdlets and param-

eters in the section show you how to leverage the powerful built-in help system.

Learn How to Help Yourself
To be successful with Windows PowerShell, you need to learn how to help yourself.

Fortunately, PowerShell provides tools to help you do that. You can use two commands

to fi nd more information about commands and, more importantly, how to use them.

Th e following two cmdlets will allow you to access PowerShell’s built-in help system:

Get-Command

Get-Help

c03.indd 48c03.indd 48 4/21/2011 1:02:17 PM4/21/2011 1:02:17 PM

 H E L P Y O U R S E L F W I T H P O W E R S H E L L 4 9

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

When you run the Get-Command cmdlet, you see a list of the currently loaded cmd-

lets and functions on your Windows system. You can also run the Get-Command

cmdlet to learn which commands work with certain objects.

Suppose you want to use PowerShell to work with the services on a particular server

or system but you are not sure of the available cmdlets for doing this. To fi nd out,

use the following command:

Get-Command *-service

Th is displays all the commands you can run against the services running on your

system, as shown in Figure 3.8.

F I G U R E 3 . 8 Get-Command *-service

So, now that you know what commands you can use against the service object,

what is the proper syntax for those commands? Th is is where the Get-Help cmdlet

comes in. By itself, the Get-Help cmdlet, by default, gives you a generic help listing

on how to use Get-Help. In other words, it gives you help on help.

However, the true benefi t of the Get-Help cmdlet is when you run it in context.

When you use the Get-Command and Get-Help cmdlets in conjunction, you can

unlock any information you need to learn PowerShell, including the proper syntax

and usage needed to work with PowerShell cmdlets.

Looking back to the previous example for services, let’s say you want to learn how

to properly stop a service. When you run the following cmdlet, you can learn more

about the proper process for stopping a service:

Get-Help Stop-Service

c03.indd 49c03.indd 49 4/21/2011 1:02:17 PM4/21/2011 1:02:17 PM

5 0 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

Th is cmdlet gives you the general information about what the Stop-Service

cmdlet does, how to use it, and any possible parameters that can be used with the

cmdlet. You may need more information on the command or even examples of

the cmdlet in action. No need to go search the Internet just yet. Th e PowerShell

help system can provide you with even more information with the three follow-

ing switches you can apply to your cmdlets. Switches in PowerShell are much

like the switches used in DOS commands. Th ey are diff erent than parameters

because they do not accept any arguments. Much like a light switch, the switch

is either on (included in the command) or off (omitted from the command). An

example of a switch in PowerShell is the Force switch, which tells a command to

bypass roadblocks and just run. In the case with help you can use the switches

to display diff erent forms of the help system:

-example If you learn by viewing examples, you would run the following cmdlet

to see a list of examples of the cmdlet in action:

Get-Help Stop-Service -examples

I fi nd the -examples switch extremely useful, if not the most useful. When you

use it, as you can see in Figure 3.9, you get real examples to be able to learn a cmdlet

from. Th is helps slim down the learning curve for PowerShell. Ideally, you have that

little reverse engineer inside of you that can take a script and retrofi t it for your par-

ticular environment. Th e -examples switch was key to unlocking PowerShell for

me when I fi rst started using the tool.

-detailed To see even more detailed information about the cmdlet you are look-

ing at using, run this cmdlet:

Get-Help Stop-Service -detailed

-full To see more technical information about the cmdlet you are running, run

the following cmdlet. Th is cmdlet also shows you all the additional parameters and

how they are used with the cmdlet. Th e -full switch provides an exhaustive expla-

nation of the cmdlet.

Get-Help Stop-Service -full

You can use the -example, -detailed, and -full switches with virtually all the

cmdlets in PowerShell. Th is provides a consistent approach to how you can learn to

c03.indd 50c03.indd 50 4/21/2011 1:02:18 PM4/21/2011 1:02:18 PM

 H E L P Y O U R S E L F W I T H P O W E R S H E L L 5 1

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

use PowerShell. However, depending the command, sometimes the results for the

-detailed and -example switches will be identical.

F I G U R E 3 . 9 PowerShell examples

PowerShell provides other ways to get even more information about how to run com-

mands. You can get help on a keyword that is used in the commands. For example,

you could use the following cmdlet to learn more about the service keyword:

Get-Help service

Although the results for this cmdlet may look the same as the Get-Command

*-service cmdlet you ran earlier, this cmdlet actually provides other areas that

you can investigate with the help system. Additionally, the help system lets you

query based on the topic you are interested in. Inside PowerShell are several help

fi les built into the PowerShell interface. Th ese are traditional-style help fi les you can

quickly access. To get a full listing of the available topics, you can run this cmdlet:

Get-Help about

c03.indd 51c03.indd 51 4/21/2011 1:02:18 PM4/21/2011 1:02:18 PM

5 2 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

To explore one of the about topics, it is a matter of just asking PowerShell. For

example, what if you wanted to learn more about parameters and how they are used

in PowerShell? You would run this cmdlet:

Get-Help about_parameters

Th is last cmdlet off ers a great example of working with the help system in

PowerShell. Normally when you start looking at the information contained in the

about help fi les, there will be several screens of information generated when you

access the fi le. Th is will require you to scroll back up through the window to see all

the information. Fortunately, the help system has an alternative to viewing multiple

pages. If you want to have a break at each page so you read the information before

you move to the next page, you use the help command instead of the Get-Help

command. When you use the help command, you have to press a key to move to

the next page of information. For example, notice the diff erence in the scrolling

behavior between the running the previous cmdlet for looking at parameters vs.

running the following cmdlet, which is shown in Figure 3.10:

Help about_parameters

F I G U R E 3 .10 Help about_parameters

c03.indd 52c03.indd 52 4/21/2011 1:02:18 PM4/21/2011 1:02:18 PM

 H E L P Y O U R S E L F W I T H P O W E R S H E L L 5 3

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

You can also get help with various levels of detail about cmdlets and parameters you

are interested in. For example, if you run the following cmdlet, you will learn more

about the ComputerName parameter used in the Get-Service cmdlet, as shown

in Figure 3.11:

Get-Help Get-Service -Parameter ComputerName

F I G U R E 3 .11 ComputerName Parameter help

Use Tab Autocomplete
PowerShell is spelling sensitive, and commands sometimes can have really long

names. Look at the noun ADDomainControllerPasswordReplicationPolicy.

Trust me: No one really wants to type in that name. So, what do you do? You cheat a

little, by using a great built-in tool.

Th e tool you can use to save you misspellings and cramped fi ngers is called tab

autocomplete. To use tab autocomplete, you just need to know a portion of the noun

you want to use in your cmdlet. Suppose you remember that a command started

with Get-Web but can’t remember which cmdlet you were working with. You could

start typing Get-Web and then use the Tab key to cycle through all commands that

start with Get-Web.

Another built-in tool that saves you typing and repeating previous commands is

a tool you may be familiar with if you have previously used DOS. You can use the

DOSKey behavior of recalling commands by pressing the up arrow to cycle you

through previous commands you have typed in.

c03.indd 53c03.indd 53 4/21/2011 1:02:18 PM4/21/2011 1:02:18 PM

5 4 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

Leverage Online Resources
Th e PowerShell community has built several great online resources for help. Th e

following are the online locations where I go when I am looking for assistance in

PowerShell:

Scripting with Windows PowerShell Chances are this site has a script for a task

similar to what you are trying to do, which makes it a great resource for you to put

your reverse-engineering skills to use. It also has sample scripts for the many dif-

ferent areas PowerShell can manage, including scripts for Exchange, SharePoint,

Windows, and many other areas in the script repository. Scripting with Windows

PowerShell takes the Get-Help -Examples cmdlet to the next level. See http://

technet.microsoft.com/en-us/scriptcenter/powershell.aspx.

The PowerShell Guy What I like about this blog is that Marc (aka the

PowerShell guy) always seems to have great insights into PowerShell. See http://

thepowershellguy.com/blogs/posh/default.aspx.

PowerTab Th is is for the mini-developer in you. PowerTab takes the tab autocom-

plete feature to an entirely diff erent level of usage. Th is gives even clearer insight

into PowerShell commands when you hit the Tab key to help create your scripts. See

http://powertab.codeplex.com.

Hey, Scripting Guy! Blog Th e Microsoft scripting guys have answered all sorts

of scripting questions for various scripting languages, including PowerShell. Th e

PowerShell answers range from how to build custom functions to how to work with

WMI and Active Directory. Developers and IT pros should be able to follow their

answers easily. See http://blogs.technet.com/b/heyscriptingguy.

PowerShellCommunity.org Is a solid community website where you can fi nd

more examples and custom PowerShell tools that are built by the PowerShell com-

munity. Th ey also have a fun feature called the random cmdlets, where they show a

random cmdlet with a defi nition.

See http://powershellcommunity.org.

Of course, you can always use a search engine to help fi nd what you need.

c03.indd 54c03.indd 54 4/21/2011 1:02:19 PM4/21/2011 1:02:19 PM

 U S E E V E N M O R E C O M M A N D S W I T H M O D U L E S 5 5

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

Use Even More Commands with Modules

Th is section gives you even more cmdlets to learn and use. By default when you

open your PowerShell window and run the Get-Command cmdlet, you see only

the commands available to you at the time. Typically these are the core functions

of PowerShell, and depending on your system or what roles are installed on

your Windows Server 2008 R2 server, you may have only a few cmdlets to take

advantage of.

Th e additional commands are stored in role-specifi c features called modules, and

almost every Windows Server 2008 R2 server role has a set of dedicated cmdlets

for that specifi c role. Th is section tells you how you can fi nd out which modules are

available to you on your server, how to bring them into your PowerShell session, and

how to begin using them.

Use and Understand Modules
A module is an installable package for your system that contains several diff erent

cmdlets, functions, aliases, and various other capabilities that extend PowerShell’s

capabilities. Even though you can create your own custom modules (discussed in

Appendix E), typically from an IT administration standpoint PowerShell modules

are installed onto your server as you install roles or other pieces of soft ware onto

your Windows Server 2008 R2 servers. You can think of modules as mini-toolboxes

providing you with specifi c tools to use PowerShell to administer roles on your

system.

As I’ve said, modules are specifi c to the installed role or soft ware; in other

words, they are designed for that role. In the case of Microsoft Windows Server

2008 R2 server roles, the Microsoft product groups create modules specifi c to

roles you can install on the servers. In Windows Server 2008 R2 and PowerShell

2.0, this is relatively new. Although you could maintain and work with most

roles on a server, in PowerShell 1.0 it was not intuitive or easy. With PowerShell

2.0, these new modules, which make working with roles such as Active

c03.indd 55c03.indd 55 4/21/2011 1:02:19 PM4/21/2011 1:02:19 PM

5 6 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

Directory easier, are typically installed onto your system when you install the

role on the server.

Th ere are usually a couple of ways to access these modules. One common way is

to load the shortcut for the PowerShell module for the role you want to admin-

ister. Th ese are PowerShell shortcuts and are typically stored in administrative

tools. In Figure 3.12, you can see the shortcut for the Active Directory module for

PowerShell.

F I G U R E 3 .12 Active Directory module for Windows PowerShell

When you load these specialized shortcuts, you automatically load the module

for that specifi c role or soft ware. So, you will have access to those specifi c cmd-

lets, but you will not have access to other modules, because they are not currently

loaded.

c03.indd 56c03.indd 56 4/21/2011 1:02:19 PM4/21/2011 1:02:19 PM

 U S E E V E N M O R E C O M M A N D S W I T H M O D U L E S 5 7

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

If you want to launch PowerShell with all the available modules loaded for you so all

the cmdlets that you can use on your system are available and ready to be used, you

can load the Windows PowerShell modules shortcut, which you also will fi nd in the

Administrative Tools group, as shown in Figure 3.13.

F I G U R E 3 .13 Windows PowerShell modules

Using this shortcut is a quick and easy way to have all your modules loaded when

you start a PowerShell session. It essentially loads all the available and installed

modules on your server with one click of a mouse button. Another way to load the

modules in one fell swoop is to load just the contents of the module for that specifi c

role or soft ware.

You can learn more about the basics of modules by running this cmdlet:

Get-Help about_modules

c03.indd 57c03.indd 57 4/21/2011 1:02:19 PM4/21/2011 1:02:19 PM

5 8 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

In the next section, you will see how to import and work with the modules on your

system.

Get to Know Your Modules
Picture this: you have opened your PowerShell session on a Windows Server 2008 R2

server you just inherited as part of your administrative workload, and you wonder

what is available to you to work with in PowerShell. You know you may have more

than what Get-Command shows you. So, how do you fi nd out which modules are

loaded and which modules you can load? Th e answer to that starts with this cmdlet:

Get-Module

LOADING ALL MODULES INTO AN EXISTING POWERSHELL SESSION

You may already be in an existing PowerShell session and want to load all the installed
modules on your server at once. You can do that easily. In your running PowerShell
session, run the following built-in function, and it will load all the available modules
for you:

ImportSystemModules

When you run this command, you will see the modules loading in your PowerShell
session.

This loads the modules only temporarily, and when you exit the session, the modules
will not be automatically loaded for the next session.

c03.indd 58c03.indd 58 4/21/2011 1:02:20 PM4/21/2011 1:02:20 PM

 U S E E V E N M O R E C O M M A N D S W I T H M O D U L E S 5 9

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

When you run Get-Module by itself, it displays all the modules currently loaded

into the PowerShell session. Your results will look something like Figure 3.14.

F I G U R E 3 .14 Get-Module

If you run the Get-Module cmdlet and you get blank results, that means you do

not have any modules currently loaded into your session. To see what modules

you have available to be loaded into your current PowerShell session, add the

-ListAvailable parameter to the Get-Module cmdlet. Figure 3.15 shows an

example of Get-Module -ListAvailable.

F I G U R E 3 .15 Get-Module -ListAvailable

c03.indd 59c03.indd 59 4/21/2011 1:02:20 PM4/21/2011 1:02:20 PM

6 0 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

When you see the list of modules available to you aft er you run the Get-Module

-ListAvailable cmdlet, take note of the spelling and the names of the modules

you can import, because the names of the modules are not supported by tab auto-

complete. Knowing the names of the modules available gives you a sense of what

roles are installed on your system, as well as giving you enough information to load

those cmdlets for your use.

Once you know what module or modules you want to load and use in your

PowerShell session, use the Import-Module cmdlet to bring the new module and

cmdlets into your PowerShell session. For example, if you wanted to use the cmdlets

for the Windows Server 2008 R2 Best Practices Analyzer (BPA) system utility, run

this cmdlet:

Import-Module -Name BestPractices

If you want to see what new cmdlets are now available aft er that, run the following

cmdlet:

Get-Command -Module BestPractices

When you are done using the modules and you are fi nished with your PowerShell

session, close the PowerShell console. If you are not done with your PowerShell ses-

sion and just want to remove the module, you can use the Remove-Module cmdlet

to perform the reverse of the import command and remove PowerShell modules

from your current session.

Create a Custom PowerShell Shell
As you work with modules, you may come to a point where you want to have only

certain modules loaded or have PowerShell look and feel a certain way every time

you start a PowerShell session. You can accomplish this in two ways. Th e fi rst way

to load only the module for your PowerShell shell is to create a shortcut that loads a

PowerShell session and add a command to the shortcut target that loads the module

you want to have automatically loaded. For example, to load the System modules,

use this shortcut target path:

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe i
-NoExit -ImportSystemModules

c03.indd 60c03.indd 60 4/21/2011 1:02:20 PM4/21/2011 1:02:20 PM

 U S E E V E N M O R E C O M M A N D S W I T H M O D U L E S 6 1

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

SECURITY ACCESS AND SCRIPTS EXECUTION

Some modules may require you to run your PowerShell session as an administrator. If
that’s the case, follow these steps:

 1. Right-click the PowerShell icon on your taskbar or in your Start menu.

 2. Select Run As Administrator.

 3. If you are prompted by User Account Control, click Yes to continue.

Some scripts and modules do not load into PowerShell by default; in these cases, you’ll
receive an error saying the execution of scripts is disabled on the system. To get by this
error, you can run the following cmdlet from an administrative PowerShell session:

Set-ExecutionPolicy RemoteSigned

Chapter 5 explains more about the security protecting your PowerShell environment.

Although the fi rst method is quick and dirty, it does not off er the greatest degree

of usability and fl exibility. Th e second way uses a concept in PowerShell called a

profi le.

Profi les off er a great deal of fl exibility and customization to your PowerShell sessions.

You can think of a profi le as a customizable startup script for PowerShell. A profi le

can aff ect multiple users and multiple shells. Essentially the contents of all profi les

are the same. However, the name of the profi le and location where the profi le fi le

is stored and created determine the impact a profi le you create has on your system.

Th ere are only two fi lenames to use for profi les:

profile.ps1 Th is fi le aff ects all shells.

Microsoft.PowerShell_profile.ps1 Th is fi le aff ects only the PowerShell

shell, the base command prompt.

Likewise, you can store the profi les in one of two locations:

%windir%\system32\WindowsPowerShell\v1.0\ Th is location aff ects all

users.

c03.indd 61c03.indd 61 4/21/2011 1:02:21 PM4/21/2011 1:02:21 PM

6 2 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

%UserProfile%\My Documents\WindowsPowerShell\ Th is location aff ects

only the current user.

Table 3.5 summarizes the four types of profi les you can have.

TAB LE 3 . 5 PowerShell profi les

Scope of profi le Profi le fi lename Path for

All users and all shells profile.ps1 %windir%\system32\

WindowsPowerShell\

v1.0\

All users, but only to the Microsoft
.PowerShell shell

Microsoft.PowerShell_

profile.ps1

%windir%\system32\

WindowsPowerShell\

v1.0\

Only current user and aff ects all shells profile.ps1 %UserProfile%\

My Documents\

WindowsPowerShell\

Only current user and the
Microsoft.PowerShell shell

Microsoft.PowerShell_

profile.ps1

%UserProfile%\

My Documents\

WindowsPowerShell\

When you fi rst start using PowerShell on your system, there are no profi les on the

system. First you need to create the profi les; then you will be able to edit them.

Creating profi les is a straightforward process, but you need to know the location

and fi lename that is currently confi gured on your system. To see what the current

profi le path is on your system, you can use a default variable; to see the value, type

the following command in a PowerShell session:

$profile

Th is variable returns the current directory and current fi le location for your profi le.

By default when you fi rst load PowerShell, there is no profi le created. You need to

create the fi le to store the commands for your profi le. To create your profi le, run this

cmdlet:

New-Item -Path $profile -ItemType File -force

Aft er the command is run, you will see results similar to Figure 3.16.

c03.indd 62c03.indd 62 4/21/2011 1:02:21 PM4/21/2011 1:02:21 PM

 U S E E V E N M O R E C O M M A N D S W I T H M O D U L E S 6 3

Po
w

er
Sh

el
l G

ra
m

m
ar

Le

ss
on

CHAPTER 3

F I G U R E 3 .16 Creating a profi le

 Th e -force value on the end creates the necessary directories and fi les if they do

not currently exist. By default this creates a script fi le called Microsoft

.PowerShell_profile.ps1 in the %UserProfile%\My Documents\

WindowsPowerShell directory. So, this profi le aff ects only the current user for the

current shell.

If you want to change the scope of the profi le on your system, copy the fi le to one

of the two locations, and rename it to meet your needs. You could also include the

path and name of the fi le in the New-Item cmdlet to create the fi le in the location

you want to have. For example, this command would create a profi le aff ecting only

the current user but for all the shells:

New-Item -path “$env:UserProfile\My Documents i
\WindowsPowerShell\profile.ps1” -itemtype file -force

When you create the profi le, it will be a blank profi le. It is up to you to determine

what modules you want to put in the profi le. You just need to edit the profi le and

add the modules or commands you want to preload. You can use Notepad, or any

other favorite PowerShell editor you prefer, to edit the profi le. You can either open

Notepad in your PowerShell session or open the fi le directly via Windows Explorer

and modify the fi le. In this example, you can see how to use PowerShell to begin

editing the profi le. Run the following command:

notepad $profile

Once Notepad opens, you can put in the commands that you want to preload into

your PowerShell session. In this section, you saw how to use the Import-Module

command to bring modules into PowerShell. You can see an example of a profi le in

Notepad in Figure 3.17.

c03.indd 63c03.indd 63 4/21/2011 1:02:21 PM4/21/2011 1:02:21 PM

6 4 C H A P T E R 3 • P O W E R S H E L L G R A M M A R L E S S O N

F I G U R E 3 .17 Sample profi le

If you run the command and you see an error, like the one displayed in Figure 3.18,

then you need to make sure your fi le has been created and is in the proper location.

F I G U R E 3 .18 Notepad error

What makes profi les so fl exible is that you can put any PowerShell command in the

profi le you want to preload into your environment, allowing PowerShell to open

with the location you set, or modules loaded, or anything else you would like to

specify about the default behavior of PowerShell. Th is allows you to have the values

you want to have every time you load PowerShell.

EXERCISE 3: CREATE A POWERSHELL PROFILE

In this exercise, you get to work with profi les, modules, and a basic command. Create a pro-
fi le that will load the Active Directory and IIS modules automatically on your system. Then
run a command to verify the IIS and Active Directory modules have been properly loaded.

c03.indd 64c03.indd 64 4/21/2011 1:02:21 PM4/21/2011 1:02:21 PM

CHAPTER 4

Aliases, Functions, and
the Pipe, Oh My!

IN THIS CHAPTER, YOU WILL LEARN TO:

Use Aliases 66

Use Built-in Aliases. 67

Create Your Own Aliases. 69

Use Functions 77

Understand Functions . 78

Use Existing Functions . 79

Create Your Own Function. 80

Work with the Pipe Operator 81

Use the Pipe Operator to Combine PowerShell Cmdlets 81

Control PowerShell Output . 82

c04.indd 65c04.indd 65 4/21/2011 1:05:33 PM4/21/2011 1:05:33 PM

CH
APTER 4

T
his chapter covers three important tools to add your own style to PowerShell:

aliases, functions, and the pipe (|) operator.

Aliases provide a way to shorten long cmdlets, saving you typing. More impor-

tantly, aliases allow you to use your former command prompt knowledge and put it

to use inside a PowerShell session.

Functions let you take PowerShell to an entirely new level. They extend the concept

of aliases and can take advantage of the power of the .NET Framework.

The pipe symbol allows you to tie multiple cmdlets together into one line of script.

You will learn the basics of using the pipe symbol and how combining cmdlets

with the pipe symbol lets you quickly control and format the output from your

PowerShell commands.

Use Aliases

Aliases are shortcuts that let you shorten commands in PowerShell. The following

command is an example of an alias:

dir

You are most likely thinking that this is the directory command from your com-

mand shell in Windows or from your DOS background. However, PowerShell does

not have a cmdlet called dir; it does have the alias dir, which accomplishes the

same task as a directory list. When you type the alias in PowerShell, you get a listing

of the directory, as shown in Figure 4.1.

If you come from a Unix or open source background, you may be familiar with the

ls command. Just as with dir, PowerShell does not have a native cmdlet for ls, but

it has an alias for it.

There are two main reasons why PowerShell uses aliases. First, aliases allow you

to leverage existing command prompt knowledge. By providing aliases like dir

and ls, PowerShell allows you to use commands you might already know and get

through some of the basics very quickly and easily. The dir and ls aliases also

illustrate another important concept of aliases. A cmdlet can have more than one

alias associated with it. For example, the dir and ls aliases are for the cmdlet

Get-ChildItem. Just for good measure, there is another alias for Get-

ChildItem, which is gci. This is not as common as dir and ls, but all three

perform the same command. And if you wanted another alias for Get-ChildItem,

you could create one.

c04.indd 66c04.indd 66 4/21/2011 1:05:38 PM4/21/2011 1:05:38 PM

 U S E A L I A S E S 6 7

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

F I G U R E 4 .1 dir

GETTING HELP WITH ALIASES

In Chapter 3 you learned about the built-in help system. You can also use the Get-Help
cmdlet to find help about aliases. When you run Get-Help with an alias like dir or
ls, you get the help entry for Get-ChildItem. This is useful not only for determining
how the alias works but also for determining what cmdlet the alias is associated with.

Second, aliases allow for customization. You can create your own aliases to help
reduce the length of some existing cmdlets. In Chapter 3, you saw that there
is a potential for cmdlets to be quite long, such as any cmdlet using the noun
ADDomainControllerPasswordReplicationPolicy. It would be simpler if you
could shorten that to ADDCPRP, wouldn’t it? You can use aliases to do just that.

Use Built-in Aliases
More than 130 aliases are built into PowerShell, ready for you to use. To get a list of

the aliases in your PowerShell session, run the following cmdlet:

Get-Alias

c04.indd 67c04.indd 67 4/21/2011 1:05:38 PM4/21/2011 1:05:38 PM

6 8 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

You will see results similar to Figure 4.2.

F I G U R E 4 . 2 Get-Alias

Table 4.1 describes some of the built-in aliases and their corresponding cmdlets.

TAB LE 4 .1 Common aliases

Alias Cmdlet Description

cd

chdir

sl

Set-Location Changes the current directory for your PowerShell session.

kill

spps

Stop-Process Stops a running process.

copy

cp

cpi

Copy-Item Allows you to copy files, subdirectories, and so on.

gcm Get-Command Lists all the cmdlets currently available in the PowerShell session.

man Get-Help If you are from a Unix background, this is your version of help,
and in PowerShell you may be happy to see this alias.

c04.indd 68c04.indd 68 4/21/2011 1:05:38 PM4/21/2011 1:05:38 PM

 U S E A L I A S E S 6 9

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

The Get-Alias output shows not only a list of the currently loaded aliases but also

the corresponding cmdlets they are associated with. By the way, the alias for the

Get-Alias cmdlet is gal.

If you used PowerShell 1.0, these aliases look the same, and in most cases, all the

aliases in PowerShell 1.0 have found a place in PowerShell 2.0.

Create Your Own Aliases
One of the great things about aliases is that you can create your own. The ability

to create your own aliases will allow you to have PowerShell work in a way you

are familiar with. By creating and using aliases, you can make your PowerShell

commands easier to read and use. The trick with creating your own aliases is

remembering they are there.

You can create aliases for a wide variety of purposes in PowerShell. You will most

likely create aliases for cmdlets. However, you can create aliases for functions,

scripts, files, executables, and other aspects in your environment that you may want

to use in a PowerShell session.

If you find yourself constantly repeating the same cmdlets, then those

commands are perfect candidates for aliases. If you find the need to reference the

same drive and directory for PowerShell output, these are also great candidates

for aliases. You need to discover the need for the aliases so you can effectively

leverage them.

Creating aliases is a straightforward process. You can use either of two cmdlets to

actually create the alias:

New-Alias

Set-Alias

Although you can use both cmdlets to create aliases, there is one main difference

between the two. You can use the Set-Alias cmdlet to create an alias or change

an existing alias in your PowerShell session. This lets you change the value of an

alias. You can use the Set-Alias cmdlet only on aliases that are not read-only.

For example, if you wanted to change the si alias (which by default is an alias for

Set-Item) to Get-Command, you would see an error message similar to Figure 4.3,

because the si alias is a read-only alias.

c04.indd 69c04.indd 69 4/21/2011 1:05:39 PM4/21/2011 1:05:39 PM

7 0 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

F I G U R E 4 . 3 Set-Alias error

The New-Alias cmdlet just creates a new alias. You should consider using this

cmdlet whenever creating a new alias so that you do not accidentally overwrite

an existing alias. However, the Set-Alias command provides a great resource

if you need to change one of the aliases you have made for the PowerShell

session.

Both cmdlets have the same two parameters: an alias name and the command

 element for which you want to create the alias. For example, if you wanted to create

an alias for the Get-Random cmdlet, which gets a random number or a random item

from a list, you could use one of the following two commands:

New-Alias rand Get-Random

Set-Alias rand Get-Random

Both cmdlets create the alias rand for the PowerShell session. So when you type

rand in your PowerShell session, you actually call the Get-Random cmdlet.

Figure 4.4 shows an example of the rand alias.

F I G U R E 4 . 4 rand alias

Let’s take this example a bit further to illustrate the difference between New-Alias

and Set-Alias. Use the New-Alias in the following command:

New-Alias rand Get-Command

You will get the error message shown in Figure 4.5. The reason you get the error is

because you have already created the rand alias.

c04.indd 70c04.indd 70 4/21/2011 1:05:39 PM4/21/2011 1:05:39 PM

 U S E A L I A S E S 7 1

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

F I G U R E 4 . 5 rand alias error

Alternatively, use Set-Alias in the following command:

Set-Alias rand Get-command

You will not get an error message, and your screen may look like the screen in

Figure 4.6. As you can see, the Set-Alias cmdlet overwrote the existing alias for

the PowerShell session.

F I G U R E 4 . 6 Set-Alias rand overwrite

So again, when creating aliases, you want to consider using New-Alias rather than

Set-Alias to avoid accidentally overwriting any existing aliases in your current

PowerShell session.

c04.indd 71c04.indd 71 4/21/2011 1:05:39 PM4/21/2011 1:05:39 PM

7 2 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

Make Aliases Permanent

When you create aliases, they are used only for the current session. It does not mat-

ter whether you use Set-Alias or New-Alias; the aliases you create with those

two cmdlets are for the existing PowerShell session. If you close your PowerShell

session and later try to run aliases you created in it, then you will most likely see

what’s shown in Figure 4.7.

F I G U R E 4 .7 Aliases not loaded

This is a standard error message (you may see it even when you misspell com-

mands), but in this example, it means the rand alias does not exist.

In this section, you will learn how to keep from having to rebuild your aliases.

There are a couple of ways to be able to take your aliases with you, in other words,

make them permanent.

One method allows you to export your aliases to a text file and then reimport them

into an existing PowerShell session. The export/import method allows your aliases

to travel with you. You can place the exported text file on a USB stick or remov-

able drive. You can even email it to yourself. To export your aliases in your current

PowerShell session, run the following command:

Export-alias -path aliases.csv

This command exports your existing aliases into the file called aliases.csv in

the current directory. You can use your own filename and put the file in whatever

directory you want. You should always export the aliases to .csv so you can read

and import them easily into a spreadsheet program such as Microsoft Excel. If you

export them to a .txt file, you may not be able to easily read the results. Figure 4.8

shows aliases in a .txt file.

c04.indd 72c04.indd 72 4/21/2011 1:05:39 PM4/21/2011 1:05:39 PM

 U S E A L I A S E S 7 3

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

WORKING WITH FILE EXTENSIONS

When you export the aliases using extensions, you can easily work in other programs
such as Notepad or Excel. The extensions are not needed if you need to reimport the
files into a PowerShell session.

F I G U R E 4 . 8 Looking at aliases in Notepad

If you want to read the file, open it in Excel or another spreadsheet program. To do

that, complete the following steps:

 1. Open Microsoft Excel, and browse to the directory where the alias file is

stored. Make sure you are browsing for all files. Select the file you want to

open, and click Open.

 2. You may see a screen similar to Figure 4.9. This is the Text Import Wizard in

Microsoft Excel 2007.

c04.indd 73c04.indd 73 4/21/2011 1:05:40 PM4/21/2011 1:05:40 PM

7 4 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

F I G U R E 4 . 9 Text Import Wizard

 3. Click Next.

 4. Select Comma as the delimiter, as shown in Figure 4.10, and then click Next.

F I G U R E 4 .10 Comma delimiter

c04.indd 74c04.indd 74 4/21/2011 1:05:40 PM4/21/2011 1:05:40 PM

 U S E A L I A S E S 7 5

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

 5. Click Finish to view your file, as shown in Figure 4.11.

F I G U R E 4 .11 Aliases file in Excel

As you can see, the alias file is easier to read in Microsoft Excel. Although you

normally would not do this, it sometimes helps to look at the file structure so that

you can make changes or additions to this file to control what aliases you import

into your PowerShell session.

When you want to import the files into your PowerShell session, run the following

command:

Import-Alias -path aliases.csv

The first time you run this file, you may see a screen similar to Figure 4.12.

Although you may be inclined to panic with all the error messages on your screen,

there is no need to do so. The repeated error messages show that you tried to import

aliases overtop existing aliases in your current PowerShell session. There are a

couple of ways to handle the error messages. The first way is to ignore the message

c04.indd 75c04.indd 75 4/21/2011 1:05:40 PM4/21/2011 1:05:40 PM

7 6 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

and just go on with your PowerShell work. The other way is to delete all the built-in

PowerShell aliases in the exported file, leaving only your custom aliases.

F I G U R E 4 .12 Importing existing aliases

How do you know which ones are which? Your custom aliases will be at the bottom

of the exported file and will by default have a scope of None. You can see custom

aliases highlighted in Figure 4.13.

After you have identified your custom aliases, delete all the rows above them, save

the file, and then import them into your PowerShell session without getting all the

error messages.

The second, preferred method to make your aliases permanent is to modify the

profile for your local system. By modifying the profile with your aliases you will

be assured they are at your fingertips every time you start a PowerShell session

on the system you created the custom profile on. The advantage to the export/

import method discussed earlier is that the file you create is more portable.

Having a simple .csv or .txt file on a portable drive, or even emailed to your-

self, makes your custom aliases easily transferable to other PowerShell systems.

c04.indd 76c04.indd 76 4/21/2011 1:05:41 PM4/21/2011 1:05:41 PM

 U S E F U N C T I O N S 7 7

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

F I G U R E 4 .13 Custom aliases

Custom aliases

In Chapter 3, you learned how to modify the profile for a PowerShell session.

Once you have opened and modified the profile, then it is just a matter of includ-

ing the appropriate New-Alias or Set-Alias commands to have the aliases you

need at your fingertips.

Use Functions

Another powerful aspect to working with PowerShell is the ability to work with

functions. Functions go hand in hand with aliases in certain aspects but also offer

a lot of additional power. The additional power behind functions is their ability to

accept and pass parameters.

In this section, you will see some of the basics of functions. You will get a brief

introduction to the built-in functions and an overview of how to create customized

functions to perform tasks in PowerShell.

c04.indd 77c04.indd 77 4/21/2011 1:05:41 PM4/21/2011 1:05:41 PM

7 8 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

Understand Functions
Functions provide another way to save time in the PowerShell environment.

Functions extend the power of aliases by being able to accept parameters or other

blocks of PowerShell script into a single command. You can then pass parameters into

the command that allow you to have the functions not only perform scripting but also

perform PowerShell scripting within the context you set by using the parameters.

One of the limitations of aliases is that you cannot create an alias with any param-

eters in it. For example, if you ran the following command:

New-Alias setd Set-Location D:

you would receive an error message, similar to Figure 4.14.

F I G U R E 4 .14 Alias with parameters error

As you can see, aliases cannot be created with additional parameters. In other

words, aliases are a great way to shorten base PowerShell cmdlets, but functions

allow you to not only shorten up cmdlets but also include any parameters or

additional properties you want to set as part of your PowerShell commands.

PowerShell has several built-in functions. In fact, you probably have used a PowerShell

function and did not even know it. Here is an example of a built-in PowerShell function:

D:

Again, you are probably thinking you have to run that command or a variation of

that command (C:, E:, or even Z:) to change your drive letter to whatever drive

you specified before the colon. The actual cmdlet that is performed when you run

the command is this one:

Set-Location D:

c04.indd 78c04.indd 78 4/21/2011 1:05:41 PM4/21/2011 1:05:41 PM

 U S E F U N C T I O N S 7 9

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

So, like aliases, functions provide another built-in tool, allowing you to leverage

your existing command prompt knowledge.

Use Existing Functions
To list all the default functions in your PowerShell session, you can run the

 following command:

Get-ChildItem -path function:

You will see a screen similar to Figure 4.15.

F I G U R E 4 .15 Listing of functions

A lot of the functions listed in Figure 4.15 should look familiar if you have used a

command prompt environment. You may also notice some other functions that you

have not seen in the list before. Functions, like aliases, provide a transition point

into PowerShell. Table 4.2 explains a few built-in functions.

c04.indd 79c04.indd 79 4/21/2011 1:05:41 PM4/21/2011 1:05:41 PM

8 0 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

TAB LE 4 . 2 Built-in functions

Function Description

Get-Verb Allows you to find all the verbs in your PowerShell session, which is useful when
you are trying to find all the cmdlets available with a particular verb.

TabExpansion Provides the ability for tab autocomplete to work in your PowerShell sessions. This
function has also been greatly improved to help not only with cmdlets but also with
file and directory locations, among other capabilities.

Clear-Host A fancy way to run CLS — and another example of being able to carry over previ-
ous knowledge from the command prompt. Additionally, CLS is an alias for this
function.

As you can see, functions assist in the everyday usage of PowerShell.

Create Your Own Function
Functions are easy to create. They have three basic components:

 ▶ Function: This is the marker for the beginning of a function definition; it

can also be used to modify existing functions or rename functions.

 ▶ Function name: This is the name of the function you are creating.

 ▶ Script block: This is where you put all of your cmdlets and PowerShell script

with parameters; in other words, it’s where you do all the work and logic of

the function.

So, the basic syntax for creating a function is as follows:

Function (function name) {Script block}

In the following example, you will create a function that will show you all the

existing functions on your system. This example will give you a quick peek into

how functions operate.

Function Get-Function { Get-ChildItem -path function: }

As you can see, this function calls the command you saw earlier in this chapter.

One last note on functions: like aliases, functions are not permanent. If you want a

function to be permanent, you have to edit the profile for PowerShell. In Chapter 3,

you learned how to modify the profile for a PowerShell session. Just like other

commands you included in the profile, you can put your custom functions in the

profile as well, like so:

Function Get-Function { Get-ChildItem -path function: }

c04.indd 80c04.indd 80 4/21/2011 1:05:41 PM4/21/2011 1:05:41 PM

 W O R K W I T H T H E P I P E O P E R A T O R 8 1

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

In this section, you just scratched the surface of working with functions in

PowerShell. For more information and to see some of the power behind functions,

refer to Appendix D.

Work with the Pipe Operator

Up until this point, you have been using simple commands to get information out

of PowerShell. In this section, you will learn how to tie cmdlets together by using

the pipe (|) operator.

By using the pipe operator, you can string multiple commands together into

one line of PowerShell script. This not only lets you make your PowerShell

scripts simple to write but more importantly makes it easy to have consistent

commands.

Some of the things you can do with the pipe operator include recovering users from

Active Directory, finding all the services that are currently running, or sorting your

output list from a PowerShell command.

Use the Pipe Operator to Combine PowerShell Cmdlets
Piping commands together is called pipelining. Pipelining allows you to take the

output from one command and pass it to the next command, essentially becom-

ing input for the next command. This is also very similar to using | more, which

you may have used at the command prompt; like the pipe at the command prompt,

| more will help avoid scrolling through output from a PowerShell command. For

example, the following command lets you show the services on your system sorted

by their status, including the name of the service, any required services, and the

status of the service:

Get-Service | Sort-Object -property status | i
Format-Table -property name, requiredservices, status

Notice the object-based nature of the language, which allows you to work with

any of the parameters from a particular object. This allows parameter binding,

which is key to working with the pipe operator. Little scripting effort is required

when you tie commands together. The pipe routes information automatically and

correctly into the right parameters, offering a consistent experience with little

work on your part.

c04.indd 81c04.indd 81 4/21/2011 1:05:42 PM4/21/2011 1:05:42 PM

8 2 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

Control PowerShell Output
Commands that are used with the pipe operator typically fall in one of the follow-

ing categories:

 ▶ Formatting — making the output look the way you want to see the information

 ▶ Sorting — organizing your data further

 ▶ Redirecting output to a file or other output mechanism

 ▶ Filtering using the Where-Object cmdlet

Let’s take a look at another example using Get-Service:

Get-Service | Format-List

The Format-List cmdlet is piped the output from the Get-Service cmdlet. This

causes the output to be formatted in a list. You can see an example of this output in

Figure 4.16. As a comparison, if you run just the Get-Service cmdlet, the output

may look like Figure 4.17.

F I G U R E 4 .16 Get-Service | Format-List

c04.indd 82c04.indd 82 4/21/2011 1:05:42 PM4/21/2011 1:05:42 PM

 W O R K W I T H T H E P I P E O P E R A T O R 8 3

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

F I G U R E 4 .17 Get-Service

There are also other format cmdlets to format the output in tables and grids. The

sorting cmdlet works like the format cmdlets in that its input is piped in from a

separate cmdlet. Take a look at Figure 4.18.

Get-Process | Sort-Object -Property handles

The Sort-Object cmdlet takes a property parameter specifying the property to

sort on—handles, in this case.

Another set of utility cmdlets are those that deal with output redirection. The fol-

lowing example redirects the output of Get-Service to a file rather than writing

out the services list to the PowerShell environment. Figure 4.19 shows the resulting

services.txt file.

Get-Service | Out-File –FilePath C:\temp\services.txt

The FilePath parameter of the Out-File cmdlet specifies the file path where you

want the output to be saved.

c04.indd 83c04.indd 83 4/21/2011 1:05:42 PM4/21/2011 1:05:42 PM

8 4 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

F I G U R E 4 .18 Sort-Object

F I G U R E 4 .19 Out-File

c04.indd 84c04.indd 84 4/21/2011 1:05:42 PM4/21/2011 1:05:42 PM

 W O R K W I T H T H E P I P E O P E R A T O R 8 5

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

FINDING CMDLETS FOR YOUR VERBS WITH THE POWER OF THE PIPE

When working with Get-Command, you may get a long list of results. However, suppose
you want to narrow the commands to a subset of a particular verb. In this case, you
could use the pipe operator with the Get-Verb function and Get-Command to list all
the commands for a particular verb.

For example, if you just want to find all the commands that go with the Format verb,
you would run this command:

Get-Verb Format | Get-Command

The Get-Verb function lets you find any commands if you know the verb you are
looking for, and you pipe it into the Get-Command cmdlet.

Format PowerShell Output

Table 4.3 describes the four main cmdlets you can use to help format data in your

PowerShell commands.

c04.indd 85c04.indd 85 4/21/2011 1:05:43 PM4/21/2011 1:05:43 PM

8 6 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

TAB LE 4 . 3 Format cmdlets

Cmdlet Usage

Format-List Lets you control what properties are displayed in a list view when you run
PowerShell cmdlets.

Format-Wide Creates a wide table in the form of columns; displays one property for the objects
returned in your cmdlet. This is similar to the command prompt command dir /w.

Format-Table Outputs data into a table format, typically the default view for outputting data.

Format-Custom Allows you to leverage custom views defined by XML. There is a lot of customiza-
tion to be done in creating your own view. In Appendix D, you will see a little bit
more on how to create a custom view.

Let’s take a look at the format cmdlets in action. To be effective with the format cmd-

lets, you need to know the property names for the particular object you are working

with. You may recall the Get-Member cmdlet mentioned in Table 3.3 in Chapter 3.

When you run Get-Member for a particular cmdlet, it displays not only program-

matic methods for the cmdlet but the properties as well. When you are looking for

properties to use in formatting your output, you can see them in the results of Get-

Member. Figure 4.20 shows the properties for the Get-Service cmdlet.

F I G U R E 4 . 2 0 Get-Service | Get-Member
Alias

properties

Properties

c04.indd 86c04.indd 86 4/21/2011 1:05:43 PM4/21/2011 1:05:43 PM

 W O R K W I T H T H E P I P E O P E R A T O R 8 7

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

After you know what properties to use, it is just a matter of plugging the correct

names into the -property parameter of the Format-List cmdlet. You can also

have alias properties. For the Get-Service cmdlet, there are two alias proper-

ties, name and requiredservices, which can be used for ServiceName and

ServiceDependsOn, respectively. When you use multiple property names, sep-

arate them with a comma. For example, if you wanted all the required services

for each service on your machine, you would run this command (Figure 4.21

shows the output):

Get-Service | Format-List i
-property displayname, requiredservices

F I G U R E 4 . 21 Format-List with properties

The property names also work in the Format-Table cmdlet. Figure 4.22 shows the

output of the following command:

Get-Service | Format-Table i
-property displayname, requiredservices

The results of the Format-List and Format Table commands are the same; it

is the formatting that is different. Choosing which cmdlet you use really becomes a

matter of preference. These two cmdlets are the most common formatting cmdlets

you will use in PowerShell.

c04.indd 87c04.indd 87 4/21/2011 1:05:44 PM4/21/2011 1:05:44 PM

8 8 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

F I G U R E 4 . 2 2 Format-Table with properties

The Format-Wide cmdlet, while not used for the previous commands, can be very

useful when looking at files and directories. The following example shows why

Format-Wide is a good formatting option when you want to display a list spanning

multiple columns (see Figure 4.23):

dir | Format-Wide -column 3

F I G U R E 4 . 23 Format-Wide

c04.indd 88c04.indd 88 4/21/2011 1:05:44 PM4/21/2011 1:05:44 PM

 W O R K W I T H T H E P I P E O P E R A T O R 8 9

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

Sort PowerShell Output

There is only one cmdlet you will need to know how to use for sorting your data.

The Sort-Object cmdlet can take a few parameters. As with the format cmdlets,

you need to know the properties of an object in order to sort on them with Sort-

Object. If you want to sort the list of services by their status, run this command:

Get-Service | Sort-Object -property status

To sort this list so the running services are listed first, change the sort order with

this command:

Get-Service | Sort-Object -property status -descending

When using the Sort-Object cmdlet in conjunction with the format cmdlets,

make sure the Sort-Object cmdlet precedes the format cmdlets. This is a good

situation to use | more. Notice how the behavior of the output changes, when you

run the same command with the | more:

Get-Service | Sort-Object -property status -descending | more

It makes scrolling through the data easier. You can scroll the output either one page

at time by pressing the spacebar or one line at a time by pressing the Enter key.

Redirect PowerShell Output

The results of almost any PowerShell command can be redirected to a file. You

can redirect your output into many different types of file formats, including CSV,

HTML, and, yes, even the GUI. Table 4.4 shows the types of output you can use for

your PowerShell cmdlets.

TAB LE 4 . 4 Out cmdlets

Out cmdlets Description

Out-Default Sends the output to the default output formatter. This can be useful when debug-
ging PowerShell scripts. By default, this is to the PowerShell shell. This really is just a
placeholder and does not directly impact output.

Out-File Lets you output the results of a PowerShell command to a file.

Out-Gridview Lets you output the results to a sortable, filterable grid.

Out-Host Displays the results in the PowerShell session. This is the default output option for
most cmdlets.

Out-Null Deletes the output instead of displaying it.

Out-Printer Sends output to a printer on your server.

Out-String Lets you output the results to an array of strings. This is particularly useful for set-
ting up variables for scripting operations.

c04.indd 89c04.indd 89 4/21/2011 1:05:44 PM4/21/2011 1:05:44 PM

9 0 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

The most common cmdlets when outputting data are Out-File and Out-

Gridview. Sending the output of a cmdlet to a file is as simple as knowing where

you want to save the file. If the file does not exist, the Out cmdlets create it for you.

You can control the format by combining the Out cmdlets with the Format

cmdlets, giving you the same control over the formatting for your redirection as

you do for your regular output. Although you do not have to place the Out cmd-

let at the end of the command string, you will want to place the command at the

end of the string to make it easy to follow. The following is an example of output-

ting the data to a file:

Get-Service | Format-Table -property displayname, i
requiredservices |Out-File Required.txt

You can control the sort of the data by piping the Sort-Object into the command

as follows:

Get-Service | Sort-Object -property status | Format-Table i
-property displayname, requiredservices, status |Out-File status.txt

You can see what this command and its output look like in Figure 4.24.

F I G U R E 4 . 2 4 Sort and Format and Out

As you begin to working with output data to your files, one of the invaluable param-

eters for the Out-File cmdlet is the -Append parameter. When you output data to

c04.indd 90c04.indd 90 4/21/2011 1:05:44 PM4/21/2011 1:05:44 PM

 W O R K W I T H T H E P I P E O P E R A T O R 9 1

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

files, by default without the -Append parameter, you overwrite the existing data in

the file. With the -Append parameter, you add data to the end of the existing file. If

the file does not exist and you still use the -Append parameter, a new file is created

automatically.

PowerShell 2.0 has a new Out cmdlet called Out-GridView, which takes the output

of a PowerShell command and places it in a GUI window. There is one requirement:

Out-GridView requires Microsoft .NET Framework 3.5 with Service Pack 1 to be

installed on the system. This output option provides a great way to interact with

PowerShell data if you do not want to make a file.

If you find yourself creating output files, looking at the data quickly, and then deleting

the files, you may find the Out-GridView cmdlet to be a time-saver. Not only does

it provide a nice GUI for you to see the data, but you can also filter and sort your data

quickly and easily. It is similar to working with a Windows Explorer window.

In Figure 4.25, let’s look at Get-Service again, this time in a grid view.

Get-Service | Out-GridView

F I G U R E 4 . 2 5 Out-Gridview

You can quickly sort the list by clicking the respective column heading. The Add

Criteria button allows you to filter data based on the properties you are currently

viewing in the window.

c04.indd 91c04.indd 91 4/21/2011 1:05:45 PM4/21/2011 1:05:45 PM

9 2 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

Do not use the format cmdlets when using Out-Gridview. If you try to run the

Format cmdlets with the Out-GridView cmdlet, like in the following command,

you will see a screen similar to Figure 4.26.

Get-Service | Format-Table -property displayname, i
requiredservices, status |Out-File Required.txt

F I G U R E 4 . 2 6 Out-GridView error

What if you want to add properties, such as requiredservices, to the

Out-Gridview? You can do this with the Select-Object cmdlet. Using

the previous example, the following would look like Figure 4.27 if you used

Out-Gridview:

Get-Service | Select-Object -property DisplayName, i
name, requiredservices, status |Out-GridView

F I G U R E 4 . 27 Out-GridView with additional properties

c04.indd 92c04.indd 92 4/21/2011 1:05:45 PM4/21/2011 1:05:45 PM

 W O R K W I T H T H E P I P E O P E R A T O R 9 3

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

You can also send data directly to a printer in your environment. The Out-

Printer cmdlet is easy to use. If you want to send the output of any of your

cmdlets to the default printer, append | Out-Printer on the end of your com-

mand. If you do not specify the printer name, PowerShell uses the default printer

on your system. For example, if you want a printout of the services on your

server, run the following command:

Get-Service | Out-Printer

You can also specify the printer by name as well as UNC names for network

available printers. Out-Printer also has a built-in alias lp, which you can

leverage.

Filter PowerShell Output

Understanding how the Where-Object cmdlet works is key to understanding

PowerShell’s powerful filtering capabilities. You need to understand a couple of

key concepts about the Where-Object cmdlet. First you need to be familiar with

the automatic variable $_. This automatic variable refers to the current object

on the pipeline. If you want to learn more about automatic variables, use Help

about_automatic_variables.

Second, you need to know a little bit about the comparison operators to use with

Where-Object. Table 4.5 describes the comparison operators. Each operator begins

with a hyphen. You can also learn more about the operators by running the follow-

ing command:

Help about_Comparison_Operators

The Where-Object command provides many useful abilities to track down and

query different aspects of the PowerShell environment. For example, the following

command shows just the stopped services on your system:

Get-Service | Where-Object {$_.Status -eq “Stopped”}

TAB LE 4 . 5 Comparison operators

Operator Definition

-eq Equals, used for finding identical values; you have to know the exact values of the
parameters for the objects you are looking at

-ne Not equals, includes different values; as with -eq, you need to know what you’re
looking for

-gt Greater than

(continues)

c04.indd 93c04.indd 93 4/21/2011 1:05:45 PM4/21/2011 1:05:45 PM

9 4 C H A P T E R 4 • A L I A S E S , F U N C T I O N S , A N D T H E P I P E , O H M Y !

Operator Definition

-ge Greater than or equal to

-lt Less than

-le Less than or equal to

-like A matching operator that uses the * wildcard operator

-match A matching operator that uses regular expressions, with the automatic variable
$Matches

-contains Allows you to see whether an identical value exists in a list of values

-notlike Allows you to identify the value that does not match

-notmatch Allows you to find the values of a string that do not match your criteria

-notcontains Allows you to identify the values in a list that do not contain your matching criteria

Figure 4.28 shows an example of the output of this command.

 F I G U R E 4 . 2 8 Where-Object with a pipe operator

Notice the use of the common variable preceding the name of the property you

are looking to query. This is just a simple example of the Where-Object cmdlet.

TAB LE 4 . 5 (continued)

c04.indd 94c04.indd 94 4/21/2011 1:05:45 PM4/21/2011 1:05:45 PM

 W O R K W I T H T H E P I P E O P E R A T O R 9 5

Al
ia

se
s,

Fu
nc

tio
ns

, a
nd

th

e P
ip

e,
 O

h
M

y!

CHAPTER 4

However, this cmdlet can become powerful and sometimes complex when you

are looking for specific objects. You will see a few examples in Chapter 8, when

you begin working with Active Directory objects. You will be able to use Where-

Object to work with the LDAP nature of Active Directory.

EXERCISE 4: CREATE YOUR OWN ALIAS

In this exercise, you will practice working with aliases, functions, and the pipe operator.
Write a PowerShell command that does the following:

 Lists running services of your server

 Determines what services are dependent on those services

 Displays service name, status, and dependent services in a table format in a text file

Create either an alias or a function for the command you just created.

c04.indd 95c04.indd 95 4/21/2011 1:05:46 PM4/21/2011 1:05:46 PM

c04.indd 96c04.indd 96 4/21/2011 1:05:46 PM4/21/2011 1:05:46 PM

CHAPTER 5

Creating Your Own Scripts

IN THIS CHAPTER, YOU WILL LEARN TO:

CREATE YOUR OWN SCRIPTS 98

PowerShell Scripting Overview . 99

Create a PowerShell Script. 100

Run Your Scripts . 106

Find Scripts. 107

UNDERSTAND SECURITY AND POWERSHELL SCRIPTS 108

Work with Default Execution Policy of Scripts. 109

Understand the RemoteSigned PowerShell Execution Policy. . .110

Set the PowerShell Execution Policy. .111

Understand Digital Signing. .116

WORK WITH THE GUI AND THE SHELL 116

Understand What the ISE Is .116

Use the ISE with Scripts .119

Display the Call Stack with Scripts Requiring Parameters 123

c05.indd 97c05.indd 97 4/21/2011 1:07:25 PM4/21/2011 1:07:25 PM

CH
APTER 5

I

n the fi rst few chapters, you saw some of the basics of the PowerShell language. You

also learned how to tie cmdlets together with the pipe operator. Now, you will be

able to take PowerShell to another level by tying in logic. So in this chapter we will

take a look at the question: To script or not to script?

You can create scripts for several diff erent purposes, including, but not limited to,

populating Active Directory, backing up the servers in your infrastructure, and

deploying web applications. In the “Create Your Own Scripts” section, you will see

how PowerShell works with scripts and how to create your own basic scripts.

Th e key to being successful with scripts is in the order of handling them:

First, fi nd the need.

Second, write the script.

Finally, test your script.

Writing scripts is putting together the cmdlets in the proper order, with the neces-

sary logic to do your bidding. Testing is running the script and seeing whether it

does the job you want it to do. However, when you run scripts, you may run into

security issues; in the “Understand Security and PowerShell Scripts” section of this

chapter, you will see how to work with the built-in security of PowerShell and how

to run your scripts safely and securely.

When you write scripts, you can use tools you may have used in the past to create

scripts, such as Notepad, or you can use new tools such as the Integrated Scripting

Environment (ISE). In the “Work with the GUI and the Shell” section of this chap-

ter, you will see how you can leverage this new tool in PowerShell.

Create Your Own Scripts

Th e question at the beginning of this chapter really is not simply to script or not to

script; rather the question really is what to script, what not to script, and how to do it.

Although you can create a script to accomplish virtually anything, you do not

need to script everything. When you begin to take a look at what to script, look at

really one basic idea: is the task something you are doing repeatedly? If you fi nd

yourself doing repetitive tasks, then those are perfect candidates for a PowerShell

script. Th e advantage of working with a PowerShell script is summed up in one

word — consistency.

c05.indd 98c05.indd 98 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

 C R E A T E Y O U R O W N S C R I P T S 9 9

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

PowerShell is not case sensitive, but it is spelling sensitive, and syntax is always

important. You have probably misspelled a word or two or missed a comma, space,

or other special character while writing a batch fi le. Scripts give you a custom,

homegrown administrative tool, allowing you to perform tasks quickly and consis-

tently in your environment.

PowerShell Scripting Overview
PowerShell scripts are structured similarly to batch fi les you may have written in the

past. In terms of power and potential, they are closer to VBScript fi les, which you

also may have worked with. You may be thinking then, why don’t I just keep using

my VBScript fi les? When you begin to look at PowerShell, you will notice it is tuned

to do things that VBScript may not have been able to accomplish. In fact, you can

do many things in PowerShell with less work and complexity than with VBScript,

and one of the nice constructs of the PowerShell language is that it is similar in

nature to VBScript syntactically. Th is makes converting your VBScript scripts into

PowerShell fairly straightforward.

Microsoft has released the VBScript-to-Windows PowerShell Conversion Guide.

You can fi nd it here:

http://technet.microsoft.com/en-us/library/ee221101.aspx

You will want to keep in mind a few things as you get into scripting. First,

PowerShell scripts should have the .ps1 extension in their fi lenames. Th is makes

identifying the scripts very easy. As you may recall from Chapter 3, profi les also

have the .ps1 extension. Although they are used as confi guration fi les, they are

scripts that are designed to run when you start a PowerShell session. Th is is similar

to when you place programs in your Startup folder in Windows. By default, the

.ps1 extension for PowerShell scripts are associated with Notepad. So, you can still

use Notepad to create and write your scripts, as you may have done with batch fi les

in the past. Although you can still use Notepad, you should check out the “Work

with the GUI and the Shell” section later in this chapter to learn about an alterna-

tive way to writing scripts.

Another thing to keep in mind when creating scripts is that your scripts can have

parameters. When you use parameters in your scripts, you have more control

over those parameters. Parameters are space-delimited when you call your

custom script.

c05.indd 99c05.indd 99 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

1 0 0 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

For example, if you wanted to write a script and pass the Server1 and Server2

parameters into the script, your command would look like this:

myscript.ps1 Server1 Server2

When you start creating and working with scripts, you may realize that you have

several custom scripts you cannot live without on your Windows Server 2008 R2

servers. One of the built-in advantages of PowerShell, as shown in Chapter 3, is

modules. Multiple scripts can be grouped into modules, and modules make it easier

for you to distribute your custom scripts throughout multiple environments. If you

remember this last tidbit, it will make it that much easier to reuse your scripts.

Create a PowerShell Script
So, how do you create a script? It’s simple:

 1. Open Notepad.

 2. Type in these two lines:

Get-Process

Get-Service | Where-Object {$_.Status -eq “Running”}

 3. Select File ‚ Save As, and put a .ps1 extension on the end of the fi lename.

Although the script does not do a whole lot — the script returns the running pro-

cesses and services on your current server — it shows how easily you can create

scripts. Th is script would save the time of typing in the commands.

When you choose to write a script, it really can be that simple — put your cmdlets

in order, save the fi le with a .ps1 extension, and you are ready to go. However,

scripts in PowerShell can be a lot more powerful than the previous example. You

can accomplish many things in PowerShell scripts. You can create GUIs with

PowerShell, you can create advanced functions you can pass parameters to, and you

can write simple scripts to make sure you are in the proper directory on a server

to copy fi les. (Although you will be able to begin writing your own scripts in this

section, you should not expect to be able to write a full-fl edged GUI in PowerShell.

If you want to take writing scripts further, check out the appendixes. Specifi cally,

check out Appendix F and how PowerShell can be used to create a full-fl edged GUI.)

Th e next few sections give you the logical building blocks to help you write more

advanced PowerShell scripts. However, this chapter is covering these building

blocks at a high level. If you want to get more in depth with custom scripts, take a

look at the appendices.

c05.indd 100c05.indd 100 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

 C R E A T E Y O U R O W N S C R I P T S 1 0 1

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

Variables in Scripts

Being able to use variables inside PowerShell scripts is extremely valuable. Windows

PowerShell supports strongly typed variables; however, you do not have to declare

the variable’s type before populating it. Th is makes it easy when you are writing your

scripts. When you use variables in Windows PowerShell, they will always begin with a

dollar sign ($), and you set their value with the equal sign (=). You can also use dynam-

ically typed variables; you create one by referencing it or by assigning a value to it.

DYNAMIC AND STATIC VARIABLES IN POWERSHELL

Variables in PowerShell are dynamic in nature, which means they adjust to the way
the variable is used for the type of data used in the variable. If the variable needs to
be an integer or string value, PowerShell variables are able to adjust to that need on
the fl y. Although this works for many situations in your scripts, there may be times
you want to control the variable and make it a static variable. You can explicitly assign
the variable type by bracketing the type. If you wanted to declare a variable to be an
integer, it would look like this:

$i = [int] “456”

You can assign variables to many types by simply preceding the value by the type,
 surrounded by [].

Using variables allows you to quickly assign values and even cmdlets in your scripts

with just a little scripting. For example, if you wanted a variable to reference the

output of the get-service cmdlet, you would write this:

$serve=get-service

PowerShell also off ers a built-in variable, $args. Th e $args variable is a default

storage location for the parameters passed to your scripts. Suppose you have a

PowerShell script called servers.ps1 and you run the following command:

servers.ps1 server1 server2 server3

Th e $args variable automatically gets the array (server1, server2, server3).

Th is lets you use loops and perform functions on the parameters as a collection.

Also, $args is a zero-based array, so in the previous example, the storage number

for each of the variables would be as follows:

$args[0] server1

$args[1] server2

$args[2] server3

c05.indd 101c05.indd 101 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

1 0 2 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

To see how the $args variable works, here is a simple piece of script you can use to

display the values and the count of the values in the $args variable:

Write-Host “Num Args:” $args.Length;

foreach ($arg in $args)

{

 Write-Host “Arg: $arg”;

}

If you named this script servers.ps1 and entered the following command, you

would get results similar to Figure 5.1:

servers.ps1 server1 server2 server3

F I G U R E 5 .1 $args

When running these commands, you may run into a security issue with the scripts.

Th e default message from PowerShell you may receive prevents you from running

scripts. You can adjust the settings of PowerShell session on your system by adjusting

the remote execution policy. Th e “Understand Security and PowerShell Scripts” sec-

tion of this chapter shows how to use the scripts securely and avoid the error messages.

Logic in Scripts

You can use operators to increment your loop index so you do not get your PowerShell

script stuck in the loop. You can use three types of operators to get you through your

loops — arithmetic, assignment, and unary operators, as described in Table 5.1.

One of the fundamental tools you will need when you are creating scripts is the ability

to loop. Looping gives you access to more advanced scripting techniques and pro-

cedures. Specifi cally, looping gives you fl ow control through your PowerShell script.

Looping allows you to set conditions and repeat code while those conditions are met.

c05.indd 102c05.indd 102 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

 C R E A T E Y O U R O W N S C R I P T S 1 0 3

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

TAB LE 5 .1 Common logic operators

Type of operator Operator Usage

Arithmetic

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

% Returns the remainder of a division operation or modulus, for
example 7%4 = 3.

Assignment

= Allows you to set the value of a variable to a specifi c value. If
you are going to increment this variable, make sure you know
the proper starting number. For example, $v=10 sets the
value to 10.

+= Increases the value of the variable by the specifi ed value or
will append to the value. For example, if $v = 10, then $v+=5
results in $v = 15.

-= Decreases the value by a specifi ed value. For example, if $v =
10,then $v-=5 results in$v = 5.

*= Multiplies the value of the variable by a specifi c value. For
example, if $v = 10, then $v*=5 results in $v = 50.

/= Divides the value of the variable by a specifi ed value. For
example, if $v = 10, then $v/=5 results in $v = 2.

%= Divides the value of the variable by a specifi ed value and
assigns the remainder to the variable. For example, if $v = 10,
then $v%=5 results in $v = 0.

Unary

++ Increments the value of an integer. For example, if $v = 10,
then $v++ results in $v = 11.

-- Decrements the value of an integer variable. For example, if
$v = 10, then $v-- results in $v = 9.

Table 5.2 describes some of the diff erent types of looping functions in PowerShell.

c05.indd 103c05.indd 103 4/21/2011 1:07:32 PM4/21/2011 1:07:32 PM

1 0 4 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

TAB LE 5 . 2 Common logic statements

Command Usage Syntax

If Evaluates an expression and executes a block
of script if the expression is true.

if (<test1>){<code_block1>}

If Else Evaluates an expression and executes one
block of code if the expression is true and a dif-
ferent block of code if the expression is false.

if (<test1>){<code_block1>}

else {<code_block2>}

If Elseif

Else

Evaluates an expression and executes one
block of code if the expression is true but
tests another expression if the fi rst expres-
sion is false. Multiple Elseif clauses can be
included.

if (<test1>){<code_block1>}

elseif (<test2)

{<code_block2>}

else {<code_block3>}

For Runs a script block based on a conditional
test. It will loop for as many iterations you
indicate.

for (<init>; <condition>;

<repeat>){<code_block>}

ForEach Allows you to perform a set of tasks on each
item as your script goes through a collection
of items.

foreach ($<item> in $

<collection>){<code_block>}

While Runs a loop with a command block while
a certain condition is true. This is great
when you want to make sure tasks are
being performed until completion. The
 condition is tested before each iteration
of the script.

while (<condition>)

{<code_block>}

Do-While A variation of the While loop. Runs a
 command block at least once before check-
ing whether the condition is true and con-
tinues to run until the condition is returned
as false.

Do {<code_block>} while

(<condition>)

All the statements in Table 5.2 use code blocks or scripting blocks. Th ese blocks

are surrounded by curly braces and contain a series of statements. Scripting blocks

allow you specify actions inside your scripts. In this way, you can repeat a sequence

of tasks if certain criteria is met.

Sample of a ForEach Loop

Suppose you want to know how your environment variables are confi gured and

want to list them in the format Name: Value. Use the following command:

Get-ChildItem -path env: | ForEach-Object i
 { Write-Host $_.Name “:” $_.Value }

Figure 5.2 shows the results.

c05.indd 104c05.indd 104 4/21/2011 1:07:33 PM4/21/2011 1:07:33 PM

 C R E A T E Y O U R O W N S C R I P T S 1 0 5

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 . 2 ForEach example

Th is shows an example of the environment variable provider. Providers are another

tool making administration tasks easier to script. You will learn more about provid-

ers in Appendix C. Providing for PowerShell.

Sample of Script

Here is an example of a script that displays all the required services for the names of

the services you provide to the script:

$rq=get-service $args -requiredservices | Format-Table i
-property displayname, status;

foreach ($arg in $args)

{

 Write-Host “For the “$arg “Service the following servicesi
 are required:”;

 $rq;

}

c05.indd 105c05.indd 105 4/21/2011 1:07:33 PM4/21/2011 1:07:33 PM

1 0 6 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

Th e following statement shows results similar to Figure 5.3.

required.ps1 winrm netlogon plugplay

F I G U R E 5 . 3 Sample script output

In the script, notice the use of the $args variable to capture all the services listed in

the command. PowerShell steps through each item in the $args array, and when the

array is empty, the script ends.

Run Your Scripts
How do you run a script? Call the script by name and path. So, if you have a script

called myscript.ps1 located in the c:\users directory, use the following com-

mand to run the script:

c:\users\myscript

Th e .ps1 extension does not need to be included in the command. However, it is

acceptable to use it, if you prefer.

When you are already in the directory where the PowerShell script resides, you

may be inclined to just type the name of the script fi le you want to run, the way

c05.indd 106c05.indd 106 4/21/2011 1:07:33 PM4/21/2011 1:07:33 PM

 C R E A T E Y O U R O W N S C R I P T S 1 0 7

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

you may have run batch fi les or other executables. However, when you try to run

the script in the directory, you see a screen similar to Figure 5.4.

F I G U R E 5 . 4 Script error

You can avoid this error by referencing the full path or by using the shortcut

path notation of .\ to indicate the current directory. For example, from the

c:\users directory, you can run the myscript.ps1 script with the following

command:

.\myscript.ps1

Tab autocomplete works with PowerShell script fi les. So, just like cmdlets, you do not

have to always remember how to spell the scripts you want to run. If you use tab auto-

complete in the same directory where the script resides, it will put in the .\ for you.

When you run your scripts, you may encounter security issues preventing your

scripts from running. To learn more about how to handle security and your scripts,

see the “Understand Security and PowerShell Scripts” section in this chapter.

Find Scripts
In Chapter 3, you saw the basics of the help system, as well as some online

resources. One of the resources worth mentioning again is the script repository

on the Microsoft TechNet website:

http://gallery.technet.microsoft.com/ScriptCenter/en-us/

c05.indd 107c05.indd 107 4/21/2011 1:07:33 PM4/21/2011 1:07:33 PM

1 0 8 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

When you visit the website, you will see it contains scripts for several diff erent

 languages, including Visual Basic, Python, Kixtart, and — of course — PowerShell.

You can fi lter the scripts on the site to display just the PowerShell scripts (see

Figure 5.5).

F I G U R E 5 . 5 Scripting repository for PowerShell

Understand Security and PowerShell Scripts

One key to working with scripts is understanding the security underlying

PowerShell. Th e security is designed to protect you and prevent malicious scripts

from running on your system. Not all scripts are bad; however, PowerShell by

default thinks so and will prevent scripts from running. You can see the default

message from PowerShell in Figure 5.6 when it prevents you from running scripts.

Th is error message was also mentioned in Chapter 3, when working with profi les.

Although profi les are technically confi guration fi les, they do have a .ps1 extension

for the fi le and are treated as scripts. By default, like other scripts, they do not run.

In this section, you will see how the scripting policy works and understand how

to work with PowerShell to ensure not only that your scripts run but that they run

safely and securely.

c05.indd 108c05.indd 108 4/21/2011 1:07:33 PM4/21/2011 1:07:33 PM

 U N D E R S T A N D S E C U R I T Y A N D P O W E R S H E L L S C R I P T S 1 0 9

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 . 6 Denied access

Work with Default Execution Policy of Scripts
By default, PowerShell prevents unsigned scripts from running on your system,

because the default execution policy for running scripts on your PowerShell systems

is set at the restricted level. Th ere are four types of execution policy for scripts on

your system, listed in Table 5.3.

TAB LE 5 . 3 Execution policy settings

Setting Description

Restricted This is the default execution policy for PowerShell on your system. It prevents
all scripts from running on your system, including profi les and other PowerShell
fi les.

AllSigned This requires all scripts — local and remote — to be digitally signed by a
trusted publisher. If they are signed, then the scripts will run as planned. In the
“Understand Digital Signing” section of this chapter, you will get a brief intro-
duction to signing scripts.

RemoteSigned This allows scripts that are local on your system to run without having to be
signed; however, scripts that have been downloaded or are remote still have to
be digitally signed before they are allowed to run.

Unrestricted This allows any script to run on your server. This is not a recommended setting
for any scenario other than testing, because this can open the security door on
your servers for unwanted and unsecured PowerShell scripts.

Although the Unrestricted execution policy poses a big security risk for your

system, it does off er one piece of security. If you download a script fi le from the

Internet, you have to approve it before it is allowed to run on your system. When

you run this type of script, you see a message similar to Figure 5.7.

Th e message lets you determine whether the script should run; by default, the script

is not allowed to run. As the administrator of the system you have to take action.

You control whether this script is allowed to run. If you choose to not run the script,

you see a message similar to Figure 5.8.

c05.indd 109c05.indd 109 4/21/2011 1:07:34 PM4/21/2011 1:07:34 PM

1 1 0 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

F I G U R E 5 .7 Unrestricted prompt

F I G U R E 5 . 8 Unrestricted denied script

Understand the RemoteSigned PowerShell Execution Policy
RemoteSigned is by far the most common execution policy setting on systems run-

ning PowerShell. Although this can pose a security risk to your server, it may not

be as bad as you think. For the PowerShell script to be local, the script needs to be

created on the system on which you want to run the PowerShell script. If you down-

load a script from the Internet, it will be denied if the script is not digitally signed.

So, this really gives you control over which scripts are allowed to run on your server.

Ideally, it would be great if all of your PowerShell scripts were signed, but sometimes

that may not be the most realistic approach.

When you download a fi le from the Internet, you need to fi nd out what the

RemoteSigned execution policy checks to see whether the script can run. If you got

the fi le via a browser or an email client, like Microsoft Outlook, look at the zone

identifi er stream. Th is value indicates whether the fi le will be able to run.

To determine the value, you can also use the zone identifi er parameter for the script.

You can use Notepad to view the value of the zone identifi er parameter to determine

whether the script will be considered to be remote and not allowed to execute. For

example, to fi nd out the zone identifi er for a script called myscript.ps1, run the

following command in the directory where the script resides (you can see the

output in Figure 5.9):

notepad myscript.PS1:Zone.Identifier

c05.indd 110c05.indd 110 4/21/2011 1:07:34 PM4/21/2011 1:07:34 PM

 U N D E R S T A N D S E C U R I T Y A N D P O W E R S H E L L S C R I P T S 1 1 1

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 . 9 Zone identifi er

If the value is greater than or equal to 3, the script is considered to be remote and

will abide by your policy. Aft er you have reviewed the zone identifi er for the script,

if you choose to, you can modify the value in Notepad to allow the script to be run.

Normally, you would change the value to 2 and save the value; however, the zone

identifi er can be any of six values:

NoZone –1

MyComputer 0

Intranet 1

Trusted 2

Internet 3

Untrusted 4

Don’t modify the value of the script unless you trust the location or person you got

the script from. You don’t want to compromise the security of your environment.

Set the PowerShell Execution Policy
When you start working with PowerShell scripts, you need to know how to work

with the execution policy for your system. You can change the execution policy

either via the PowerShell cmdlet Set-ExecutionPolicy or via the registry.

Before you set your policy, determine what the current policy is for your PowerShell

environment. To do that, run the following cmdlet:

Get-ExecutionPolicy

c05.indd 111c05.indd 111 4/21/2011 1:07:34 PM4/21/2011 1:07:34 PM

1 1 2 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

Your results will look similar to Figure 5.10.

F I G U R E 5 .10 Get-ExecutionPolicy

To change the execution policy for your system with PowerShell, use the

Set-ExecutionPolicy cmdlet. Th e fi rst time you try to run the Set-

ExecutionPolicy cmdlet, you may see a screen and message similar to

Figure 5.11.

F I G U R E 5 .11 Denied Set-ExecutionPolicy

To set the execution policy via PowerShell, load an administrative PowerShell

 session. To run a PowerShell session as an administrator, follow these steps:

 1. Right-click the PowerShell icon on your taskbar or in your Start menu. If

you right-click the icon on your taskbar, you will see a screen similar to

Figure 5.12.

c05.indd 112c05.indd 112 4/21/2011 1:07:34 PM4/21/2011 1:07:34 PM

 U N D E R S T A N D S E C U R I T Y A N D P O W E R S H E L L S C R I P T S 1 1 3

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 .12 Taskbar context menu

 2. Select Run As Administrator.

 3. If you are prompted by User Account Control, click Yes to continue.

When the PowerShell session launches, you will see a screen similar to Figure 5.13.

Notice the administrator indicator in the title bar of the PowerShell window.

F I G U R E 5 .13 PowerShell administrator session

Administrative
PowerShell session

Once you are in the administrator PowerShell session, you can then set your execu-

tion policy by running the Set-ExecutionPolicy cmdlet. Based on what you

want to set your policy to, put in one of the four parameters — Restricted,

AllSigned, RemoteSigned, or Unrestricted — aft er the cmdlet. If you wanted

to set your execution policy to RemoteSigned, for example, run the following

command:

Set-ExecutionPolicy RemoteSigned

When you run the cmdlet, you are given a warning and prompted to accept the

change. You should see a message similar to Figure 5.14.

c05.indd 113c05.indd 113 4/21/2011 1:07:35 PM4/21/2011 1:07:35 PM

1 1 4 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

F I G U R E 5 .14 Set-ExecutionPolicy prompt

To fi nalize your policy, type Y to accept your policy setting. Now you are ready to

run the scripts according to your new policy.

Another way to modify the execution policy is by modifying the registry directly.

You need to be an administrator of the server to get registry access. Th e registry

key that you need to modify is HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

PowerShell\1\ShellIds\Microsoft.PowerShell.

W A R N I N G Make sure you back up your registry and your system prior to
modifying the registry. Modifying the registry can cause unwanted errors, including
 system errors, that may require reinstallation.

 1. Click Start.

 2. Place your cursor in the Search Programs And Files input box, or click the

Run command, depending on your operating system.

 3. Type regedit, and click OK.

 4. In the User Account Control dialog, click Yes.

 5. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\

PowerShell\1\ShellIds\Microsoft.PowerShell.

 6. Modify the ExecutionPolicy key with the value you want to set for your

PowerShell. As with the Set-Execution cmdlet, use one of the four values:

Restricted, AllSigned, RemoteSigned or Unrestricted. You can see this

entry in Figure 5.15.

c05.indd 114c05.indd 114 4/21/2011 1:07:35 PM4/21/2011 1:07:35 PM

 U N D E R S T A N D S E C U R I T Y A N D P O W E R S H E L L S C R I P T S 1 1 5

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 .15 Execution Policy in the registry

 7. When you are fi nished making your change, close the Registry Editor.

Th is is a PowerShell book, and you can also modify the registry with PowerShell.

You do not really need to run regedit directly. You can also use providers. You

will see in Chapter 7 how to work with the registry with PowerShell, and you can

fi nd more details on providers in Appendix C.

 1. Open PowerShell in administrator mode.

 2. Run the following command:

Set-ItemProperty -path i
HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIdsi
\Microsoft.PowerShell -Name “ExecutionPolicy” i
-Value “RemoteSigned”

c05.indd 115c05.indd 115 4/21/2011 1:07:35 PM4/21/2011 1:07:35 PM

1 1 6 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

Understand Digital Signing
Digital signing PowerShell scripts lets you ensure the scripts have been validated

from a trusted authority or a trusted third party. So even though it can provide

an additional layer of agitation to go through the process of creating or fi nding

digitally signed scripts, it is worth the protection the signed scripts provide. At the

end of the day, it is worth your time to have your scripts digitally signed and, more

importantly, use scripts that are digitally signed in your environment.

Digital signing requires a Class III Authenticode Code-Signing Certifi cate, which

you can get in a variety of ways. You need a certifi cate authority (CA) to get the

certifi cates needed for digitally signing your PowerShell scripts. You can use an

internal CA, a commercial CA (such as VeriSign or Th awte), or even a self-signed

certifi cate. If you use a self-signed certifi cate, it is valid only for the computer you

create the certifi cate on.

Although understanding digital certifi cates is important, you will need to deter-

mine how you want to accomplish this in your environment. Installing your own

CA or getting a third party can lead you down a complex process in order to

make sure your certifi cates are properly signed. If you are going to sign your own

PowerShell scripts and want to learn more about the process, you will fi nd the built-

in help extremely useful. To access the signing help, run this command:

help about_signing

Work with the GUI and the Shell

Notepad is the down-and-dirty, quick-and-easy tool to create scripts, but you may

not want to use Notepad all the time. PowerShell 2.0 introduces a new GUI to work

with scripts called the Integrated Scripting Environment (ISE).

ISE is a great tool providing you with a much-needed upgrade to Notepad when you

want to work with scripts. In this section, you will learn how to work with the ISE and

how to use it to troubleshoot and work with your scripts.

Understand What the ISE Is
In Chapter 2, you saw how to install the ISE on a Windows Server 2008 R2 system.

Th e server platform is the only instance where you may want to install the ISE.

Th e ISE is already installed on Windows 7; it is just a matter of opening the tool. In

c05.indd 116c05.indd 116 4/21/2011 1:07:36 PM4/21/2011 1:07:36 PM

 W O R K W I T H T H E G U I A N D T H E S H E L L 1 1 7

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

either Windows Server 2008 R2 or Windows 7, you can fi nd the tool by selecting

Start ‚ Accessories ‚ Windows PowerShell.

You can see what the ISE looks like in Figure 5.16.

F I G U R E 5 .16 The ISE

Command pane

Scripting pane

Output pane

As you can see, the ISE provides a GUI that has three sections: the scripting pane, the

output pane, and the command pane. Th e command pane is similar to the PowerShell

command prompt you are already familiar with. Th e only diff erence is that the output

from commands entered in the command pane appear in the output pane.

Th e output pane not only displays the results of your PowerShell commands but

also displays the results of your PowerShell scripts as you run them in the ISE.

Another added benefi t to the output pane is directly attributed to the GUI nature

of the tool. You can easily copy and paste using your mouse or keyboard shortcuts.

Th e output window is also scrollable, so you do not have to worry about having your

output scroll off the screen.

A convenient feature of the ISE is that you can quickly clear the output screen

without having to type in CLS. To clear the output pane, use the Clear Output

Pane button (looks like a squeegee).

c05.indd 117c05.indd 117 4/21/2011 1:07:36 PM4/21/2011 1:07:36 PM

1 1 8 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

Th e third pane, and the most useful in the ISE tool, is the scripting pane. Th is is

where the true power of the ISE lies, and really this is what the ISE was built for.

Th is is where the ISE provides a true PowerShell script editor for your scripts.

Although Notepad is good in a pinch, you should consider using the ISE when-

ever possible.

Also unique to the ISE, you can have multiple (up to eight) independent PowerShell

sessions running in the same ISE window. Each tab has its own environment, so

you can work with several PowerShell sessions at the same time. Figure 5.17 shows

the ISE with multiple tabs loaded.

F I G U R E 5 .17 Multiple sessions in the ISE

Another feature of the ISE is the context-sensitive help built into the tool. As

you saw in Chapter 3, learning how to fi nd answers and examples with the

built-in help system is key to learning PowerShell. Th e ISE provides another way

to access the help system. To see what this can do, perform the following steps:

 1. Type the following in the command pane:

Get-Service

 2. Press the F1 key. You will see a screen similar to Figure 5.18.

c05.indd 118c05.indd 118 4/21/2011 1:07:36 PM4/21/2011 1:07:36 PM

 W O R K W I T H T H E G U I A N D T H E S H E L L 1 1 9

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

F I G U R E 5 .18 ISE context-sensitive help

Use the ISE with Scripts
When you use the ISE to work with PowerShell scripts, you get some much-needed

functionality not provided by Notepad such as some developer-like functions.

Although the tool is not as robust as Microsoft Visual Studio, it does a great job

with PowerShell scripts.

Although it does not include IntelliSense, the ISE shares the same keyboard short-

cuts as Visual Studio. Th e keyboard shortcuts for running a program, working

with breakpoints, and doing general debugging are the same commands as Visual

Studio. So if you are a developer who thrives with keyboard shortcuts, this point of

consistency should make you happy.

In the script pane, you can both write and edit your scripts. When you load a script

into the ISE, you see color coding and line numbering, making the code much eas-

ier to read and work with. Th e numbering alone is worth its weight in gold. If you

have ever had to troubleshoot a long script in Notepad and all you had to go on was

that there was an error in line 653 of your script, you know the pain. However, going

c05.indd 119c05.indd 119 4/21/2011 1:07:36 PM4/21/2011 1:07:36 PM

1 2 0 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

to line 653 is as simple as pressing Ctrl+G while in the script pane and entering the

line number. Th is is an example of a Visual Studio keyboard shortcut in ISE.

To load a script into the ISE, select File ‚ Open; then browse to your script, and

click OK. Figure 5.19 shows the ISE with a script loaded.

F I G U R E 5 .19 ISE with a script

To run a script in the ISE, click the green Play button on the toolbar or press F5.

Th e ISE has a built-in debugger. Th is tool provides all the necessary basics,

including breakpoints, for debugging commands, functions, and scripts for the

PowerShell scripts you work with. Breakpoints allow you to not only step through

your code but also check the values of variables as your script executes.

Th e key to debugging with breakpoints is knowing where you want your script to

pause. Follow these steps to set and use a breakpoint in your script:

c05.indd 120c05.indd 120 4/21/2011 1:07:37 PM4/21/2011 1:07:37 PM

 W O R K W I T H T H E G U I A N D T H E S H E L L 1 2 1

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

 1. Place your cursor in the line you want to set the breakpoint on.

 2. Select Debug ‚ Toggle Breakpoint, or press F9. Th is highlights the selected

line, as shown in Figure 5.20.

F I G U R E 5 . 2 0 Breakpoint in ISE

Breakpoint

 3. Aft er you set your breakpoint, run your script by either pressing F5 or click-

ing the green Play button on your toolbar.

 4. When the ISE hits your breakpoint, you see a screen similar to Figure 5.21.

Notice also in your PowerShell output and command windows that the [DBG]

indicator appears to notify you that the script is paused. Your script is marked

as read-only while it is executing.

c05.indd 121c05.indd 121 4/21/2011 1:07:37 PM4/21/2011 1:07:37 PM

1 2 2 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

F I G U R E 5 . 21 Breakpoint

 5. You have a few choices while your script is paused. You can do the following:

Step Into When you select Step Into, you can walk your script, going line by

line. If your script calls another procedure, you can step through the other pro-

cedure one line at a time.

Step Out When you are stepping line by line through your script and you step

into a secondary procedure called by your initial script, you can use Step Out to

complete the procedure you are currently in and take you to the line aft er the one

in your original script that called the second procedure.

Step Over When you are stepping line by line through your script and you hit

a line that runs another procedure in your script, you can select Step Over, which

runs through the called procedure completely and returns you to the next line in

your script paused.

Run/Continue Th is runs your script up until completion or the next

checkpoint.

Stop Debugger Th is stops the execution of your script at the current point of

execution. Th is does not complete your script.

c05.indd 122c05.indd 122 4/21/2011 1:07:37 PM4/21/2011 1:07:37 PM

 W O R K W I T H T H E G U I A N D T H E S H E L L 1 2 3

Cr
ea

tin
g

Yo
ur

 O
w

n
Sc

rip
ts

CHAPTER 5

Display Call Stack Th is is an extremely valuable function that displays the

value of your variables and arguments at that point in time in your script.

 6. Once you are done debugging your script, you can stop your script or run it to

completion.

Display the Call Stack with Scripts Requiring Parameters
When you are working with scripts requiring parameters to be entered into the

script to execute properly, you have to run the script with the breakpoints slightly

diff erently.

 1. Set the breakpoints in your script.

 2. Save the script.

 3. Execute the script via the command pane in the ISE as if you are running the

script normally. You see a screen similar to Figure 5.22 before running your script.

F I G U R E 5 . 2 2 ISE script with parameters

 4. If you want to see the values of your arguments for the script, then select

Debug ‚ Display Call Stack. Your screen looks similar to Figure 5.23.

c05.indd 123c05.indd 123 4/21/2011 1:07:37 PM4/21/2011 1:07:37 PM

1 2 4 C H A P T E R 5 • C R E A T I N G Y O U R O W N S C R I P T S

 F I G U R E 5 . 23 ISE display call stack

 5. Finish running or stepping through your script.

As you have seen in this section, the ISE provides a powerful and useful tool for

your PowerShell tool belt, especially when you are working with scripts. Learn to

use the tool, and you will soon have your scripts running smoothly.

EXERCISE 5: CREATE A SCRIPT TO FIND STARTUP PROGRAMS

In this exercise, you will write a script that lists all the processes that run on startup.
Hint: check the registry Run and RunOnce keys.

c05.indd 124c05.indd 124 4/21/2011 1:07:38 PM4/21/2011 1:07:38 PM

CHAPTER 6

Remoting with PowerShell 2.0

IN THIS CHAPTER, YOU WILL LEARN TO:

CONFIGURE POWERSHELL REMOTING 126

Learn the Requirements. 126

Enable PowerShell Remoting . 128

Disable PowerShell Remoting . 133

RUN COMMANDS ON REMOTE SYSTEMS 138

Use Invoke-Command . 140

Use PowerShell Remote Sessions . 140

Use Remoting in the ISE . 143

c06.indd 125c06.indd 125 4/21/2011 1:15:18 PM4/21/2011 1:15:18 PM

CH
APTER 6

owerShell 2.0 lets you run PowerShell commands on remote Windows Server

2008 R2 servers and other systems that have PowerShell 2.0 installed. PowerShell

remoting expands the horizons of PowerShell; with it, you can manage your entire

Microsoft environment.

Prior to PowerShell 2.0, you may have run remote commands on other systems by

using Remote Desktop Connection, Terminal Services, or some other remote con-

trol. Although you can still use these tools, they are not the most efficient. Using the

built-in remoting capabilities provides a faster and more efficient way to work with

PowerShell on remote systems.

PowerShell provides the ability not only to bring up a remote PowerShell session but

also to run commands on your local server to gain access on remote servers. For

example, you can run a PowerShell command that would give you the running ser-

vices or processes, you can walk the registry, and you can run any other PowerShell

commands you want on your current servers and also any other server you want to

know about.

In this chapter, you will learn how to enable PowerShell remoting on your

PowerShell 2.0 systems, as well as become familiar with the internal components

that are required to allow remoting. You will also see how to run PowerShell

 commands on remote servers, via either a remote session or remote commands.

Configure PowerShell Remoting

Remoting is disabled by default. This is by design to ensure the security of your

environment. You need to enable remoting not only on the systems you want

to manage but also on the systems from which you will run the PowerShell

commands.

By enabling PowerShell remoting, you are configuring the system and firewall to

handle the remote PowerShell requests. In this section, you will take a look at the

components that work on your infrastructure.

Learn the Requirements
Before you enable PowerShell remoting in your infrastructure, you should under-

stand the components you need for your environment. Specifically, you need two

components in addition to PowerShell 2.0 to enable remoting on your systems:

P

c06.indd 126c06.indd 126 4/21/2011 1:15:22 PM4/21/2011 1:15:22 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 2 7

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

 ▶ .NET Framework 2.0 or later

 ▶ Windows Remote Management (WinRM) 2.0

WinRM is the main component used by PowerShell remoting for your PowerShell

2.0 systems. WinRM 2.0 is part of Windows 7 and Windows Server 2008 R2.

However, you need to download this if you are working with other operating

systems. This is available via the integrated installation package in the Windows

Management Framework, as mentioned in Chapter 2. WinRM is installed as a

 service. Although the service is installed, it is not enabled by default.

WinRM is a remote management service and is Microsoft’s implementation of the

WS-Management protocol. The WS-Management protocol allows remote systems

to communicate; it’s designed to help heterogeneous systems—both hardware and

software—perform commands remotely in your infrastructure.

This type of communication used to be handled by protocols like Remote

Procedure Call (RPC). WinRM is an easy-to-configure, standards-based protocol

that works seamlessly with your firewalls and your infrastructure’s security.

In addition to having WinRM on the systems you want to manage with PowerShell,

you also need to make sure you have the proper permissions to run the remote com-

mands. You need to be a member of the local administrators group on the remote

computer to establish a connection and be able to run the commands remotely on

other systems. You can also provide the administrative credentials if you are not

currently logged on as an administrative account.

A WORD ON NETWORK LOCATION

In operating systems such as Windows Server 2008 R2 and Windows 7, you have the
choice of three network locations: domain, private, or public. The network location
primarily helps determine the proper security level for your systems on your network. It
also determines how the firewall is configured. You can change your network location
in the Network and Sharing Center.

For remoting to be configured on your system, the current network location has to be
domain or private. If you are on a public network location, you will not be able to con-
figure PowerShell remoting, because when you are in a public location, the Enable-
PSRemoting function (see the “Enable Remoting for PowerShell 2.0” section in this
chapter) is unable to create the firewall exception for WinRM. You will get an error
similar to Figure 6.1.

c06.indd 127c06.indd 127 4/21/2011 1:15:22 PM4/21/2011 1:15:22 PM

1 2 8 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

F I G U R E 6 .1 Network location error

Enable PowerShell Remoting
Enabling PowerShell remoting is as simple as using one command, regardless of the

operating system. To enable PowerShell remoting, run the following function from

an administrative PowerShell session:

Enable-PSRemoting

The function actually runs the Set-WSManQuickConfig cmdlet; it takes care of all

the automated processes to run WinRM and PowerShell remote commands. If you

try running this command from a regular, nonadministrative PowerShell session,

you will see an error similar to Figure 6.2.

F I G U R E 6 . 2 Access denied for Enable-PSRemoting

If you see this error, execute an administrative PowerShell session. After you load a

PowerShell session as an administrator, you can then enable PowerShell remoting

with the Enable-PSRemoting command. After you run Enable-PSRemoting,

you will see a screen similar to Figure 6.3.

c06.indd 128c06.indd 128 4/21/2011 1:15:22 PM4/21/2011 1:15:22 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 2 9

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

F I G U R E 6 . 3 Enable-PSRemoting

Type Y to continue the PowerShell remoting configuration of the WinRM service.

You see a screen similar to Figure 6.4.

F I G U R E 6 . 4 Confirmation of PowerShell remoting

Type Y to confirm the configuration of PowerShell remoting, and you are returned

to your PowerShell command prompt.

Instead of typing Y to verify the configuration of your systems, you can also type

A (yes to all), after which the Enable-PSRemoting function runs to comple-

tion. Alternatively, if you do not want to see the prompts for confirmation in the

PowerShell session, you can run the following command:

Enable-PSRemoting -Force

By running Enable-PSRemoting with the -Force switch, you suppress the con-

firmations during PowerShell remoting configuration.

c06.indd 129c06.indd 129 4/21/2011 1:15:23 PM4/21/2011 1:15:23 PM

1 3 0 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

XP Mode

As you saw in Chapter 2, you can install PowerShell on the XP mode virtual

machine on a Windows 7 machine. You can also enable remoting on the XP mode

system with the Enable-PSRemoting function. However, when you first run the

function, you will see a screen and error similar to Figure 6.5.

F I G U R E 6 . 5 XP mode Enable-PSRemoting error

The error indicates the default security parameter in XP mode and how it

handles authentication for network logons when the system is using a local

account. The default setting maps all the users to a local guest account, and

it does not have enough permissions to change the setting. You can change

the setting so the account used for network logons is not mapped to the guest

account but mapped to the actual authenticated account. To change the setting

in XP Mode, modify the local computer policy setting by using the following

procedure:

 1. On the XP mode virtual machine, select Start ‚ Run.

 2. Type gpedit.msc, and press Enter. This loads the Group Policy Editor for

the local XP mode system.

 3. Click the Computer Configuration container, and expand the tree.

 4. Navigate to Windows Settings ‚ Security Settings ‚ Local Policies ‚

Security Options.

c06.indd 130c06.indd 130 4/21/2011 1:15:23 PM4/21/2011 1:15:23 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 3 1

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

 5. Find Network Access: Sharing And Security Model For Local Accounts.

Double-click the setting to modify the current value.

 6. Change the value to Classic – Local Users Authenticate As Themselves. Your

screen will look similar to Figure 6.6.

F I G U R E 6 . 6 XP mode Group Policy setting

 7. Click OK.

 8. Close the Group Policy Editor.

After you have modified the setting, you can return to the PowerShell session in

XP mode and run the Enable-PSRemoting function, which should now run

without error.

Getting to Know Enable-PSRemoting

When you run the Enable-PSRemoting function, you may notice that it tells you

it is going to do four main things:

 ▶ Start or restart (if already started) the WinRM service

 ▶ Set the WinRM service type to autostart

c06.indd 131c06.indd 131 4/21/2011 1:15:23 PM4/21/2011 1:15:23 PM

1 3 2 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

 ▶ Create a listener to accept requests on any IP address

 ▶ Enable firewall exception for WS-Management traffic (for HTTP only)

Enable-PSRemoting performs several tasks. For example, the Enable-

PSRemoting function runs the Set-WSManQuickConfig cmdlet. The Set-

WSManQuickConfig cmdlet performs several vital configurations on your system:

 ▶ Starts up the WinRM service and sets the service startup type to Automatic.

 ▶ Creates a listener to listen for and accept requests on an IP address.

 ▶ Enables a firewall exception for Windows Remote Management via

WS-Management communications. The default port is TCP 5985, and you

can see an example of the firewall rule from a Windows Server 2008 R2 in

Figure 6.7.

F I G U R E 6 .7 WinRM firewall port

 ▶ Enables all the registered PowerShell session configurations to receive

instructions from remote computers.

c06.indd 132c06.indd 132 4/21/2011 1:15:24 PM4/21/2011 1:15:24 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 3 3

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

 ▶ Registers the Microsoft.PowerShell session configuration (unless it has

already been registered).

 ▶ Registers the Microsoft.PowerShell32 session configuration on 64-bit

systems (unless it has already been registered).

 ▶ Removes the Deny Everyone setting from the security descriptor for all

 registered session configurations.

 ▶ Restarts the WinRM service to finalize the configurations and settings.

Disable PowerShell Remoting
If you no longer want to have PowerShell remoting enabled on your systems, you

can run another function to disable remoting:

Disable-PSRemoting

However, when you run the command, you will see a screen similar to Figure 6.8.

F I G U R E 6 . 8 Disable-PSRemoting

Although this function effectively disables remoting for the server, it does not

undo all the changes that Enable-PSRemoting makes. As the warning note

states, you may still have to do the following:

 ▶ Delete the WinRM listener

 ▶ Stop and disable the Windows Remote Management service

 ▶ Remove the firewall exception for WinRM

 ▶ Restore the value of the LocalAccountTokenFilterPolicy to 0 in the

registry

To finish undoing all the changes that were performed by Enable-PSRemoting,

perform the following procedures, which will help you complete the process.

c06.indd 133c06.indd 133 4/21/2011 1:15:24 PM4/21/2011 1:15:24 PM

1 3 4 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

However, before you complete them, make sure you do not have other applications

running on your system that require the settings you will be disabling.

Delete the WinRM Listener

 1. Open a command prompt window by selecting Start ‚ Command Prompt.

 2. You need the address of the listener to delete. To see all the listeners, use the

following command to get the address:

winrm enumerate winrm/config/listener

You will see a screen similar to Figure 6.9.

F I G U R E 6 . 9 WinRM listeners

 3. Write down the address for the listener that has Port=5985 and

Transport=HTTP. In Figure 6.10, the address is an *.

 4. To delete the listener, enter the following command, placing your address in

the italicized address parameter:

winrm delete winrm/config/Listener?Address= i
Address+Transport=HTTP

 5. Press Enter to delete the listener and close your session.

c06.indd 134c06.indd 134 4/21/2011 1:15:24 PM4/21/2011 1:15:24 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 3 5

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

Stop and Disable the Windows Remote Management Service

 1. On the system, open the Services control panel by selecting Start ‚ All

Programs ‚ Administrative Tools ‚ Services.

 2. In the Services control panel, scroll down to the Windows Remote

Management (WS-Management) service.

 3. Right-click the service and select Properties, or double-click the service. You

will see a screen similar to Figure 6.10.

F I G U R E 6 .10 WinRM service

 4. Click Stop to stop the service.

 5. Click the Startup Type drop-down list, and select Disabled.

 6. Click OK.

 7. Close the Services control panel.

c06.indd 135c06.indd 135 4/21/2011 1:15:24 PM4/21/2011 1:15:24 PM

1 3 6 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

As an alternative, you can also use PowerShell to stop and disable the service with

the following cmdlets:

Stop-Service WinRM

Set-Service WinRM -StartupType Disabled

Disable the Firewall Exception for WinRM

 1. Open the Windows Firewall with Advanced Security program by selecting

Start ‚ All Programs ‚ Administrative Tools ‚ Windows Firewall With

Advanced Security.

 2. Click Inbound Rules.

 3. Scroll down the list of the rules to the Windows Remote Management

(HTTP-In) rule, and select it. Your screen will look like Figure 6.11.

F I G U R E 6 .11 Disabling the WinRM firewall exception

 4. With the rule highlighted, click Disable Rule in the action pane on the right,

or right-click the rule and select Disable Rule.

 5. Close the Windows Firewall with Advanced Security program.

c06.indd 136c06.indd 136 4/21/2011 1:15:25 PM4/21/2011 1:15:25 PM

 C O N F I G U R E P O W E R S H E L L R E M O T I N G 1 3 7

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

Restore the Value of the LocalAccountTokenFilterPolicy to 0

You may find this setting in client operating systems like Windows 7. You may not

see this registry key when you look in your local registry.

W A R N I N G Be very careful whenever you are modifying the registry; if you modify
the registry incorrectly, with unwanted results, you may have to reinstall your system.

 1. Select Start ‚ Run. Type regedit.exe, and press Enter to start the Registry

Editor.

 2. If prompted with a User Account Control dialog box, click Yes to continue.

 3. Navigate to the following location in the registry: HKEY_LOCAL_MACHINE\

SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System.

 4. Find the LocalAccountTokenFilterPolicy key. If you do not see the

 registry key, close the Registry Editor.

 5. Double-click the LocalAccountTokenFilterPolicy key, and change the

value to 0. Your screen will look like Figure 6.12.

F I G U R E 6 .12 LocalAccountTokenFilterPolicy

 6. Click OK.

 7. Close the Registry Editor.

c06.indd 137c06.indd 137 4/21/2011 1:15:25 PM4/21/2011 1:15:25 PM

1 3 8 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

Again, since this is a PowerShell book, you can also run the following command to

change the value of the LocalAccountTokenFilterPolicy key:

Set-ItemProperty -path i
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion i
\Policies\System -Name “LocalAccountTokenFilterPolicy” i
-Value “0”

Run Commands on Remote Systems

After you enable remoting on your Windows Server 2008 R2 and other PowerShell

2.0 systems, you can use this administrative tool. With PowerShell 2.0 remoting,

you can begin to work with remote servers in two ways. First, you can run com-

mands on your local server that pull data from the remote servers you place in the

PowerShell command by using the invoke-command cmdlet. Second, you can start

a PowerShell session on your local administrative system. The session allows you to

have an interactive PowerShell session on the remote system.

In addition to enabling the remote capabilities of PowerShell, several cmdlets

do not require remoting to be enabled to be effective. Some cmdlets have the

ComputerName parameter. If a cmdlet has this parameter, you may not need

to have PowerShell remoting enabled for it to work. Some of the more com-

mon administrative cmdlets, such as Get-Service, Get-Process, and Get-

Eventlog, support the ComputerName parameter and therefore work without

having PowerShell remoting enabled.

To find a list of all the cmdlets with the ComputerName parameter, you

can run Get-Help * -parameter ComputerName. The results will be

similar to Figure 6.13.

Even with the ComputerName parameter in a cmdlet, you still may need to have

remoting enabled to use the cmdlet in a remote fashion. If you are not sure whether

you need remoting for a particular cmdlet, you can use the Get-Help cmdlet. For

the Invoke-Command cmdlet, your results will look similar to Figure 6.14.

When you use the ComputerName parameter, you can use either the fully qualified

domain name (FQDN), NetBIOS name, or IP address of the system or systems you

are going to be working with.

c06.indd 138c06.indd 138 4/21/2011 1:15:25 PM4/21/2011 1:15:25 PM

 R U N C O M M A N D S O N R E M O T E S Y S T E M S 1 3 9

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

F I G U R E 6 .13 Cmdlets with the ComputerName parameter

F I G U R E 6 .14 ComputerName requiring remoting

c06.indd 139c06.indd 139 4/21/2011 1:15:25 PM4/21/2011 1:15:25 PM

1 4 0 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

Use Invoke-Command
You can use the Invoke-Command cmdlet to run cmdlets on a remote server.

This allows you to run a script block of PowerShell commands on the servers

you specify. With Invoke-Command, PowerShell connects temporarily to the

server you want to manage and runs the commands you specify. The basic syn-

tax of the Invoke-Command cmdlet is Invoke-Command -ComputerName

{Scriptblock}.

So if you had the following command, it would restart the Windows Update service

on the following servers: Server4, Server8, and Server15:

Invoke-Command -ComputerName Server4, Server8, Server15 i
 {Restart-Service -name wuauserv}

Once the commands are sent to the remote computer, they will run until comple-

tion. If you want to stop the command running on the remote computer, you can

send an interruption request by pressing Ctrl+C.

Use PowerShell Remote Sessions
You can run PowerShell commands in an interactive session remotely via the

Enter-PSSession cmdlet. This lets you have a temporary interactive session

directly on the server you are remoting to. When you run the cmdlet, will have a

direct connection to the remote server until you exit the remote session. Once you

are connected to the remote session, you have access to built-in cmdlets on the

remote server. For example, if you wanted to have a PowerShell session on a server

named Server3, your cmdlet would be Enter-PSSession Server3, as shown

in Figure 6.15.

F I G U R E 6 .15 Example of a remote PowerShell session

c06.indd 140c06.indd 140 4/21/2011 1:15:26 PM4/21/2011 1:15:26 PM

 R U N C O M M A N D S O N R E M O T E S Y S T E M S 1 4 1

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

When you are in the remote session, the system you are connected to is referenced in

the prompt with brackets ([]). When you are done with managing the remote servers

and want to return to your local PowerShell session, type the following cmdlet:

Exit-PSSession

This takes you out of your current remoting session.

You can have multiple persistent sessions. Use the New-PSSession cmdlet to create

these persistent connections. If you want to create a session for a server named

Server2, type the following:

New-PSSession Server2

If you use New-PSSession without specifying a computer name, the cmdlet

 creates a new session for the local system. When you create a new session with the

New-PSSession cmdlet, the session is given an ID. The ID can also be used to

enter the remote session. You can see an example of the output of three sessions

created with the New-PSSession cmdlet in Figure 6.16.

F I G U R E 6 .16 New sessions

You can also create multiple remote PowerShell sessions by using the

ComputerName parameter with the New-PSSession cmdlet. For example, the

following cmdlet would create three remote PowerShell sessions for the computers

named Server3, Server5, and Server6:

New-PSSession -ComputerName Server3, Server5, Server6.

One of the advantages of using the New-PSSession cmdlet is that it creates a

 persistent connection during your local PowerShell session so you can easily switch

c06.indd 141c06.indd 141 4/21/2011 1:15:26 PM4/21/2011 1:15:26 PM

1 4 2 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

between the sessions on your systems. To see what sessions you currently have

started on your system, type the following cmdlet:

Get-PSSession

Figure 6.17 shows an example of the output of the Get-PSSession cmdlet.

F I G U R E 6 .17 Get-PSSession

After you have created the sessions, you can run commands by either the Invoke-

Command or Enter-PSSession cmdlet using the session ID, instead of the com-

puter names for the systems you want to remotely manage. You can also assign

variables for any or all of the sessions you want to use. For example, the following

cmdlet would assign the variable $psr to all the remote sessions currently started on

the server:

$psr=Get-PSSession

You can then use this variable in your commands to simultaneously communicate

with remote servers. For example:

Invoke-Command -Session $psr {Get-Service}

Figure 6.18 shows the output of another command using this variable.

To enter one of the existing sessions, you can use the Enter-PSSession men-

tioned earlier in this section in combination with the session ID to access the

session. So if you wanted to access PowerShell session with ID 2, you would type the

following:

Enter-PSSession -ID 2

When you enter the remote PowerShell session, you will have an interactive session

with the remote server. However, since you have created a persistent connection

with the New-PSSession cmdlet, the remote session remains open when you use

the Exit-PSSession cmdlet. The PowerShell sessions remain open as long as your

c06.indd 142c06.indd 142 4/21/2011 1:15:26 PM4/21/2011 1:15:26 PM

 R U N C O M M A N D S O N R E M O T E S Y S T E M S 1 4 3

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

local PowerShell session is open. If you do not want the PowerShell session to be

open, you can run the Remove-PSSession cmdlet followed by the ID number to

close the remote PowerShell session. For example, to close the session with ID 3, you

would type this command:

Remove-PSSession -ID 3

F I G U R E 6 .18 Variable for Invoke-Command

Use Remoting in the ISE
You can also leverage PowerShell remoting in the Integrated Scripting

Environment (ISE) to host your remote sessions. Within the ISE, you can create

tabs, as you saw in Chapter 5, to host remote sessions. To start a remote session in

the ISE, do the following:

 1. With the ISE open, click File ‚ New PowerShell Remote Tab. You will see a

screen similar to Figure 6.19.

c06.indd 143c06.indd 143 4/21/2011 1:15:26 PM4/21/2011 1:15:26 PM

1 4 4 C H A P T E R 6 • R E M O T I N G W I T H P O W E R S H E L L 2 . 0

F I G U R E 6 .19 New PowerShell Remote tab in the ISE

 2. In the New Remote PowerShell Tab dialog box, enter the computer name, and

if you want to use a different user credential than you are currently logged on

with, you can enter it here as well.

 3. After you have finished filling out the form, click Connect. You will see a

screen similar to Figure 6.20, with the new tab in the ISE.

 F I G U R E 6 . 2 0 ISE with PowerShell remote tab

You may have noticed after you loaded the session that the ISE used the Enter-

PSSession cmdlet to start the session. This session ends when the tab is closed in

the ISE.

c06.indd 144c06.indd 144 4/21/2011 1:15:27 PM4/21/2011 1:15:27 PM

 R U N C O M M A N D S O N R E M O T E S Y S T E M S 1 4 5

Re
m

ot
in

g
w

ith

Po
w

er
Sh

el
l 2

.0

CHAPTER 6

You also saw when you brought up the new PowerShell remote tab that it asked for

alternate credentials. Using the ISE is not the only way to start a remote PowerShell

session. You can use the cmdlets Invoke-Command, Enter-PSSession, and New-

PSSession to provide alternate credentials for the remote session. All three of the

cmdlets provide support for the -credential parameter, as well as an authen-

tication method to allow you to use the proper user accounts with permissions to

 perform the tasks you may need in the remote PowerShell session.

EXERCISE 6: SET UP A REMOTE POWERSHELL SESSION

Create a PowerShell management environment that has remote PowerShell sessions
ready at your fingertips.

c06.indd 145c06.indd 145 4/21/2011 1:15:27 PM4/21/2011 1:15:27 PM

c06.indd 146c06.indd 146 4/21/2011 1:15:27 PM4/21/2011 1:15:27 PM

CHAPTER 7

Server Essentials in PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

WORK WITH YOUR SERVER IN POWERSHELL 148

Work with Server Manager Cmdlets . 148

Analyze Your Server. 150

ADD RELIABILITY TO YOUR SERVER 156

Install the Backup Tools . 156

Perform a Backup with PowerShell . 156

Load-Balance Your Network . 159

USE OTHER POWERSHELL UTILITIES FOR THE SERVER 163

Use the Registry with PowerShell . 163

Use PowerShell Troubleshooting Packs. 166

Schedule PowerShell Scripts. 169

c07.indd 147c07.indd 147 4/21/2011 1:16:35 PM4/21/2011 1:16:35 PM

CH
APTER 7

H

aving PowerShell built into Windows Server 2008 R2 gives you flexibility in

managing your server. Several PowerShell cmdlets let you perform many of the

key administrative jobs you may need to do on a daily basis, including installing

features for your Windows Server 2008 R2 server, backing up your server, analyz-

ing the server, and many others. PowerShell lets you perform many of these tasks

consistently on a batch basis.

This chapter outlines key modules for managing day-to-day server administration,

including using Server Manager, using Best Practices Analyzer, doing backup and

recovery, performing network load balancing, and troubleshooting.

Work with Your Server in PowerShell

One of the fundamental tasks you will perform on your servers is adding new roles

and services, which provide your infrastructure with added functionality. Although

you can use the Server Manager GUI to perform tasks, you can easily install new

features on your server with PowerShell.

In this section, you will work with the Server Manager module for PowerShell,

which provides the ability to install and remove features on your Windows Server

2008 R2 servers. The Server Manager module can be imported on Server Core

installations as well. This allows you to use the same commands to install the

features on both the full and Server Core installations of Windows Server 2008 R2.

Once you have installed PowerShell on a Server Core installation, you can use the

Server Manager cmdlets to install features. This provides an alternative to the DISM

installation tool on your Server Core installations.

Work with Server Manager Cmdlets
Before you can install new features with PowerShell on your Windows Server 2008

R2 server, you have to import the Server Manager module into your PowerShell

session. Run this command to import the Server Manager module into your

PowerShell session:

Import-Module ServerManager

c07.indd 148c07.indd 148 4/21/2011 1:16:43 PM4/21/2011 1:16:43 PM

 W O R K W I T H Y O U R S E R V E R I N P O W E R S H E L L 1 4 9

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

FINDING OTHER POWERSHELL MODULES

Several PowerShell modules may be available to you on your Windows Server
2008 R2 server. As you may recall from Chapter 3, you can run the Get-Module
-ListAvailable cmdlet to see what modules are available to you and verify the
correct spelling of the module names.

After you have imported the Server Manager module, you need to know how to use

three main cmdlets for working with your server features:

Get-WindowsFeature

Add-WindowsFeature

Remove-WindowsFeature

With Get-WindowsFeature, you can see all the features available to install on

your Windows Server 2008 R2 server. When you run Get-WindowsFeature, you

will see a screen similar to Figure 7.1.

F I G U R E 7.1 Get-WindowsFeature

c07.indd 149c07.indd 149 4/21/2011 1:16:43 PM4/21/2011 1:16:43 PM

1 5 0 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

Take note of a couple of things in the output of the cmdlet. First, you can identify

which features are available to install by the empty brackets: []. (Already installed

features are noted by [X].) Second, the Name column tells you all the names of the

features you can install on your server. Those names are also used in the

Add-WindowsFeature and Remove-WindowsFeature cmdlets.

For example, if you want to install DNS on your server, use the following command:

Add-WindowsFeature DNS

Likewise, if you want to remove the DNS role from your server, you run this

command:

Remove-WindowsFeature DNS

Although some features are easily installed, other features may require additional

planning and configuration after you install the feature with PowerShell. For exam-

ple, with Active Directory, you have to run DCPROMO.exe after you have installed

the Active Directory role.

You can also add or remove multiple roles at a time by separating the names of the

roles or features with commas. When you install or remove the features, you may

also be required to restart your server. You can restart the server manually, or you

can add the -restart parameter in your PowerShell commands. For example, the

following command installs the Branch Cache and Windows Backup tools on your

server:

Add-WindowsFeature BranchCache, Backup-Features

Analyze Your Server
The Best Practices Analyzer (BPA) is now built into Windows Server 2008 R2 serv-

ers. It provides instant analysis for many of the roles installed on your server, giving

guidance for improvements. Although you can run the BPA tool in Server Manager,

you can also run the tool from a PowerShell session. In this section, you will see

how to use PowerShell with the BPA tool.

The BPA tool scans your system with a series of criteria and rules, comparing

your server configuration against known best practices from Microsoft as well as

Microsoft’s early adopters. This allows you to discover room for improvement or fix

errors on your Windows Server 2008 R2 server.

c07.indd 150c07.indd 150 4/21/2011 1:16:43 PM4/21/2011 1:16:43 PM

 W O R K W I T H Y O U R S E R V E R I N P O W E R S H E L L 1 5 1

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

Loading the BPA Module

With the BPA providing PowerShell support, you can run just a handful of

commands to analyze all the roles on your server. Additionally, the PowerShell tools

provide the ability to run BPA scans of multiple roles at one time with one cmdlet.

To run the BPA PowerShell commands, you need to load both the Best Practices

Analyzer and Server Manager modules into your PowerShell session. Although you

can run scans without the Server Manager module, its additional capabilities enable

a better experience with the BPA tool. In an administrative PowerShell session,

enter the following at the prompt:

Import-Module ServerManager

Import-Module BestPractices

After you have the BPA module loaded, you can then analyze your system and see

how it compares to the best practices. There are four cmdlets you need to know in

order to effectively use PowerShell with the BPA, as described in Table 7.1.

TAB LE 7.1 BPA PowerShell commands

Command Usage

Get-BPAModel Allows you to view the roles installed on the server where you run BPA scans.
This tool also shows you when the last scan on a particular role was run.

Get-BPAResult Allows you to view the results for any given BPA scan you have performed.

Invoke-BPAModel Allows you to run a BPA scan on your server for a particular role.

Set-BPAResult Allows you to filter the BPA report from the Get-BPAResult command.

Using the BPA with PowerShell

Before you can scan the system with the BPA tool, you need to know the ID name

for the role you want to scan. To determine which roles currently installed on the

server can be scanned with BPA, use the following command, resulting in a screen

similar to Figure 7.2:

Get-BPAModel

As you may have noticed, not only can you see the role ID name, but you can also

see whether a scan has been done on the role before. However, you need to take note

c07.indd 151c07.indd 151 4/21/2011 1:16:44 PM4/21/2011 1:16:44 PM

1 5 2 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

of the ID names. The role IDs are used in the other BPA commands to perform

designated tasks.

F I G U R E 7. 2 Get-BPAModel

When Windows Server 2008 R2 initially shipped, there were only five roles you

could scan with the BPA tool:

 ▶ Active Directory Certification Services (AD CS)

 ▶ Active Directory Domain Services (AD DS)

 ▶ DNS

 ▶ Remote Desktop Services (RDS)

 ▶ Internet Information Services (IIS)

As Windows Server 2008 R2 has matured in the technology market, Microsoft has

added several updates to the BPA tool via Windows Update. Even though you may

have updated your servers and installed the BPA updates, you can use the BPA scan

only if the role has been installed on the server. You may not see all the possible IDs

for your own Windows Server 2008 R2 server.

Table 7.2 describes some of the current role ID names that can be used with the

BPA tool.

TAB LE 7. 2 BPA role IDS

BPA role ID Role

Microsoft/Windows/CertificateServices Active Directory Certification Services (AD CS)

Microsoft/Windows/DirectoryServices Active Directory Domain Services (AD DS)

Microsoft/Windows/DNSServer DNS

Microsoft/Windows/TerminalServices Remote Desktop Services (RDS)

c07.indd 152c07.indd 152 4/21/2011 1:16:44 PM4/21/2011 1:16:44 PM

 W O R K W I T H Y O U R S E R V E R I N P O W E R S H E L L 1 5 3

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

BPA role ID Role

Microsoft/Windows/WebServer Internet Information Services (IIS)

Microsoft/Windows/Hyper-V Hyper-V

Microsoft/Windows/ApplicationServer Application Server

Microsoft/Windows/WSUS Windows Software Update Services

Microsoft/Windows/NPAS Network Policy and Access Services

Microsoft/Windows/FileServices File Services

Microsoft/Windows /DHCP DHCP

For example, to scan the Active Directory Domain Services on your server, run the

following command:

Invoke-BPAModel -id Microsoft/Windows/DirectoryServices

Although you can scan each role individually, you may want to scan all the roles

on your Windows Server 2008 R2 server. To scan all of the roles, run the following

command, with results similar to Figure 7.3:

Get-BPAModel | Invoke-BPAModel.

F I G U R E 7. 3 Multiple BPA scans on a server

After you have run the scans, you will want to look at the results. You can use

the Get-BPAResult cmdlet to see the results of your scan. If you see an error

message similar to Figure 7.4, this indicates a scan has not yet been run for the role

you indicated.

c07.indd 153c07.indd 153 4/21/2011 1:16:44 PM4/21/2011 1:16:44 PM

1 5 4 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

F I G U R E 7. 4 Role not scanned by BPA

To see the report for your Hyper-V role, run the following command, with results

similar to Figure 7.5:

Get-BPAResult -id Microsoft/Windows/Hyper-V

F I G U R E 7. 5 Get-BPAResult for Hyper-V

You can filter results in PowerShell with the Get-BPAResult cmdlet and a Where

clause. If you want to view a BPA report for Hyper-V for only errors, run the follow-

ing command, with results similar to Figure 7.6:

Get-BPAResult -id Microsoft/Windows/Hyper-V|i
 Where { $_.Severity -eq “Error” }

c07.indd 154c07.indd 154 4/21/2011 1:16:44 PM4/21/2011 1:16:44 PM

 W O R K W I T H Y O U R S E R V E R I N P O W E R S H E L L 1 5 5

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

F I G U R E 7. 6 Hyper-V errors only

Although you can view the results in the PowerShell window, you can see there is

a lot of data in the scan. You can also use the |more command or even the|Out

command to help organize your output. PowerShell provides great ways to work

with this data, but remember you can always view the results in the Server Manager

interface even if you ran the scan from PowerShell. So if you want to view the full

report, I recommend using the Server Manager interface. You can find the BPA

reports in the role summary screens under each individual role. You can see an

example of the Hyper-V BPA report in Figure 7.7.

F I G U R E 7.7 Hyper-V BPA in Server Manager

c07.indd 155c07.indd 155 4/21/2011 1:16:45 PM4/21/2011 1:16:45 PM

1 5 6 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

Add Reliability to Your Server

One of the most common daily tasks you should perform on your servers is a

backup. With Windows Server 2008 R2 and PowerShell, you have a powerful

tool to help you automate this process. This helps ensure that your backups occur

 frequently and consistently on your servers.

Install the Backup Tools
The backup tools are not installed by default in Windows Server 2008 R2. You can

quickly install the tools on your server in an administrative PowerShell session,

though. Use Add-WindowsFeature, mentioned earlier in this chapter, to install

backup features on a server. Whether this is a full Windows Server 2008 R2 server

installation or a Server Core installation, the procedure in PowerShell is the same:

Import-Module ServerManager

Add-WindowsFeature Backup-Tools

This not only installs the core components for Windows Backup but also installs the

necessary components to perform a backup from PowerShell or a command line.

After the command is run, your screen will look similar to Figure 7.8.

F I G U R E 7. 8 Installing the backup tools

If you are prompted to restart the server, restart it before working with the backup

tools.

Perform a Backup with PowerShell
After you install the PowerShell backup tools, you can use the PowerShell cmd-

lets on Windows Server 2008 R2 to perform backups and recoveries. Before you

can run these tools, though, you have to verify the PowerShell snap-in for backup

has been loaded. Snap-ins are like modules in that they contain a collection of

c07.indd 156c07.indd 156 4/21/2011 1:16:45 PM4/21/2011 1:16:45 PM

 A D D R E L I A B I L I T Y T O Y O U R S E R V E R 1 5 7

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

PowerShell cmdlets; however, they do have differences. In Appendix E you can see

the differences between the two.

To verify the tools have been loaded in a PowerShell session, run the following

command to verify Windows.ServerBackup was loaded:

Get-PSSnapin

If you do not see Windows.ServerBackup in your loaded snap-ins, run the

following commands:

Add-PSSnapin windows.serverbackup

Get-PSSnapin

The result should look similar to Figure 7.9.

F I G U R E 7. 9 Windows.ServerBackup snap-in loaded

After you load the backup snap-in, you will have access to a tool allowing some

flexibility for performing backups. To perform backups in PowerShell, you have to

define the backup policy for your server. The backup policy for PowerShell is stored

in an object called WBPolicy. The WBPolicy object contains all the settings for the

backup, including the schedule, backup types, backup targets, and so on.

c07.indd 157c07.indd 157 4/21/2011 1:16:46 PM4/21/2011 1:16:46 PM

1 5 8 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

You need to set the values for the WBPolicy object when working with PowerShell

and backup. Table 7.3 lists some of the common PowerShell commands used for

backup and recovery and for setting the parameters for WBPolicy. For a full listing

of the PowerShell backup cmdlets, run the following cmdlet:

Get-Command *wb* -commandtype cmdlet

TAB LE 7. 3 PowerShell backup cmdlets

Cmdlet Explanation

Get-WBPolicy Displays the current settings for the WBPolicy object on the server

Set-WBPolicy Sets the parameters for the WBPolicy

Add-WBVolume Adds a volume to the WBPolicy object to be backed up

Add-WBSystemState Adds the system state to the WBPolicy object to be backed up

Set-WBSchedule Sets the time for your daily backup schedule

Start-WBBackup Starts a one-time backup

Get-WBJob Shows the current status of a running backup job

As you can see in Table 7.3, there are only a few cmdlets to work with the WBPolicy.

Here a couple of examples to allow you to get used to using PowerShell with backup

policies.

The following two lines back up your system with your current backup policy

settings:

$policy = Get-WBPolicy

Start-WBBackup -Policy $policy

This first line sets the $policy variable to the current settings in WBPolicy. The

second line starts the backup process with settings currently in $policy.

The following script backs up the c: drive, d: drive, and system state on your sys-

tem to your z: drive. The script uses a variety of the add cmdlets to modify the

value of the variable $policy, as well as variables for target and paths:

$policy = New-WBPolicy

$volume = get-WBVolume -VolumePath c:

Add-WBVolume -Policy $policy -volume $volume

$volume1 = get-WBVolume -VolumePath d:

Add-WBVolume -Policy $policy -volume $volume1

Add-WBSystemState -Policy $policy

$target = New-WBBackupTarget -VolumePath Z:

c07.indd 158c07.indd 158 4/21/2011 1:16:46 PM4/21/2011 1:16:46 PM

 A D D R E L I A B I L I T Y T O Y O U R S E R V E R 1 5 9

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

Add-WBBackupTarget -Policy $policy -target $target

Start-WBBackup -Policy $policy

Load-Balance Your Network
One of the core features built into Windows Server 2008 R2 servers is network load

balancing (NLB). NLB enables your server to even out traffic across TCP/IP clusters

on your network and offers easy scalability to your web-based servers and applica-

tions in your infrastructure.

As with many of the Windows features mentioned in this chapter, you can use

PowerShell to install NLB. In an administrative PowerShell session, enter the fol-

lowing at the prompt:

Import-Module ServerManager

Add-WindowsFeature NLB

After NLB is installed, almost all the configuration of NLB can be done in

PowerShell. You can create NLB clusters, manage port rules, or work with your

nodes, all in PowerShell. Before you can access the cmdlets, you need to load the

NetworkLoadBalancingClusters module with the following command:

Import-Module NetworkLoadBalancingClusters

After you have loaded the module, you can view all NLB cmdlets by running the

following command:

Get-Command -Module NetworkLoadBalancingClusters

The result should look similar to Figure 7.10.

After installing the feature, a cluster needs to be set up. You can create a new cluster

with the New-NLBCluster cmdlet. Table 7.4 lists the parameters that are used by

this cmdlet.

The following command will create a new NLB cluster tied to the network interface

named web1 with the IP address for the cluster set to 10.0.0.156.

New-NLBCluster -InterfaceName web1 i
-ClusterNamePrimaryIP 10.0.0.156

After you have configured an NLB cluster, you can quickly get basic information on

the properties of the cluster with this cmdlet:

Get-NLBClusterDriverInfo

The result should look similar to Figure 7.11.

c07.indd 159c07.indd 159 4/21/2011 1:16:46 PM4/21/2011 1:16:46 PM

1 6 0 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

F I G U R E 7.10 NLB cmdlets

TAB LE 7. 4 New-NLBCluster parameters

Parameter name Description

InterfaceName Name of the network interface for NLB to use. You can get a list of the
names available on your local machine from the following command: gwmi
win32_NetworkAdapter | FL NetConnectionID, AdapterType,
NetworkAddresses. The NetConnectionID is what is used for the
InterfaceName parameter.

ClusterName Name of the cluster.

ClusterPrimaryIP The primary IP address for this cluster. A cluster has one primary IP address and
can have other IP addresses associated with it as virtual IP addresses (VIPs).

HostName Used for clustering on a remote machine. If this parameter is not specified,
then the local machine is the target node.

DedicatedIP The dedicated IP address for the targeted node. If this parameter is not spec-
ified, the default value is the existing static IP address on the targeted node.

DedicatedIPSubnet The subnet mask for the dedicated IP address. If this parameter is not speci-
fied, the default value is the existing static IP address subnet mask on the
targeted node.

OperationMode The operation mode for the cluster. There are three types of operation
modes: unicast, multicast, and igmpmulticast. If this parameter is
not specified, the default value is unicast.

c07.indd 160c07.indd 160 4/21/2011 1:16:46 PM4/21/2011 1:16:46 PM

 A D D R E L I A B I L I T Y T O Y O U R S E R V E R 1 6 1

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

F I G U R E 7.11 Get-NLBClusterDriverInfo

There are several cmdlets used to work with NLB clusters. Table 7.5 lists some of the

common cmdlets.

TAB LE 7. 5 Common NLB cmdlets

Cmdlet Description Example

Get-NLBCluster Displays the cluster
name and IP address;
can be piped into other
cmdlets

To list information about the cluster, run
Get-NLBCluster.

Add-NLBClusterNode Lets you add nodes to
an existing cluster

To add server5 to an existing NLB cluster (with
the NLB primary server1) using the network
interface nlb5 on node5, you would use the
following:
Get-NLBCluster server1 |

Add-NLBClusterNode

-NewNodeName server5

-NewNodeInterface nlb5

Remove-

NLBClusterNode

Removes an
existing node from the
cluster

To remove server4 from the NLB cluster, use
this:
Remove-NLBClusterNode -HostName

server4.
This cmdlet prompts you for confirmation. If
you do not want to be prompted, you can use
the -force parameter to bypass confirmation.

Suspend-NLBCluster Pauses all the nodes in
the NLB cluster; com-
monly used when per-
forming maintenance
on the cluster; also
stops any tasks running
remotely on the cluster

Suspend-NLBCluster suspends the clus-
ter on the local machine; you can use the
-HostName parameter to specify the host to
suspend.

(continues)

c07.indd 161c07.indd 161 4/21/2011 1:16:47 PM4/21/2011 1:16:47 PM

1 6 2 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

Cmdlet Description Example

Resume-NLBCluster Restarts all the nodes
in the NLB cluster if it is
currently suspended

Resume-NLBCluster resumes a suspended
cluster on the local machine; you can use the
-HostName parameter to specify the host to
resume.

Stop-NLBClusterNode Drains the
connections on the
node and then stops
clustering on this node

You may need to stop clustering on a node for
maintenance. Use the -Drain parameter to
drain any existing connections on the node
before stopping. Use the -Timeout parameter
to set the maximum wait time before stopping
the node. Suppose you wanted to stop the
current node, having it drain connections and
force the stop to happen in 15 minutes even if
connections are not fully drained. Use the fol-
lowing command: Stop-NLBClusterNode
-Drain -Timeout 15.

Start-

NLBClusterNode

Puts a stopped
cluster node back into
the cluster

After maintenance on the current node, you
would run the following command to put it
back in the cluster: Start-NLBClusterNode.

Get-NLBClusterNode Gets nodes of a cluster This can be piped to other commands to be run
on multiple nodes.

Set-NLBClusterNode Sets the node
properties

Properties include HostPriority and
InitialHostState. HostPriority is the
ID for the cluster node and should be between
1 and 32. InitialHostState can be started,
stopped, or suspended. To set the current node
to HostID 4, use the following command:
Set-NLBClusterNode -HostPriority 4.
To set all nodes in this cluster to the initial state
of started, use Get-NLBClusterNode |
Set-NLBClusterNode

-InitialHostState started.

Get-NLBClusterVip Displays the virtual IP
addresses of the cluster

Get-NLBClusterVIP displays the IP address
being used by the cluster.

Set-NLBClusterVip Changes the VIP for the
cluster; both IPv4 and
IPv6 are supported

To change the IP address of the cluster to
10.0.0.225, use Get-NLBClusterVIP|
Set-NLBClusterVip -NewIP

10.0.0.225. By using the | to pass the cur-
rent VIP, you will not need to interact with the
cmdlet.

Although Table 7.5 lists most of the cmdlets, there is one other set of cmdlets to

know when it comes to managing NLB clusters—Get-NLBClusterPortRule,

TAB LE 7. 5 (continued)

c07.indd 162c07.indd 162 4/21/2011 1:16:47 PM4/21/2011 1:16:47 PM

 U S E O T H E R P O W E R S H E L L U T I L I T I E S F O R T H E S E R V E R 1 6 3

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

Set-NLBClusterPortRule, Add-NLBClusterPortRule, and Remove-

NLBClusterPortRule. These are used to manage port rules for the cluster.

For example, suppose you have to support ASP.NET code that relies on session

states in a clustered web environment. Suppose your cluster is currently set up with

the affinity set to None to take advantage of the load balancing among all nodes in

the cluster. That means a website visitor may hit one node the first time they load a

page and then another node of the cluster another time they load the page. This can

cause problems for some ASP.NET applications. You can adjust the NLB cluster’s

affinity so that once a visitor hits a node, they stay on that node for the length of

their current session. To do this, you would need to adjust the web port’s affinity

from None to Single. The following code could be used:

Set-NlbClusterPortRule -NewStartPort 80 i
-NewEndPort 80 -Port 80 -NewAffinity Single

Although these are just a few things you can do manage with NLB clusters, you can

always get more examples from running Get-Help with any of the NLB cmdlets

using the -examples parameter.

Use Other PowerShell Utilities for the Server

Many tools and PowerShell modules can help you perform routine server main-

tenance functions. In this section, you will see how PowerShell can be used

to work with the registry on your systems and how to use the troubleshooting

module.

Use the Registry with PowerShell
As you briefly saw in Chapter 6, you can use PowerShell to work directly with the

registry. When you work with the registry in PowerShell, you are using a built-in

structure called a provider. Providers give PowerShell the ability to navigate a data

store on your system. You can find more about providers in Appendix C.

W A R N I N G Make sure you back up your registry and your system prior to modifying
the registry. Modifying the registry can cause unwanted errors, including system errors,
that may require reinstallation.

c07.indd 163c07.indd 163 4/21/2011 1:16:47 PM4/21/2011 1:16:47 PM

1 6 4 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

Many types of drives are available in PowerShell. Some of the PowerShell drives

include your hard drives, like c: or d:. Other drives include the registry, certifi-

cates, and environment variables. You will find a full listing in Appendix C. To see

the list of PowerShell drives available in your current PowerShell session, run the

following command, which should look similar to Figure 7.12:

Get-PSDrive

F I G U R E 7.12 Get-PSDrive

You will see the two main hives of the registry listed with the Get-PSDrive

cmdlet:

 ▶ HKEY_CURRENT_USER (HKCU) is the hive key for the current user.

 ▶ HKEY_LOCAL_MACHINE (HKLM) is the hive key for the local machine.

With PowerShell drives, you can navigate the registry just like you would any other

drive on the system. You can use the commands, such as cd, dir, or ls, to move

through the keys. For example, if you wanted to switch to HKCU, you can use this

command:

cd HKCU:

Then you can work through the registry structure just like working through

a file structure. In Figure 7.13, you see the results of running dir in the HKCU

root.

c07.indd 164c07.indd 164 4/21/2011 1:16:48 PM4/21/2011 1:16:48 PM

 U S E O T H E R P O W E R S H E L L U T I L I T I E S F O R T H E S E R V E R 1 6 5

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

F I G U R E 7.13 dir for HKCU

As you begin navigating through the registry, you may notice you cannot see

registry values with the dir commands. There are some unique aspects of navigat-

ing the registry. After you navigate to the desired registry location, you can use the

Get-ItemProperty cmdlet to see the values in the local directory. You will also

have to add the . (period) to reference the local directory in the registry. This is

shown in Figure 7.14. The results are from the Desktop Windows Manager location

in the registry.

Get-ItemProperty .

F I G U R E 7.14 Get-ItemProperty

c07.indd 165c07.indd 165 4/21/2011 1:16:48 PM4/21/2011 1:16:48 PM

1 6 6 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

Alternatively, you can specify the path in the Get-ItemProperty cmdlet so you

do not have to fully navigate to the location:

Get-ItemProperty -path HKCU:\software\microsoft\windows\dwm

If you know the name of the key you explicitly want to look at, you can specify it

using the -name parameter. If you just wanted to see the EnableAeroPeek value,

you would run the following:

Get-ItemProperty . -name EnableAeroPeek

When you want to set or change the values in the registry, use the Set-ItemProperty

cmdlet. You saw the following example of this cmdlet in Chapter 5:

Set-ItemProperty -path i
HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIdsi
\Microsoft.PowerShell -Name “ExecutionPolicy” i
-Value “RemoteSigned”

The -path and -name parameters work the same way as they do in the Get-

ItemProperty cmdlet. The unique parameter for Set-ItemProperty is the

-value parameter. When you work with the registry in PowerShell, you may have

to do some research to make sure you put in the proper value and proper type of

data. This will avoid any errors or misconfigurations.

Use PowerShell Troubleshooting Packs
PowerShell 2.0 includes a module called TroubleshootingPack. This module

and its cmdlets can help you run system diagnostics on various aspects of your

Windows Server 2008 R2 server. With the troubleshooting packs, you can check

your network interface and program compatibility.

You already have two troubleshooting packs on your server, for network-

ing and program compatibility. To use them within PowerShell, load the

TroubleshootingPack module with this command:

c07.indd 166c07.indd 166 4/21/2011 1:16:48 PM4/21/2011 1:16:48 PM

 U S E O T H E R P O W E R S H E L L U T I L I T I E S F O R T H E S E R V E R 1 6 7

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

Import-Module TroubleShootingPack

This module gives you two cmdlets:

Get-TroubleShootingPack

Invoke-TroubleShootingPack

These cmdlets let you identify and work with the troubleshooting packs. To be able to

run to troubleshooting cmdlets, you need know their location on your system. They

are located by default in the %windir%\diagnostics\system directory on your

system. Once you locate the directory on your Windows Server 2008 R2 server, you

should see the two directories for Networking and PCW, as shown in Figure 7.15.

F I G U R E 7.15 Diagnostics directories

Starting the TroubleshootingPack module launches an interactive session. Run

the PowerShell session as an administrator to allow troubleshooting to perform

actions to diagnose and fix your system. After you have launched an administrative

PowerShell session, run the following command. This will launch the networking

diagnostics troubleshooter:

Get-TroubleShootingPack -path i
C:\Windows\Diagnostics\System\Networking |i
Invoke-TroubleShootingPack

After you launch the command, you will be asked to specify an instance ID. Press

the Enter key, and you will see a screen similar to Figure 7.16.

c07.indd 167c07.indd 167 4/21/2011 1:16:48 PM4/21/2011 1:16:48 PM

1 6 8 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

F I G U R E 7.16 Network troubleshooting

As you can see, you are able to check various aspects of your network connectivity

on your server by stepping through the menus. To work with the troubleshooter,

just specify the option you want to work with using the corresponding number. In

Figure 7.17, you can see how the troubleshooter discovered the problem with a

network adapter and suggested a resolution.

F I G U R E 7.17 Network resolution

c07.indd 168c07.indd 168 4/21/2011 1:16:49 PM4/21/2011 1:16:49 PM

 U S E O T H E R P O W E R S H E L L U T I L I T I E S F O R T H E S E R V E R 1 6 9

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

TROUBLESHOOTING PACKS ON WINDOWS 7

With Windows Server 2008 R2 servers, you have two packs you can leverage. With
Windows 7, there are several more troubleshooting packs you can use:

 Aero

 Audio

 Device

 DeviceCenter

 HomeGroup

 IEBrowseWeb

 IESecurity

 Networking

 PCW

 Performance

 Power

 Printer

 Search

 WindowsMediaPlayerConfiguration

 WindowsMediaPlayerMedialLibrary

 WindowsMediaPlayerPlayDVD

 WindowsUpdate

You can use PowerShell remoting to take advantage of these extended troubleshooting
packages on Windows 7 systems.

Schedule PowerShell Scripts
As you work with PowerShell, you might run into a situation where you want to run

a PowerShell script on a schedule. Scheduling a PowerShell task is straightforward,

using three tools to make it happen:

 ▶ powershell.exe

c07.indd 169c07.indd 169 4/21/2011 1:16:49 PM4/21/2011 1:16:49 PM

1 7 0 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

 ▶ Command prompt

 ▶ Task Scheduler

The command prompt may appear to be the odd one in the list, but you can start a

PowerShell session from the command prompt by simply typing powershell.exe.

If you have a PowerShell script you want to run, you can put the path of the script

and script name at the end of the command prompt line. For example, the following

will run a script called myscript.ps1 stored in the scripts directory:

powershell c:\scripts\myscript.ps1

You can include the -noninteractive parameter for powershell.exe to allow

your script to run without interaction from the user on the system. For example, the

command to run myscript.ps1 without an interactive prompt is as follows:

powershell -NonInteractive c:\scripts\myscript.ps1

Since you can run PowerShell and add a script to the session, you then need to use

the Task Scheduler to run your command on a schedule. You can find the Task

Scheduler in your Administrative Tools. On Windows Server 2008 R2 server, click

Start ‚ All Programs ‚ Administrative Tools ‚ Task Scheduler. You will see a

screen similar to Figure 7.18.

F I G U R E 7.18 The Task Scheduler

c07.indd 170c07.indd 170 4/21/2011 1:16:49 PM4/21/2011 1:16:49 PM

 U S E O T H E R P O W E R S H E L L U T I L I T I E S F O R T H E S E R V E R 1 7 1

Se
rv

er
 Es

se
nt

ia
ls

in

Po
w

er
Sh

el
l

CHAPTER 7

To create a task, you can choose either Create Task or Create Basic Task. For this

example, you will use the Create Basic Task option:

 1. Click Create Basic Task.

 2. Enter the name and description of your task, and click Next.

 3. Select how often you want to run the task, and click Next.

 4. Based on your selection in step 3, you will be asked to set the parameters of

when the script will run. For example, if you chose daily, you could have the

script run at a specific time of day. After you have set the frequency, click Next.

 5. On the Action screen, select Start A Program, and click Next.

 6. In the Start A Program field, fill in the parameters as follows. When finished,

click Next. Figure 7.19 shows an example task.

 F I G U R E 7.19 Task created

 ▶ Action: powershell.exe

 ▶ Add Arguments (Optional): The path and name of your script and any

parameters, including -noninteractive

 ▶ Start in (Optional): The directory of your script

c07.indd 171c07.indd 171 4/21/2011 1:16:49 PM4/21/2011 1:16:49 PM

1 7 2 C H A P T E R 7 • S E R V E R E S S E N T I A L S I N P O W E R S H E L L

 7. Review the summary screen, and click Finish.

Your scripts have to adhere to the script execution policy set on the server, as you

saw in Chapter 5. Ensure you have the correct execution policy set, allowing your

script to execute properly.

EXERCISE 7: CREATE A SCHEDULED BACKUP WITH POWERSHELL

In this exercise, create an automated process to back up the c: drive and system state
on your Windows Server 2008 R2 server.

c07.indd 172c07.indd 172 4/21/2011 1:16:50 PM4/21/2011 1:16:50 PM

CHAPTER 8

Managing Active Directory with
PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

WORK WITH ACTIVE DIRECTORY 174

Load the AD PowerShell Module .174

Understand PowerShell Active Directory Basics 178

Work with Users, Groups, and OUs . 182

UNDERSTAND MANAGED SERVICE ACCOUNTS 185

Understand Managed Service Accounts . 185

Create Managed Service Accounts . 186

Install and Use Managed Service Accounts 188

WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 189

Understand How the Recycle Bin Works . 190

Enable the AD Recycle Bin . 191

Use the AD Recycle Bin . 193

c08.indd 173c08.indd 173 4/21/2011 1:18:00 PM4/21/2011 1:18:00 PM

CH
APTER 8

owerShell 2.0 has more than 90 cmdlets dedicated to Active Directory (AD). In

PowerShell 1.0, you could work with AD objects, albeit not easily because doing

so required a detailed knowledge of the Lightweight Directory Access Protocol

(LDAP). Although you still need to know about LDAP in PowerShell 2.0, you do not

have to delve as deep as you did in PowerShell 1.0.

PowerShell 2.0 and its built-in AD cmdlets make it easier for you to work with users,

groups, organizational units (OUs), and many other objects in AD. Th is chapter

outlines some of these new cmdlets and how PowerShell can directly interact with

AD. Th e cmdlets are in the AD module that comes with the Active Directory server

role; this chapter will show you how to access the cmdlets.

You can use PowerShell 2.0 not only to work with core AD objects but also to work

with several other domain functions.

In addition to the AD cmdlets in PowerShell 2.0, Windows Server 2008 R2 off ers

several new services for AD. Windows Server 2008 R2 has two new powerful fea-

tures for AD—managed service accounts and the AD recycle bin.

Work with Active Directory

PowerShell lets you automate users and groups in your AD environment. In

Windows Server 2008, you could use PowerShell to manage objects, but it was

cumbersome. Windows Server 2008 R2 includes several improvements and addi-

tions for easy management with Windows PowerShell. Newly created PowerShell

cmdlets and the new AD recycle bin provide easier access to working with AD at a

PowerShell level. You will see both of these in this section.

Load the AD PowerShell Module
Before you can begin using the new cmdlets, you need to load the AD PowerShell

module. Th e AD PowerShell modules are installed by default on your Windows

Server 2008 R2 server aft er you install Active Directory Domain Services. Th ere are

two ways you can load the AD module:

 ▶ Open the Active Directory module for PowerShell by selecting Start ‚

Administrative Tools ‚ Active Directory Module For PowerShell.

 ▶ Load a Windows PowerShell session (preferably an administrative session

since many cmdlets will require administrative privileges), and import the

P

c08.indd 174c08.indd 174 4/21/2011 1:18:06 PM4/21/2011 1:18:06 PM

 W O R K W I T H A C T I V E D I R E C T O R Y 1 7 5

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

Active Directory module manually, using the command Import-Module

ActiveDirectory.

You may prefer to load the Active Directory module for PowerShell instead of start-

ing a PowerShell session. Th e main benefi t of loading the AD module this way is that

the Active Directory module for PowerShell automatically loads an administrative

PowerShell session. A majority of the AD commands require administrative privileges.

Verify the module was loaded by running Get-Module.

MANAGING ACTIVE DIRECTORY WITH POWERSHELL ON A WINDOWS 7 CLIENT

You may want to manage your AD environment from a Windows 7 client worksta-
tion. Microsoft provides a free downloadable tool set called the Remote Server
Administration Tools (RSAT) for Windows 7.

These tools can be installed only on computers running Windows 7 Enterprise, Windows
7 Professional, or Windows 7 Ultimate. RSAT contains three PowerShell modules you
can use for managing your servers:

 Active Directory

 Failover Cluster

 Network Load Balancing

Having the AD module on your system allows for quick access to working with the AD
environment from your management console.

You can download the tools here:

www.microsoft.com/downloads/en/details

.aspx?FamilyID=7d2f6ad7-656b-4313-a005-4e344e43997d

You should see the Active Directory module loaded. You can see a list of all the AD

cmdlets by running the command Get-Command *-ad* or the command Get-

Command -Module ActiveDirectory, resulting in a screen similar to Figure 8.1.

All the nouns in the Active Directory cmdlets begin with AD. Th is will help you

learn the new cmdlets and explore their functionality.

PowerShell provides access to the AD data structure in a way that is similar to

accessing the registry (see Chapter 7). So, you can use the same directory-style com-

mands (such as cd or dir) to move around the AD structure; the command cd

AD: lets you access the AD structure.

c08.indd 175c08.indd 175 4/21/2011 1:18:06 PM4/21/2011 1:18:06 PM

1 7 6 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

F I G U R E 8 .1 Active Directory cmdlets

When you run the cd AD: command, the command prompt changes to PS AD:\>.

Th is prompt refl ects your current location in the Active Directory hierarchy. From

there you can run dir to see the objects at the root and navigate to the domain.

Before you can navigate, you need to know some of the basic LDAP naming conven-

tions. You also need to know the basic navigation terminology and how Microsoft

uses the terms in AD. Table 8.1 describes some of the basic terms.

TAB LE 8 .1 Basic LDAP navigation terminology

Terms Description

dc Domain component. The components of a domain name are separated by dots.
The sequence of components in AD goes from the lowest level to the top level. For
example, if your domain is called deploy.com, then you would refer to it in LDAP
terminology as dc=deploy, dc=com.

ou Organizational unit. Use this to move into OUs. The fi nance OU in the deploy
.com domain would be ou=finance, dc=deploy, dc=com. If you have
nested OUs, list the deeper OUs fi rst. For example, the Cleveland OU inside
the Finance OU in the deploy.com domain would be ou=cleveland,
ou=finance, dc=deploy, dc=com.

cn Container. In AD, this lets you navigate into special containers, such as Users. The
Users container in the deploy.com domain would be cn=Users, dc=deploy,
dc=com.

You will see this terminology used throughout this chapter with many of the AD

cmdlets. Whether you are creating, navigating, or restoring users, understanding

the basics will allow you to navigate inside AD quickly and easily. If you do not use

the correct naming conventions as you are working with AD, you may see the error

shown in Figure 8.2.

c08.indd 176c08.indd 176 4/21/2011 1:18:07 PM4/21/2011 1:18:07 PM

 W O R K W I T H A C T I V E D I R E C T O R Y 1 7 7

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

F I G U R E 8 . 2 Navigation error

Using the basic naming conventions, you can navigate through your domain with

cd. To change to the root of your domain, you would run a command similar to cd

“dc=yourdomainname, dc=com” (or your FQDN ending). Additionally, you can

also use tab completion here; this will help you avoid typing in the wrong domain path.

Aft er you have navigated to the root of your domain, you then can navigate to the

OU or container with cd. To change to your container aft er you have navigated to

your domain structure, run this command:

cd cn=containername

If you want to switch to an OU, the command is slightly diff erent:

cd ou=Organizational Unit

Once you have navigated to the desired location in AD, you can run the dir com-

mand to see the contents in that particular location. Figure 8.3 shows an example of

the dir command in an OU.

F I G U R E 8 . 3 dir in Active Directory

c08.indd 177c08.indd 177 4/21/2011 1:18:07 PM4/21/2011 1:18:07 PM

1 7 8 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

Understand PowerShell Active Directory Basics
Th is section covers some of the basics of working with domains, domain control-

lers, and forests (collections of namespaces, each of which may be a tree containing

multiple domains). Forests provide a security boundary for your organization in

AD, and you can manage them with PowerShell.

To display directory service–specifi c entries (DSEs) for your domain and confi gura-

tion, run Get-ADRootDSE. Th is cmdlet displays the directory information tree for

the domain, as shown in Figure 8.4.

F I G U R E 8 . 4 Get-ADRootDSE

Th is shows the basic information about your domain and naming conventions. You

can then use that information for many other commands. If you want to see all the

domain controllers, use Get-ADDomainController -Discover. Th en add

the domain you are looking at, and you can fi nd all the DCs in your environment. Th e

following cmdlet will fi nd the DCs in the contoso.com domain:

Get-ADDomainController -Discover -DomainName contoso.com

Your results may look like Figure 8.5.

c08.indd 178c08.indd 178 4/21/2011 1:18:07 PM4/21/2011 1:18:07 PM

 W O R K W I T H A C T I V E D I R E C T O R Y 1 7 9

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

F I G U R E 8 . 5 Get-ADDomainController

You can also work with your global catalog (GC) servers via several cmdlets. GCs

contain a subset of the data stored in AD. Th ey are used to process all queries in

the domain. If you are looking for users, groups, or printers, GC will process the

requests across your entire forest. Th is functionality is not only used by AD but is

also used by Microsoft Exchange for address book requests. Because GCs span

multiple domains, they assist in user authentication and universal group member-

ship processing. Knowing where your GCs are helps keep your AD environment

running smoothly. To see what GCs are loaded in your forest, run this command:

Get-ADForest deploy.com | FL GlobalCatalogs

You can also enable or disable the GC status for a server with the following

PowerShell command. For the options parameter, 1 enables a GC and 0 disables

the GC. Th e following example disables the GC for Server1 in the deploy.com

domain:

Set-ADObject “CN=NTDS Settings,CN=Server1,CN=Servers,i
CN=Default-First-Site-Name,CN=Sites,CN=Configuration,i
DC=deploy,DC=COM” -Replace @{options=’0’}

To verify that the GC has been enabled or disabled on a server with the Get-

ADRootDSE cmdlet, look for the value next to IsGlobalCatalogReady. If it is

true, then the GC has been enabled. Enabling a GC on a server can take several

minutes depending on your AD environment. You can also fi lter just the value for

the global catalog with the Get-ADRootDSE cmdlet. Th is cmdlet looks at the global

catalog value from the directory services information tree for Server1:

Get-ADRootDSE -Server Fabrikam-DC1 | FT GlobalCatalogReady

Figure 8.6 shows an example of the results.

c08.indd 179c08.indd 179 4/21/2011 1:18:08 PM4/21/2011 1:18:08 PM

1 8 0 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

F I G U R E 8 . 6 Global catalog status

Working with the FSMO Roles

One of the other administrative tasks you may have done in the past is working

with fl exible single master operation (FSMO) roles. Typically you may have wanted

to view the roles or transfer the roles to another server. With the new AD cmdlets,

you can work with these roles on your server.

In PowerShell, you need to know the role names and how they are referred to in the

cmdlets. Th ere are fi ve roles, listed in Table 8.2 with their PowerShell counterparts.

TAB LE 8 . 2 FSMO roles in PowerShell

Role name PowerShell name Description

Schema Master SchemaMaster Holds the schema, or defi nition, for all the AD
objects in your forest. There can be only one
for the entire forest.

Domain Naming Master DomainNamingMaster Controls the addition and removal of domains
in your forest. There can be only one for the
entire forest.

PDC Emulator PDCEmulator Processes all the password change requests
from your users. It will also replicate the
change across the entire domain. There is one
per domain in your forest.

RID Master RIDMaster Sequences the relative IDs (RIDs) for the
entire domain when you create new objects.
The relative ID is combined with the domain
SID to ensure that a unique identifi er is cre-
ated for every new object in the domain.
There is one per domain in your forest.

Infrastructure Master InfrastructureMaster Helps keep information about objects in the
domain the Infrastructure Master role resides
in consistent by comparing it to a GC for the
domain. The primary purpose is to ensure the
groups that users belong to from other domains
are properly maintained and correct. There is
one per domain in your forest, and generally it is
not placed on the same server as a GC.

c08.indd 180c08.indd 180 4/21/2011 1:18:08 PM4/21/2011 1:18:08 PM

 W O R K W I T H A C T I V E D I R E C T O R Y 1 8 1

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

If you are looking for the Schema Master or Domain Naming Master role, use the

Get-ADForest cmdlet. For example:

Get-ADForest deploy.com | FT SchemaMaster,DomainNamingMaster

If you are looking for the PDC Emulator, RID Master, or Infrastructure Master, use

the Get-ADDomain cmdlet. Th is command shows all three of those FSMO roles for

the deploy.com domain:

Get-ADDomain contoso.com | FT PDCEmulator,RIDMaster, i
InfrastructureMaster

Figure 8.7 shows an example of both commands being run. For either command,

add or remove FSMO names for the particular roles you are interested in.

F I G U R E 8 .7 Discovering FSMO roles

To transfer the FSMO roles to another server, run the following command. As with

viewing the FSMO roles, add or remove the role names based on what roles you

want to work with. Th is moves the Infrastructure Master role to Server2:

Move-ADDirectoryServerOperationMasterRole i
-Identity Server2 -InfrastructureMaster

To seize control over an FSMO role, add the -force parameter to the previous

command, as shown here:

Move-ADDirectoryServerOperationMasterRole i
-Identity Server2 -InfrastructureMaster -force

You may have converted or upgraded your domain from previous versions of

Windows Server to Windows Server 2008 R2. Th e version of operating system on

your domain controllers determines your forest functional level. Th e forest func-

tional level ensures proper functionality and communication in your domain. It can

also determine what features are available in your domain. For example, you can

use the AD recycle bin in Windows Server 2008 R2 only if your forest functional

level is Windows2008R2Forest.

c08.indd 181c08.indd 181 4/21/2011 1:18:08 PM4/21/2011 1:18:08 PM

1 8 2 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

In PowerShell, you can view what your forest mode is by running Get-ADForest,

as shown in Figure 8.8.

F I G U R E 8 . 8 Forest mode
Forest mode

To change your forest mode, use the Set-ADForestMode cmdlet. You can use one

of the four following parameters to raise your forest functional level:

 ▶ Windows2003InterimForest

 ▶ Windows2003Forest

 ▶ Windows2008Forest

 ▶ Windows2008R2Forest

Th is PowerShell command raises the forest functional level to

Windows2008R2Forest for the deploy.com domain:

Set-ADForestMode -Identity deploy.com i
 -ForestMode Windows2008R2Forest

W A R N I N G When you raise the forest functional level, this is a one-way trip. Once
you raise the level of your forest, you cannot go backward.

Work with Users, Groups, and OUs
Table 8.3 lists some of the common tasks for using PowerShell with your users

and groups. When you run the commands listed in the table, they run from the

 directory you are currently located in.

c08.indd 182c08.indd 182 4/21/2011 1:18:08 PM4/21/2011 1:18:08 PM

 W O R K W I T H A C T I V E D I R E C T O R Y 1 8 3

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

You can quickly fi nd out which domain you are currently managing by running the

Get-ADRootDSE cmdlet mentioned earlier in this chapter. You can also change to

the AD provider with cd AD: and run dir to see which domain you are currently

working in. Figure 8.9 shows an example.

F I G U R E 8 . 9 dir on the root of the AD provider

You can also use the LDAP terminology to navigate to the path of the object you

want to modify. You can use Get-Help with any of the commands in Table 8.3 to

learn more.

TAB LE 8 . 3 Common PowerShell AD object commands

Cmdlet Description Example

Get-ADobject Lists multiple AD objects,
including users and groups.
Works similarly to other
Get cmdlets. Uses
filter, ldapfilter, and
searchbase to query the
information. Use this with
format and out switches to
work with the command’s
output.

This command lists all the objects in AD:

Get-ADObject –Filter {name

-like “*”}

Get-ADuser Lists the AD users in
the domain. Uses
filter, ldapfilter, and
searchbase to query the
information. Use this with
format and out switches to
work with the commands
output.

This command lists all the users at your
current level of the AD hierarchy:

Get-ADUser –Filter {name -like

“*”}

(continues)

c08.indd 183c08.indd 183 4/21/2011 1:18:09 PM4/21/2011 1:18:09 PM

1 8 4 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

Cmdlet Description Example

New-ADuser Creates a new user in your
AD environment. You can
also control most of the
properties for this cmdlet.
You need to set a password
and enable the account
for use.

This command creates a user John Smith
in the Marketing OU in the admin.com
domain, with the display name and given
name fi lled out:

New-ADuser johnsmith

-GivenName “John” - Surname

“Smith” -Displayname

“John Smith” -Path

‘OU=Marketing,DC=admin,DC=com’

Set-

ADaccountpassword

Sets the password for an
AD account. Depending on
how you use this command,
you may be presented with
a series of prompts to set
the password. When you
run this command, you do
not need to specify the OU
or domain name if you are
located in the OU that con-
tains the user.

This command resets the password of
John Smith with a new password of
pa55w3rd:

Set-adaccountpassword

-identity johnsmith -reset

-newpassword (Convert

To-SecureString -AsPlainText

“pa55w3rd” -force)

Remove-ADuser Removes a user from AD.
When you run this com-
mand, you do not need to
specify the OU or domain
name if you are located in
the OU that contains
the user.

This command deletes the johnsmith user:

Remove-aduser johnsmith

New-ADgroup Creates a new group. You
can also specify group type,
scope, and other properties
of the group.

This command will create a new global
security group called Accounting:

New-adgroup Accounting -group-

scope global

Add-ADGroupMember Allows you to modify
the membership of an
AD group. Use the get-
ADgroup command to
select a group.

This command adds John Smith to the
Marketing group in the admin.com domain:

Get-ADGroup -SearchBase

“DC=admin,DC=com” -SearchScope

Subtree -Filter {Name -Like

“*Marketing*”} | Add-

ADGroupMember -Member John

Smith

New-

ADorganizationalunit

Creates a new AD organiza-
tional unit.

This command creates a new OU called
Finance in the admin.com domain:

New-ADOrganizationalUnit

–Name “Finance” –Path

“DC=admin,DC=com”

TAB LE 8 . 3 (continued)

c08.indd 184c08.indd 184 4/21/2011 1:18:09 PM4/21/2011 1:18:09 PM

 U N D E R S T A N D M A N A G E D S E R V I C E A C C O U N T S 1 8 5

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

When you are creating one of the many AD objects, you also have to become famil-

iar with many of the parameters associated with the object type you are trying to

create. For example, the New-ADUser cmdlet has many optional parameters you

can use. Like all PowerShell cmdlets, you can ask for help. With the AD cmdlets,

the -full switch for Get-Help displays a wealth of information and examples.

With any of the AD objects, you need to also learn the many properties associated

with the objects. Knowing the properties allows you to manage your AD environ-

ment in scale. One of the tricks to working with the AD properties is knowing the

names of the properties. To get the property names and to work with your AD

objects, you can use the Export-CSV cmdlet. For example, the following command

will export all the user objects in AD to a CSV fi le; you can then import the output

into a spreadsheet to see all the property names:

Get-ADUser -filter * -properties * | Export-CSV alladdusers.csv

Understand Managed Service Accounts

Installing an application such as Exchange Server or IIS on your server typically

requires a dedicated account to run it securely. Th is account is called a service account.

Typically, these accounts are associated with the services running behind the scenes.

Th ese accounts also govern the security privileges your applications have as they

interact with your system. Th ese accounts are like typical AD accounts; they have

passwords that need to be maintained. If the passwords were to expire or change for

these accounts, the applications they are associated with would normally stop work-

ing. As you can imagine, fi xing this problem can be an administrative headache.

In the past, you may have set their passwords to never expire aft er creating a secure

password, thus creating a stale password and leaving a security vulnerability in your

environment. Some administrators may have used the same account or built-in

accounts for multiple services. Th is would not provide service isolation; if the account

became unusable, multiple applications on the server would have been aff ected.

Understand Managed Service Accounts
Managed service accounts are special accounts you create on your server to help

with the management of your applications. Th ese accounts are tied to your server’s

applications, but they avoid the pitfalls of the past. Th ese accounts also provide

a built-in capability to isolate your services for the diff erent applications on your

c08.indd 185c08.indd 185 4/21/2011 1:18:09 PM4/21/2011 1:18:09 PM

1 8 6 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

server. Th is helps avoid a single point of failure for your infrastructure and creates

an easier troubleshooting path.

Even more eff ective at saving your time and eff ort is the automatic password man-

agement with managed service accounts. Th is helps you avoid manual password

resets, stale passwords, and other possible issues in your infrastructure.

You create a service account tied to a specifi c server; you cannot have a service

account shared by multiple servers. One of the key benefi ts is that service accounts

allow server renaming under Windows Server 2008 R2 domain functional mode.

Create Managed Service Accounts
Creating a service account in your domain environment requires at least one

Windows Server 2008 R2 domain controller. Several cmdlets allow you to work

with managed service accounts. You need to be a domain administrator to be able

to create managed service accounts. If your domain is in native Windows Server

2008 R2 mode, you are ready to begin working with managed service accounts.

However, if your environment is in Windows Server 2008, Windows Server 2003,

or another mixed-mode domain environment, you need to prepare your forest and

domain. To prepare your environment, run these two commands on your Windows

Server 2008 R2 domain controller:

 ▶ adprep /forestprep

 ▶ adprep /domainprep in every domain where you want to create and use

managed service accounts

Aft er your domain is prepared, you can create managed service accounts. Load the

administrative PowerShell session with the AD module loaded. You can do this by

clicking Start ‚ Administrative Tools ‚ Active Directory Module For PowerShell.

To create a managed service account, use the New-ADServiceAccount cmdlet.

By default, managed service accounts are created in the Managed Service Accounts

container. You can specify a diff erent location if you want. Th e account will also

be enabled aft er you create it. Th e following command creates a managed service

account called Exchange2010 in the default Managed Service Accounts container:

New-ADServiceAccount Exchange2010

Th is command creates a managed service account called WebServer in the web

organizational unit in the contoso.com domain:

New-ADServiceAccount WebServer -path “ou=web,dc=contoso,dc=com”

c08.indd 186c08.indd 186 4/21/2011 1:18:10 PM4/21/2011 1:18:10 PM

 U N D E R S T A N D M A N A G E D S E R V I C E A C C O U N T S 1 8 7

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

Aft er you have created your managed service accounts or if you want to know what

managed service accounts are on your server, you can run the following command:

Get-ADServiceAccount -filter *

Your results will look similar to Figure 8.10.

F I G U R E 8 .10 Managed service accounts

You may have noticed that when the managed service account is created, you do

not need to specify a password. You can specify a password if you want; however,

you should let Windows Server 2008 R2 handle the password. If you do not specify

a password, the system generates a random password of 240 cryptographically

 random characters.

Not having to manage the passwords for the managed service accounts is a key benefi t

for you as an administrator. Th is formerly time-consuming process is now taken care

of by the system. Managed service accounts are also subject to the domain’s password

policy, and their passwords will be changed automatically to comply with the policy.

If you no longer want to use a managed service account, you can remove the

account with the Remove-ADServiceAccount cmdlet. To avoid downtime,

make sure the managed service account is no longer in use before you remove

the account. Th e following command removes the WebServer managed service

account from the server:

Remove-ADServiceAccount WebServer

When you run the command, you are asked to confi rm deleting the account, as

shown in Figure 8.11. Enter Y, and the account will be deleted.

c08.indd 187c08.indd 187 4/21/2011 1:18:10 PM4/21/2011 1:18:10 PM

1 8 8 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

F I G U R E 8 .11 Removing a managed service account

Install and Use Managed Service Accounts
Aft er creating the managed service account, you then need to install the service

account on the server or system on which you want to use the service account. Aft er

you install the account, you then need to confi gure the service with the managed

service account.

Install the managed service account on the system via the Install-

ADServiceAccount cmdlet. For example, to install a managed service account

called WebServer on your system, run the following command:

Install-ADServiceAccount WebServer

Aft er you install the managed service account on the server, it gets marked in AD

to prevent it from being used on another server. A managed service account can be

used by only one server.

Aft er installing the account, confi gure the service to use the managed service

account:

 1. Start the Services console by selecting Start ‚ Administrative Tools ‚

Services.

 2. Right-click the service you want to confi gure, and select Properties.

 3. Click the Log On tab.

 4. Click the Th is Account radio button.

 5. You can type the name of the account in the format of domainname\

accountname, or you can click Browse to search for the account. Aft er you

have put the account name in the Services console, type a dollar sign ($) at

the end of the account name to ensure proper confi guration.

 6. Ensure that the password fi eld is blank. Your screen will look similar to

Figure 8.12.

c08.indd 188c08.indd 188 4/21/2011 1:18:10 PM4/21/2011 1:18:10 PM

 W O R K W I T H T H E A C T I V E D I R E C T O R Y R E C Y C L E B I N 1 8 9

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

F I G U R E 8 .12 Confi gured managed service account

 7. Click OK.

 8. Before you close the Services console, you can click Start or restart to verify

the service was properly confi gured.

You can also use managed service accounts with your Internet Information Services

application pools. Chapter 10 shows how to confi gure IIS application pools with a

managed service account.

If you are done with a managed service account on the system, you can uninstall

the account with the Uninstall-ADServiceAccount cmdlet. For example, this

cmdlet uninstalls the WebServer managed service account:

Uninstall-ADServiceAccount WebServer

Work with the Active Directory Recycle Bin

You may have at one time deleted a user by accident. In previous versions of

Windows, you had to implement AD disaster/recovery scenarios for recovering the

deleted object when an accidental deletion occurred. Th is method was complicated.

Although using the recycle bin can be part of your overall backup and recovery

strategy, you still need to perform your regular backups in your environment.

c08.indd 189c08.indd 189 4/21/2011 1:18:10 PM4/21/2011 1:18:10 PM

1 9 0 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

Understand How the Recycle Bin Works
Windows Server 2008 R2 includes the AD recycle bin. Th is is an addition to AD

and an optional tool you can enable on your Windows Server 2008 R2 domain

controllers. Th e recycle bin provides a tool for you to recover deleted users, groups,

OUs, and other AD objects. All attributes of the object are automatically restored,

including description, password, group membership, managed by, and formerly

problematic linked attributes.

Prior to Windows Server 2008 R2 and the AD recycle bin, when you deleted an

object, it became a tombstone object. By default, the tombstone object was still

on the server and available for recovery for 180 days. During that time, you could

restore the object with an authoritative restoration of your Active Directory. Aft er

180 days, a garbage collection process would permanently remove the object from

AD. Performing an authoritative restore of your AD was time-consuming and

could involve downtime for your server.

After you enable the AD recycle bin, the process changes for deleted objects.

When an object is deleted, it is placed in a container called Deleted Objects. By

default, the object is in the Deleted Objects container for 180 days. During that

time, you can use PowerShell to recover the object. After 180 days, the object

becomes a recycled object. The object is in a tombstone state for another 180

days until the garbage collection process removes the object from AD.

You can change the default time for the recycle bin and tombstone by

modifying their attribute values. To change the recycle bin, modify the

msDS-DeletedObjectLifetime attribute. You can use the Set-ADobject

cmdlet to change the object. Th e following command would set the recycle bin

lifetime to 60 days for the deploy.com domain:

Set-ADObject -Identity “CN=Directory Service,CN=Windows NT i
,CN=Services,CN=Configuration,DC=deploy,DC=com” i
–Partition “CN=Configuration,DC=deploy,DC=com” i
 –Replace:@{ “msDS-DeletedObjectLifetime” = 60}

To change the tombstone lifetime, modify the tombstoneLifetime attribute.

You can use the Set-ADobject cmdlet to change the object. Th e following

command would set the tombstone lifetime to 60 days for the deploy.com

domain:

Set-ADObject -Identity “CN=Directory Service,CN=Windows NT, i
CN=Services,CN=Configuration,DC=deploy,DC=com” –Partition i

c08.indd 190c08.indd 190 4/21/2011 1:18:10 PM4/21/2011 1:18:10 PM

 W O R K W I T H T H E A C T I V E D I R E C T O R Y R E C Y C L E B I N 1 9 1

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

“CN=Configuration,DC=deploy,DC=com” i
–Replace:@{ “tombstoneLifetime” = 60}

Th e new timeframe applies only to newly deleted objects. Any object deleted

before you enable the recycle bin follows normal deletion processes.

Enable the AD Recycle Bin
By default, the recycle bin is not enabled on your server. Th ere are several things you

need to know about the recycle bin before you enable it. Th e fi rst thing is that once

it has been enabled, you cannot disable it. Th e only way to work around the recycle

bin is to reduce the lifetime of the recycle bin by modifying the msDS-DeletedOb-

jectLifetime attribute.

Before you enable the AD Recycle Bin, make sure your forest functional level is set

to Windows Server 2008 R2. Th is is required to ensure that all domain controllers

preserve attributes necessary to complete a successful object recovery. To raise the

forest functional level to Windows Server 2008 R2, you need to have all of your

domain controllers running Windows Server 2008 R2 as their operating system.

OTHER DOMAIN FUNCTIONAL MODES

Before enabling the recycle bin, you may need to perform some additional tasks on
your domain. If your environment was in Windows Server 2008, Windows Server 2003,
or other mixed-mode domain environments, you need to prepare the schema with the
attributes necessary to support the recycle bin. You need to prepare the forest and
the domain after you upgraded your domain controllers to Windows Server 2008 R2.

To prepare the forest, run the following command on the server that is the schema
master operations master:

adprep /forestprep

Run the following command on the server that is the infrastructure operations master role:

adprep /domainprep /gpprep

If your domain has read-only domain controllers (RDOCs), you also need to run the
following command:

adprep /rodcprep

Raising the functional level really has no eff ect other than allowing optional fea-

tures, such as the recycle bin, to be enabled. You can raise the functional level with

confi dence and avoid any unnecessary side eff ects. Enabling the recycle bin can

c08.indd 191c08.indd 191 4/21/2011 1:18:11 PM4/21/2011 1:18:11 PM

1 9 2 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

lead to a growth of the Active Directory database fi le of around 5–10 percent when

installed on a new DC. Th e growth of the database depends on the size and fre-

quency of object deletions in your domain.

To see whether the recycle bin has already been enabled on your server, run the

 following command:

Get-ADOptionalFeature ‘Recycle Bin Feature’

Your results should look similar to Figure 8.13.

F I G U R E 8 .13 Recycle bin feature disabled

If you do not see anything in the EnabledScopes parameter, the recycle bin is

currently disabled. To work with the recycle bin, you need to enable the optional

feature with the AD modules for PowerShell. To enable the recycle bin, perform the

following procedure:

 1. Load the Active Directory module in PowerShell in administrator mode. You

can do this with Import-Module ActiveDirectory.

 2. Type the following command to enable the recycle bin. You will see a screen

similar to Figure 8.14.

Enable-ADOptionalFeature “Recycle Bin Feature” –Scopei
 ForestorConfigurationSet –Target ‘your domain name’

F I G U R E 8 .14 Enabling the recycle bin

c08.indd 192c08.indd 192 4/21/2011 1:18:11 PM4/21/2011 1:18:11 PM

 W O R K W I T H T H E A C T I V E D I R E C T O R Y R E C Y C L E B I N 1 9 3

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

 3. Type Y to enable the feature.

 4. Verify the recycle bin has been enabled by running the following command.

Your screen will look similar to Figure 8.15.

Get-ADOptionalFeature ‘Recycle Bin Feature’

F I G U R E 8 .15 Enabled recycle bin

Notice now the enabled scope has your domain referenced in the parameter.

Use the AD Recycle Bin
Aft er enabling the recycle bin, you can access the container by using PowerShell. If

you have deleted a user and need to bring that AD object back, you can recover the

object from the recycle bin with the AD module for PowerShell.

Before restoring an Active Directory object, you need to know the ObjectGUID for

the object you want to restore. To recover an object from the recycle bin, perform

the following procedure:

 1. With the AD module loaded, use the following command to view the objects

in the recycle bin:

Get-ADObject –SearchBase “CN=Deleted Objects, i
DC=your domain name,DC=Com” –ldapFilter “(objectClass=*)” i
 -includeDeletedObjects | format-list

 Another useful cmdlet you can leverage here is Out-GridView. Th is makes

it easier to see the objects, and with the built-in sorting capabilities, you can

fi nd the necessary ObjectGUID quickly. Figure 8.16 is an example of the

 previous command, using Out-GridView.

c08.indd 193c08.indd 193 4/21/2011 1:18:11 PM4/21/2011 1:18:11 PM

1 9 4 C H A P T E R 8 • M A N A G I N G A C T I V E D I R E C T O R Y W I T H P O W E R S H E L L

F I G U R E 8 .16 Recycle bin in GridView

 To fi lter the results even more, you can modify the objectClass parameter

from the previous command. To recover user objects, change the object-

Class parameter to user. To see just the user objects in your recycle bin,

change your command to look like the following:

Get-ADObject –SearchBase “CN=Deleted Objects, i
DC=your domain name,DC=Com” –ldapFilter “(objectClass=user)” i
 -includeDeletedObjects | format-list

 2. Write down or copy the ObjectGUID for the object you want to recover; this

is the identity of the object you have deleted. You can use PowerShell to help

copy the text. Th is procedure is similar to previous command prompt knowl-

edge you may have. To copy text from a command prompt, right-click and

then select Mark. Highlight the text to copy, and then press Enter. To paste,

right-click and then click Paste.

 3. Recover the object with the following command:

Restore-ADObject –Identity ObjectGUID from step 2

 4. To verify the object has been recovered, you can check your AD or run the

following command:

Get-ADObject -Filter {displayName -eq “users display name”} i
 -IncludeDeletedObjects

c08.indd 194c08.indd 194 4/21/2011 1:18:11 PM4/21/2011 1:18:11 PM

 W O R K W I T H T H E A C T I V E D I R E C T O R Y R E C Y C L E B I N 1 9 5

M
an

ag
in

g
Ac

tiv
e

Di
re

ct
or

y w
ith

Po

w
er

Sh
el

l

CHAPTER 8

CHAPTER 5

 Figure 8.17 shows an example of the command. Notice the deleted param-

eter is no longer marked as true.

 F I G U R E 8 .17 Recovered AD object

Recovering Multiple Users

Although knowing how to recover an individual user can be extremely useful, the

process can be time-consuming. What if you deleted an entire OU by accident,

with 100 users or more? Do you need to fi nd each ObjectGUID and recover each

user individually? Th e answer is no. You can use the power of the pipe symbol to tie

together the Get-ADObject and Restore-ADObject cmdlets.

You can run this with one PowerShell command. To make your job easier, you need

to know the name of the deleted OU. Th e following command is an example to

recover all the deleted users from the Marketing OU in the deploy.com domain:

Get-ADObject –SearchBase “CN=Deleted Objects, i
DC=your domain name,DC=Com” –Filter {lastKnownParent i
-eq “OU=marketing,DC=deploy,dc=com”} -includeDeletedObjects i
| Restore-ADObject

Depending how many users you want to recover, this command may take several

minutes to run in your AD environment.

EXERCISE 8: POPULATE AN ACTIVE DIRECTORY TEST ENVIRONMENT

Create a PowerShell procedure that creates 10 users. Create an OU called test, and put
the 10 users in the OU. Delete all 10 users after you create them. Using the recycle bin,
recover the users.

c08.indd 195c08.indd 195 4/21/2011 1:18:12 PM4/21/2011 1:18:12 PM

c08.indd 196c08.indd 196 4/21/2011 1:18:12 PM4/21/2011 1:18:12 PM

CHAPTER 9

Managing Desktops
with PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

ACCESS GROUP POLICY 198

Understand Group Policy. 199

Understand How Group Policy Works . 200

MANAGE GROUP POLICY 201

Create Group Policy Objects . 204

Use Starter GPOs. 206

Work with Settings. 208

Understand the Diff erence Between Policies and Preferences. 209

Work with Domain Password Policies . 210

Understand Order of Precedence . 212

Control Group Policy Order of Precedence. 213

Work with RSOP . 215

Back Up and Restore Group Policy Objects 216

MANAGE APPLOCKER 217

Understand AppLocker. 217

Understand AppLocker Policy . 218

Confi gure AppLocker . 219

c09.indd 197c09.indd 197 4/21/2011 1:19:17 PM4/21/2011 1:19:17 PM

CH
APTER 9

W

hen you have installed Active Directory into your infrastructure, one of your goals

should be centralization. In other words, you want to be able to control security,

management, and resource access from one central location. You also want to be

able to manage and control your desktops.

Active Directory has a tool, called Group Policy, for centrally managing your desk-

tops. With Group Policy you can manage virtually everything on the systems in your

infrastructure — from the color of the wallpaper to what applications can run to how

security works. Th is includes not only your client desktops but also your servers.

Th is chapter provides an overview of Group Policy and how it functions. You will

also see how you can use PowerShell to help manage the Group Policy environment,

working with not only the settings themselves but also the administrative mainte-

nance of Group Policy objects. Th e chapter closes with a look at a new feature for

Windows 7 and Windows Server 2008 R2 called AppLocker.

Access Group Policy

In managing the systems in your network, one goal to strive for is consistency across

all of the systems. To do this, Active Directory provides a tool called Group Policy.

Group Policy allows you to provide daily control and maintenance of your users’

desktops from a centralized location. Group Policy can help confi gure either the

computers or the users in your Active Directory. By targeting a computer with

Group Policy, you can maintain the desktop and ensure that every user who uses

the desktop has a default confi guration you mandate for your systems. When you

target users with Group Policy, the users’ settings based on the group policies travel

with the users within your AD environment.

Group Policy also allows you to defi ne your corporate desktop confi guration. Th ere

are thousands of settings you can confi gure, including settings for security, startup

scripts, mapped printers, application standardization, quality of service (QoS), and

Internet Explorer maintenance. Th is is not only for maintaining and confi guring

your infrastructure but also for protecting your infrastructure by managing these

settings in a centralized location and allowing you to prevent users from chang-

ing these settings. Being eff ective with Group Policy can save you time and energy

when working with the desktops and users in your environment.

c09.indd 198c09.indd 198 4/21/2011 1:19:20 PM4/21/2011 1:19:20 PM

 A C C E S S G R O U P P O L I C Y 1 9 9

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

Although Group Policy gives you centralized control over your users’ environment,

you also have to balance control with workability. In other words, do not be so

restrictive with Group Policy that it negatively aff ects your users’ needs to accom-

plish their jobs.

Understand Group Policy
Group Policy allows you to enforce your IT policies, implement any necessary secu-

rity settings, and implement a standard computing environment across your Active

Directory environment.

Having a standard environment provides a consistent base and helps alleviate sup-

port desk calls. Group Policy helps simplify your day-to-day administrative tasks

and leverage your existing knowledge of the AD environment. Before you begin

working with Group Policy, you need to be aware of some basic terms. You need to

understand the scope of policy management as well how Group Policy is processed

by the client systems. Table 9.1 describes some of the terms used with this tool.

TAB LE 9.1 Group Policy terminology

Term Description

Group Policy
Management Console
(GPMC)

The main interface where you can create Group Policy objects (GPOs). GPMC
creates the links defi ning what objects the GPO will target. There are three
main scopes managed in GPMC: sites, domains, and organizational units
(OUs).

Group Policy object
(GPO)

Objects that contain all of the settings you want to apply to your users or
computers. GPOs are linked to organizational units.

Group Policy link Links a GPO to the portion of your AD environment where you want the GPO
to be applied. This is referred to as the scope. There are three main levels
you apply GPOs to: site, domain, and OU.

Administrative
template fi le (ADMX
fi le)

Defi nes the location of the settings and confi guration on the local systems
and creates the interface you use to modify the settings in the Group Policy
Editor, which is the GUI for managing Group Policy.

Group Policy
preferences

Provide alternatives to working with companywide images to manage
settings previously not easily confi gured in Group Policy. The settings,
initially set by the administrator, refl ect a default state of the operating
system and are not enforced.

Resultant Set of Policy
(RSOP)

RSOP is the set of policy settings applied after all the Group Policy process-
ing is complete. This could be a combination of many levels of Group Policy.

c09.indd 199c09.indd 199 4/21/2011 1:19:21 PM4/21/2011 1:19:21 PM

2 0 0 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

Understand How Group Policy Works
Eff ective AD design provides the basis of management of Group Policy. Group Policy

can be applied to the site, domain, or organizational unit level. Table 9.2 shows the

impact and recommendations for using the diff erent levels with Group Policy.

TAB LE 9. 2 Scopes of Group Policy management

Scope Objects aff ected Recommendation

Site All of the domains and
the objects in the AD
site. This is the largest
scope of impact.

Sites are useful when you are setting network security
settings, such as proxy server or IPSec policies. You also
need to be an enterprise administrator to create GPOs at
this level.

Domain All of the objects in the
chosen domain.

The domain scope is used for your password policies
(length, complexity, expiration, and so on) and other
security settings where you want consistent application.

Organizational
unit

All of the objects in the
chosen OU, as well as
any nested OUs and
their objects.

This is the recommended scope for Group Policy applica-
tion. OUs provide the easiest-to-manage location for all
of your Group Policy needs.

As stated in Table 9.2, organizational units are the recommended scope for group

policies. One of the benefi ts of having an eff ective OU design is that the design can

assist you in applying group policies. Using OUs can help you control the applica-

tion of Group Policy by allowing you to target the unique needs for the users and

computers in each OU.

When Group Policy is enforced on your systems, it modifi es the registry of those

systems. Th e policies may persist in the registry or may be refreshed as the policy is

updated. If a user has the ability to make changes to settings you have modifi ed with

Group Policy, background processing refreshes them. Policies are updated in the

background at various intervals, which are also confi gurable via Group Policy set-

tings. If the system is a domain controller, the policy is refreshed every fi ve minutes

by default. On all other systems, the refresh interval is 90 minutes plus a random

interval of up to 30 minutes by default; so, a policy could take up to 2 hours before

the changes you made to the GPO are refl ected on the target system. However, if

the system can be rebooted, this shortens that wait period, because group policies

targeting computers are always updated when a system starts. Th e refresh interval is

the same length for group policies targeting users; user policy updates are also run

at login, so logging out and back in can refresh a user’s group policies that target

c09.indd 200c09.indd 200 4/21/2011 1:19:21 PM4/21/2011 1:19:21 PM

 M A N A G E G R O U P P O L I C Y 2 0 1

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

the user. You can also manually update the Group Policy settings by running

gpupdate /force in a PowerShell session or in a command prompt.

GROUP POLICY REFRESH INTERVALS

As previously noted, group policies are refreshed at certain intervals that are confi gured
within their own policies. You can set these refresh intervals from 0 minutes to 45 days.
If you set the interval to 0 minutes, the system tries to update every seven seconds.
However, this causes a spike in network traffi c and is typically not recommended.

Since this is set within a policy, this policy can be disabled. If the policy is disabled, the
group policies update at their normal interval — 5 minutes for domain controllers and
90 minutes for other systems. If you want to stop the refreshing of group policies, look
into the group policy called “Disable background refresh of Group Policy.”

Also note that the group policies for users, computers, and domain controllers can
be updated at diff erent intervals. There are three policies for managing these refresh
intervals: “Group Policy refresh interval for users,” “Group Policy refresh interval for
computers,” and “Group Policy refresh interval for domain controllers.”

Manage Group Policy

Group Policy, like many other tools, has a dedicated module for storing all the

cmdlets you can use to manage Group Policy. However, the Group Policy module is

not available on all the systems that have PowerShell installed.

You can get the Group Policy module only if your system is one of the following:

 ▶ Domain controller

 ▶ A member server of the domain member with the Group Policy Management

Console (GPMC) installed

 ▶ Windows 7 with the Remote Server Administration Tools (RSAT) installed

To import the Group Policy module, run the following command:

Import-Module grouppolicy

If you try to import the Group Policy module on a system not meeting one of the

previous criteria, you will see a screen similar to Figure 9.1.

c09.indd 201c09.indd 201 4/21/2011 1:19:21 PM4/21/2011 1:19:21 PM

2 0 2 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

F I G U R E 9.1 Group Policy module error

Aft er you have successfully imported the Group Policy module, you can see a list of

the cmdlets available by running this:

Get-Command -module grouppolicy

Your results will look similar to Figure 9.2.

F I G U R E 9. 2 Group Policy cmdlets

When you work with Group Policy, you should perform common administrative

tasks, such as backup and recovery, on a regular basis. Th ese tasks can be performed

through the GPMC, as well as in PowerShell. Th e most common administrative

task you will do with Group Policy is confi gure settings or preferences. Table 9.3

describes common cmdlets for working with Group Policy settings.

Th e Get-GPO cmdlet allows you to see the Group Policy objects (GPOs) in your

domain. To see all of the GPOs, run the following command. Th is command lists the

basic information (settings, status, name, and GUID) for the GPOs in your domain:

Get-GPO -All

c09.indd 202c09.indd 202 4/21/2011 1:19:21 PM4/21/2011 1:19:21 PM

 M A N A G E G R O U P P O L I C Y 2 0 3

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

TAB LE 9. 3 Policy and preferences cmdlets

Cmdlet Description

Get-GPO Lists all the GPOs in the domain; you can list a specifi c GPO, or you
can list all of the GPOs for the domain.

New-GPO Creates a new Group Policy object in your domain.

New-GPLink Creates a new Group Policy link for an existing GPO in your domain.

Set-GPRegistryValue Sets a policy setting. For your Group Policy object to be eff ective
with this cmdlet, you need to know the location in the registry of
the GPO you want to modify.

Set-GPPrefRegistryValue Sets a preference setting. For your Group Policy object to be eff ec-
tive with this cmdlet, you need to know the location in the registry
of the GPO you want to modify.

Your results will look similar to Figure 9.3.

F I G U R E 9. 3 Get-GPO -All

When you are working with GPOs in PowerShell, you can use either the display

name or the ID parameter. Th e ID is also used to help keep track of the GPOs when

they are replicated to other domain controllers. Th e Group Policy objects are stored

in %windir%\SYSVOL\domain\Policies. When you browse to the directory, you

will see each GPO ID has its own folder. Th e SYSVOL directory maintains a central

c09.indd 203c09.indd 203 4/21/2011 1:19:22 PM4/21/2011 1:19:22 PM

2 0 4 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

location for the GPO fi les. Figure 9.4 shows an example of browsing to the Policies

directory.

F I G U R E 9. 4 GPO listing in SYSVOL

If you want to see just the settings of a particular GPO, you can use one of the fol-

lowing commands:

 ▶ If you use the ID, use Get-GPO -ID <GUID of GPO>.

 ▶ If you use the display name, use Get-GPO -DisplayName <Display name

of GPO>. Or, since display name is positional, use Get-GPO - <Display

name of GPO> . If the display name has spaces, place quotation marks (“”)

around the name.

Create Group Policy Objects
Creating a new GPO you will do two things, fi rst you will create a GPO to store all

of your settings and then you will create a GPO link to associate it with a level of

management. See the “Understand Group Policy Order of Precedence” section later

in this chapter to understand the eff ect of placing a link.)

c09.indd 204c09.indd 204 4/21/2011 1:19:22 PM4/21/2011 1:19:22 PM

 M A N A G E G R O U P P O L I C Y 2 0 5

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

Creating a GPO in PowerShell involves combining the two cmdlets: New-GPO and

New-GPLink. For example, the following command would create a GPO called

RemoveRun linked to the marketing OU in the deploy.com domain:

New-GPO -Name RemoveRun | New-GPLink i
-target “ou=marketing,dc=deploy, dc=com”

Although you can create GPOs and not link them, you will normally create both

GPOs and Group Policy links at the same time so they take eff ect right away.

When you create and link a GPO, the default security is also set. Th e default secu-

rity is set to allow all the domain users group to apply GPO for the systems. Using

the Get-GPPermissions cmdlet, you can see the permissions for a given GPO.

Th is command lists permissions for a GPO called test:

Get-GPPermissions test -all

Your results will look similar to Figure 9.5.

F I G U R E 9. 5 Get-GPPermissions

You may also need to set security on the fi les so they can be used by users. Th ere are

fi ve levels of security you can set on a GPO using the Set-GPPermissions cmdlet.

Table 9.4 describes the fi ve permission levels.

Th is command sets the permissions to GPOEdit level on the GPO called test for the

group called Test Administrators:

Set-GPPermissions -Name Test -TargetName i
 “Test Administrators” -TargetType Group i
-PermissionLevel GpoEdit

c09.indd 205c09.indd 205 4/21/2011 1:19:22 PM4/21/2011 1:19:22 PM

2 0 6 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

TAB LE 9. 4 Group Policy permission levels

Permission level PowerShell value Description

Read GpoRead Basic permission allowing the read of the
GPO; mandatory to be able to apply the GPO

Apply GpoApply Allows the GPO to be applied to the
targeted user or computer and includes
the read permission

Edit GpoEdit Allows editing of the GPO settings

GPO Administrator GpoEditDeleteModifySecurity Allows editing of the GPO settings and all
other administrative tasks, from deleting link
to delegating administrative permissions

None None Removes permissions from the GPO

When you use the Set-GPPermissions cmdlet, by default it does not replace the

permissions on the GPO if they are currently higher than what you are trying to set.

If you want your permissions change to replace the existing level, you need to use

the -Replace switch. Th is command forces your security setting:

Set-GPPermissions -Name Test -TargetName i
 “Test Administrators” -TargetType Group i
-PermissionLevel GpoEdit -Replace

Use Starter GPOs
In Group Policy there are several template fi les with preconfi gured settings. Th ere

are eight system starter GPOs that were introduced with Windows Server 2008

R2 and Windows 7 with Remote Server Administration Tools. Th e GPOs are for

Enterprise Client (EC) and Specialized Security Limited Functionality (SSLF)

 systems. Th e standards and settings for EC and SSLF are defi ned in the security

guides for Windows Vista and Windows XP.

 ▶ Windows Vista EC Computer Starter GPO

 ▶ Windows Vista EC User Starter GPO

 ▶ Windows Vista SSLF Computer Starter GPO

 ▶ Windows Vista SSLF User Starter GPO

 ▶ Windows XP SP2 EC Computer Starter GPO

 ▶ Windows XP SP2 EC User Starter GPO

 ▶ Windows XP SP2 SSLF Computer Starter GPO

 ▶ Windows XP SP2 SSLF User Starter GPO

c09.indd 206c09.indd 206 4/21/2011 1:19:23 PM4/21/2011 1:19:23 PM

 M A N A G E G R O U P P O L I C Y 2 0 7

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

When you fi rst work on your Windows Server 2008 R2 server, the starter GPOs are

not installed. Th e Get-GPStarterGPO -all command is used to show the starter

GPOs on the system. If you run the cmdlet and see the error in Figure 9.6, you need

to load the starter GPOs.

F I G U R E 9. 6 No starter GPOs

To load the GPOs on the system, you can use the Group Policy Management

Console, or you can use New-GPStarterGPO. When you run the

New-StarterGPO cmdlet, you have to specify a name for the new starter GPO.

If you have not yet installed the system starter GPOs on the system when you

run the New-GPStarterGPO cmdlet, it creates the starter GPOs for you.

Figure 9.7 shows the results of Get-GPStarterGPO -all aft er you have the

starter GPOs installed.

F I G U R E 9.7 Starter GPOs

c09.indd 207c09.indd 207 4/21/2011 1:19:23 PM4/21/2011 1:19:23 PM

2 0 8 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

When you create a GPO, you can specify a starter GPO using the previous names

and the New-GPO cmdlet. For example, the following command will create a new

GPO called XpSP2sslfUser using the Windows XP SP2 SSLF User Starter GPO

linked to the XPDesktops organizational unit in deploy.com.

New-GPO -Name XpSP2sslfUser -StarterGPONamei
 “Windows XP SP2 SSLF User Starter GPO” i
| New-GPLink -target “ou=XPDesktops,dc=deploy, dc=com”

Work with Settings
You can also work with individual settings for GPOs in PowerShell. Th is can be

useful for modifying multiple GPOs at once. However, for one-off changes to GPOs,

although PowerShell can be used, you may prefer to use the Group Policy Editor.

Th e main reason why you would want to use the Group Policy Editor is you need to

know the registry locations as well the values needed in the registry, and the Group

Policy Editor provides a nice interface for seeing these locations. To use the follow-

ing PowerShell cmdlets, you may need to do some investigative work in the Group

Policy Editor prior to making changes in PowerShell.

To make changes in PowerShell to the settings in a GPO, you can use two cmdlets

— one for policies and the other for preferences:

Set-GPRegistryValue

Set-GPPrefRegistryValue

Both of these cmdlets can be used to modify the registry once you know the regis-

try locations and values. For example, this command enables the Run menu on the

Start menu of a Windows 7 client for the RunUsersRun GPO:

Set-GPRegistryValue -Name “RunUsersRun” -keyi
 “HKCU\Software\Microsoft\Windows\CurrentVersion\Policiesi
\Explorer” -ValueName ForceRunOnStartMenu i
-Type DWORD -value 1

Th e cmdlets work similarly; however, there is a diff erence between the two that

you need to understand. See “Understand the Diff erence Between Policies and

Preferences” later in this chapter.

You can also quickly look at the settings for any GPO with the Get-GPOReport

cmdlet, which creates an XML or HTML output fi le of all the settings in a particular

GPO. Th is cmdlet generates a report for the RunUsersRun GPO in HTML format:

Get-GPOReport -Name RunusersRun -ReportType i
HTML -path c:\users\matt\desktop\runusersrun.html

c09.indd 208c09.indd 208 4/21/2011 1:19:23 PM4/21/2011 1:19:23 PM

 M A N A G E G R O U P P O L I C Y 2 0 9

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

Figure 9.8 shows an example of the HTML report.

F I G U R E 9. 8 HTML report

Depending on your browser, you may be prompted to enable ActiveX controls

before viewing the report. Th ese allow for tab expansion to browse through the fi le

quickly. You can also use the -All parameter instead of a name of a specifi c GPO to

get a report for all the GPOs for your domain.

Understand the Difference Between Policies and
Preferences

Table 9.3 lists cmdlets to work with two diff erent groups of settings in Group Policy:

 ▶ Polices

 ▶ Preferences

As you work with Group Policy settings, you need to know the diff erence between

them. Both policies and preferences can modify both user and computer objects;

however, they serve two diff erent purposes. Th e main diff erence is enforcement;

policies are enforced, while preferences are not strictly enforced.

c09.indd 209c09.indd 209 4/21/2011 1:19:23 PM4/21/2011 1:19:23 PM

2 1 0 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

Policies

When you are working with policies, the settings and interface are based on

administrative templates. Policies make changes to the registry as directed by

the administrative template. Th ere are special sections in the registry hives that

are controlled by Group Policy. Th e Group Policy settings stored in these loca-

tions are known as true policies.

Specifi cally, Group Policy works with these two locations for computer settings:

 ▶ HKEY_LOCAL_MACHINE \SOFTWARE\policies (preferred location)

 ▶ HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Windows\

CurrentVersion\policies

For the user settings, Group Policy works with the following two locations:

 ▶ HKEY_CURRENT_USER \SOFTWARE\policies (preferred location)

 ▶ HKEY_ CURRENT_USER \SOFTWARE\Microsoft\Windows\

CurrentVersion\policies

Every time a system processes Group Policy and gets the RSOP, these registry hives

(all the keys and values) are erased and rewritten with the new RSOP. Th is occurs

only as long as a valid Group Policy is still being applied to the computer or user.

Preferences

Introduced in Windows Server 2008, preferences provide an alternative to using

scripts to perform common tasks. Th ese tasks were traditionally not done easily,

if at all, in Group Policy. Preferences allow you to modify local registry settings,

local users and groups, fi les and folders, printers, local services, mapped drives,

and many other local settings. Since preferences are not enforced on local systems,

users have the ability to make changes. Additionally, preferences are useful for

non-Group-Policy-aware applications and system settings. However, these changes

rarely occur because of the nature of preferences requiring some kind of adminis-

trative credentials.

You can also target individual preference items through Group Policy fi ltering. Th is

is very diff erent from true policies, in that you cannot target individual settings

inside Group Policy true policies.

Work with Domain Password Policies
Working with domain password policies allows you to control the settings for

things such as password history, length, and complexity requirements for your

c09.indd 210c09.indd 210 4/21/2011 1:19:24 PM4/21/2011 1:19:24 PM

 M A N A G E G R O U P P O L I C Y 2 1 1

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

domain. Th ese policy settings help keep your domain secure and your users’

 passwords more secure. You can work with these policies in PowerShell; however,

for these policies, you use cmdlets from the Active Directory module rather than

the Group Policy module.

Th ere are two main cmdlets you will use from the AD module to work directly with

password policies:

Get-ADDefaultDomainPasswordPolicy

Set-ADDefaultDomainPasswordPolicy

To see the current password policy for the domain, run the following command:

Get-ADDefaultDomainPasswordPolicy -Identity contoso.com

Your results will look similar to Figure 9.9.

F I G U R E 9. 9 Default password policy

When setting the password policy, you need to know what parameters to change.

Th e main parameters are as follows:

 ▶ ComplexityEnabled: Can be $true or $false and is used to enforce com-

plex passwords

 ▶ MaxPasswordAge: Defi nes how old a password can be before a user has to

change it

 ▶ MinPasswordAge: Defi nes how old a password has to be before a user can

change it

 ▶ MinPasswordLength: Defi nes the minimum length of characters for a password

 ▶ PasswordHistoryCount: Defi nes how many passwords AD will remember

until a user can reuse a former password

c09.indd 211c09.indd 211 4/21/2011 1:19:24 PM4/21/2011 1:19:24 PM

2 1 2 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

To set the password policy for the contoso.com domain to have passwords that

need to be changed every 50 days with a length of 15 characters, you would use the

following command:

Set-ADDefaultDomainPasswordPolicy -Identity contoso.comi
-MaxPasswordAge 50.00:00:00 -MinPasswordLength 15

Th ere also three other parameters you can use with the

Set-ADDefaultDomainPasswordPolicy cmdlet that control the account lock-

out policy. Th e account lockout policy determines how tolerant AD is with failed

logon attempts.

 ▶ LockoutDuration: Defi nes how long an account will be locked out for when

the LockoutThreshold is reached.

 ▶ LockoutObservationWindow: Defi nes how long before the

LockoutThreshold counter is reset.

 ▶ LockoutThreshold: Defi nes how many failed logon attempts AD will allow

until the account becomes locked out. By default this value is set to 0, which

means the accounts will never be locked out.

If your domain is contoso.com and you want three failed logon attempts before

the account is locked out, with an account locked out for 45 minutes, run the

 following command:

Set-ADDefaultDomainPasswordPolicy -Identity contoso.comi
 -LockoutDuration 00:45:00 -LockoutThreshold 3

Understand Order of Precedence
When you create group policies, you are not limited to just one GPO or one scope of

management. By default, the RSOP is the culmination of all the scopes and all the

GPOs. In other words, the RSOP could be the combination of multiple GPOs from

multiple scopes. You could have an RSOP containing settings from the site, domain,

and OU scopes. Typically, there is little confl ict when working with policies, and all

the settings apply as you go through the levels.

However, it is important you understand the default order of precedence. Th is

becomes important when you have two or more group policies having confl icting

settings. Th e rule of thumb when working with multiple GPOs is that the GPO

 closest to the object (user or computer) wins.

c09.indd 212c09.indd 212 4/21/2011 1:19:24 PM4/21/2011 1:19:24 PM

 M A N A G E G R O U P P O L I C Y 2 1 3

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

Th e default order of precedence is as follows:

 1. Local policies (while local policies are not GPOs, they live on the local

system and are applied fi rst; the GPOs are applied aft er this and override the

local settings, including multiple local policies on Windows Vista systems

or newer)

 2. Site

 3. Domain

 4. Parent OU

 5. Child OU (if you have nested OUs, these are called child OUs, and they can

have separate settings as well)

For example, if you have a setting to remove the Run command at the domain scope

and a setting to enable the Run command at the OU level, the setting at the OU

level will “win,” and the Run command will be enabled by default.

Control Group Policy Order of Precedence
With Group Policy, you also can have multiple GPOs per site, domain, or OU. When

this happens, you need to understand link order. Link order determines the order

in which policies are applied. Th e link with the highest order, with 1 being the high-

est order, is applied last and therefore has the highest precedence for a given site,

domain, or organizational unit.

You can view the link order for a particular OU using the Get- GPInheritance

cmdlet. For example, the following command displays the GPO links for the sales

OU in contoso.com:

Get-GPInheritance -target “ou=sales, dc=constoso, dc=com”

Your results will look similar to Figure 9.10.

F I G U R E 9.10 Displaying link order

c09.indd 213c09.indd 213 4/21/2011 1:19:24 PM4/21/2011 1:19:24 PM

2 1 4 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

As shown in Figure 9.10, RunUsersRun is listed fi rst in GpoLinks, and

LogoffinLogon is second. Th erefore, RunUsersRun will be applied last. To change

the link order, use the Set-GPLink cmdlet. Th is command sets the Group Policy link

order for LogoffinLogon to link order position 1 for the sales OU in contoso.com.

Set-GPLink -name LogoffinLogon -target i
“ou=sales, dc=constoso, dc=com” -order 1

Your results will look similar to Figure 9.11.

F I G U R E 9.11 Setting link order

Th ere are two other ways you can control how Group Policy is processed, and they

are block inheritance and enforce (known as “no override” in previous operating

systems).

Block inheritance prevents GPOs from higher scopes from being inherited, and thus

applied, by the child scopes further down the chain. Th e only exception is if the GPO

has been marked as enforced. Block inheritance is selected at either the domain or the

OU level. For example, if you did not want domain-wide policies applying to the child

OUs, you could block inheritance at the OU level, and the domain policies would

not be inherited. To block inheritance in PowerShell, use the Set-GPInheritance

cmdlet with the IsBlocked parameter, which can be Yes or No. Th e following com-

mand will block the inheritance for the marketing OU in deploy.com:

Set-GPinheritance -Target “ou=marketin,dc=deploy,dc=com”i
 -IsBlocked Yes

Enforce is applied to the Group Policy link and marks the GPO to be processed last

regardless of where the policy falls in the scope of management. In other words, an

enforced policy will always win unless another enforced policy is further down the

scope of management. To enforce a Group Policy link in PowerShell, use Set-GPLink

c09.indd 214c09.indd 214 4/21/2011 1:19:25 PM4/21/2011 1:19:25 PM

 M A N A G E G R O U P P O L I C Y 2 1 5

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

with the Enforced parameter, which can be Yes or No. Th e following command will

enforce the RunUserRun policy for the marketing OU in deploy.com:

Set-GPLink -Name RunUserRun -Target i
“dc=marketing, dc=deploy, dc=com” -Enforced Yes

Work with RSOP
When you start to apply policies at many levels in a GPO, you need to know how to

work with the Resultant Set of Policy (RSOP). RSOP shows the end result when you

have multiple GPOs applied at multiple scopes of management. Essentially, with

RSOP, you see which policies won and were applied.

To view the RSOP aft er a user or computer has applied the policy, use the Get-

GPResultantSetofPolicy cmdlet. You can get the RSOP by specifying either the

user or the computer you want to view. For example, this command will show you

the RSOP policy for the user matt on the computer matt-pc.

Get-GPResultantSetofPolicy -user contoso\matti

-computer matt-pc -reporttype html -path c:\matt.html

You can see an example of an RSOP report in Figure 9.12.

F I G U R E 9.12 RSOP report

c09.indd 215c09.indd 215 4/21/2011 1:19:25 PM4/21/2011 1:19:25 PM

2 1 6 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

When you remotely generate the RSOP report, you may receive an RCP server

unavailable error message. Th is error may occur depending on how your security

confi guration is internally confi gured for the domain. You can change one Group

Policy setting to fi x this error. To enable the ability to get RSOP from remote

systems, you need to enable the “Windows Firewall: Allow inbound remote admin-

istration exception” policy. Th is is located in the Computer Configuration \

Administrative Templates\Network \Network Connections\Windows

Firewall\[Domain or Standard] Profile\ section of your GPO settings.

You could also run this command:

Set-GPRegistryValue -Name “RunUsersRun” -key i

“HKLM\Software\Policies\Microsoft\WindowsFirewall\i
DomainProfile\RemoteAdminSettings” -ValueName Enabledi

 -Type DWORD -value 1

Back Up and Restore Group Policy Objects
You can back up and restore your GPOs in PowerShell. Th ere are a few PowerShell

cmdlets to help you with this daily maintenance. Table 9.5 shows the PowerShell cmd-

lets to work with the backup and restoration of GPOs.

TAB LE 9. 5 Backup and recovery cmdlets

Cmdlet Description Example

Backup-GPO Backs up the GPOs you specify for
your domain. You can back up a
specifi c GPO with the ID or name of
the GPO, or you can use the -All
parameter to back up all the GPOs in
the domain.

This example backs up all the group poli-
cies in the domain to \\server5\GPbackups:
Backup-GPO –all –path \\server5\

GPbackups

Restore-GPO Restores the GPOs you specify for
your domain. You can restore a
specifi c GPO with the ID or name of
the GPO, or you can use the -All
parameter to restore all the GPOs in
the backup directory.

This example restores all the group policies
in the domain from \\server5\GPbackups:
Restore-GPO –all –path \\server5\

GPbackups

Import-GPO Imports the settings from a GPO
backup into a target GPO. This allows
you to just import the settings for a
particular GPO into a new GPO.

This example imports the settings from
the RunUsersRun GPO located at \\
server5\GPbackups to the NewRunUsers
GPO: Import-GPO -BackupGpoName
RunusersRun -TargetName

NewRunUsers -path \\server5\

GPbackups

c09.indd 216c09.indd 216 4/21/2011 1:19:25 PM4/21/2011 1:19:25 PM

 M A N A G E A P P L O C K E R 2 1 7

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

Manage AppLocker

Th e ability to control what applications a user can run on their desktop has been

in Group Policy via soft ware restriction policies. Th ese have been around for years,

and they can be a bit challenging. With Windows 7 (Ultimate or Enterprise

editions) and Windows Server 2008 R2, a new ability called AppLocker provides an

easier way to control applications on a user’s desktop. Before you apply AppLocker

to your corporate environment, make sure you know the application needs of your

users. Th is lets you design an eff ective policy that enables your users to maintain

their eff ectiveness in their jobs.

AppLocker is important for tackling some of the security risks you face in desktop

administration. Your users may be able to install nonstandard (to your business)

applications. Even standard users can install some types of soft ware on their desk-

tops. Th ese can cause security vulnerabilities or incompatibilities with your stan-

dard desktop applications.

AppLocker makes it easier for you to eliminate unwanted, unknown applications

in your network and infrastructure. More importantly, AppLocker allows you as

an administrator to enforce application standardization within your organization.

AppLocker policies are easy to create and manage through Group Policy. More

importantly, you can manage this in PowerShell.

Th is section gives a brief introduction to AppLocker and how to use PowerShell

to manage AppLocker policies. If you want to know more about AppLocker, refer to

the AppLocker Step-by-Step Guide located here:

http://technet.microsoft.com/en-us/library/dd723686(WS.10).aspx

Understand AppLocker
AppLocker is available only for Windows 7 and Windows Server 2008 R2 systems.

To control applications on previous versions of Windows, use the soft ware restric-

tion policies. AppLocker helps reduce administrative overhead that was entailed

in soft ware restriction policies. AppLocker helps administrators control how users

access and use fi les, including .exe fi les, scripts, Windows Installer fi les (.msi and

.msp fi les), and DLLs.

AppLocker allows you to create rules for a specifi c product name, such as “Allow

Adobe Acrobat version greater than 7.0 to run.” With this type of rule, there is no

c09.indd 217c09.indd 217 4/21/2011 1:19:25 PM4/21/2011 1:19:25 PM

2 1 8 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

need to change the soft ware restriction hash rule. With the hash rules, you would

have to change the policy with every application update or verify the path of the

executable right or the access right of someone to write to that path. Th is type of

rule can be general or specifi c, depending on the criteria that you select: publisher,

product name, fi lename, or version. Th e information that the rule is based on is

gathered from the digital signature of the application.

AppLocker can help organizations that want to limit the number and type of fi les

that are allowed to run by preventing unlicensed or malicious soft ware from run-

ning. It can reduce the total cost of ownership by ensuring that workstations are

homogeneous across the enterprise and that users are running only the soft ware

and applications that are approved by the enterprise. It can also reduce the possibil-

ity of information leaks from unauthorized soft ware.

Working with AppLocker is a two-step process:

 1. Enable the Application Identity Service on the Windows 7 or Windows Server

2008 R2 systems you want to enforce your AppLocker policies on.

 2. Confi gure the AppLocker policy.

Th e Application Identity Service helps determine and verify the identity of applica-

tions. By default, this service is stopped and is set to manual start. Th e identity of

the applications is crucial to how AppLocker works on the clients.

You can use the Start-Service cmdlet from an administrative PowerShell

session. Th is command will start the service:

Start-Service AppIDSvc

You will also want to set the service to automatic. Th is command will set the service

to automatic startup:

Set-Service AppIDSvc -StartupType Automatic

Aft er you have started the service, any AppLocker policy you confi gure will now be

processed by the Application Identity Service.

Understand AppLocker Policy
An AppLocker policy works with collections. In creating a policy, the fi rst deci-

sion to make is whether you are going to allow or deny applications to run. Aft er

you determine that, determine what type of executables or collections you want

c09.indd 218c09.indd 218 4/21/2011 1:19:26 PM4/21/2011 1:19:26 PM

 M A N A G E A P P L O C K E R 2 1 9

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

the rule to apply to. With AppLocker, you can allow or deny rules for these types of

collections:

 ▶ Executable fi les: .exe and .com

 ▶ Windows Installer fi les: .msi and .msp

 ▶ Scripts: .ps1, .bat, .cmd, .vbs, and .js

 ▶ DLLs: .dll and .ocx

Aft er you determine the rules, then determine the conditions in which AppLocker

will be applied. Th e conditions help determine the scope of the policy. Th ere are

three main conditions:

 ▶ Publisher

 ▶ Path

 ▶ File hash

Th e publisher condition leverages digital signatures from applications’ manufactur-

ers. Th is rule condition works only if the applications have a digital signature from

the publisher. You can work with the entire scope of the publisher, allowing all

applications published by a specifi c publisher to run. You can also specify all appli-

cations with a minimum fi le version number or greater to run. You can even specify

the product name or the actual fi lename (word.exe) to run.

Th e path condition allows you to specify the fi le path location for the programs

you want to manage. Th is also includes the subdirectories by default. You can also

choose to explicitly exclude the directories. For example, you can specify all applica-

tions in the %windir%\system32 directory except the Games directory.

Th e fi le hash condition allows you to use the unique fi le hash assigned to each fi le.

Th is condition uses the hash to work with the application. If the application is

updated, you also need to update the rule.

Configure AppLocker
Working with AppLocker in PowerShell simply requires loading the AppLocker

module with the following command:

Import-Module AppLocker

Aft er you have loaded the AppLocker module, you can view the cmdlets by running

the following command:

Get-Command -module AppLocker

c09.indd 219c09.indd 219 4/21/2011 1:19:26 PM4/21/2011 1:19:26 PM

2 2 0 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

Your results will look similar to Figure 9.13.

F I G U R E 9.13 Get AppLocker commands

Th e PowerShell cmdlets provide a lot of control of AppLocker, even though there

are only a few of them. Table 9.6 lists the AppLocker cmdlets.

TAB LE 9. 6 AppLocker cmdlets

Cmdlet Description

Get-AppLockerFileInformation Shows you the fi le hash, publisher information, and
version for a specifi ed directory. This cmdlet, when piped into
other cmdlets, is key to working quickly in PowerShell with
AppLocker policies.

Get-AppLockerPolicy Shows the AppLocker policy. Depending on the context, this
may be the local, domain, or eff ective AppLocker policy for
the system you ran it on.

New-AppLockerPolicy Creates an AppLocker policy. You will typically use this cmdlet
to create an XML fi le that you import with the
Set-AppLockerPolicy cmdlet.

Set-AppLockerPolicy Applies the AppLocker policy to a specifi ed GPO.

Test-AppLockerPolicy Tests an AppLocker policy to verify it has the desired eff ects.
This allows you to tune your policy before you place it into
production.

One of the keys to using AppLocker is knowing the publisher information, fi le hash,

or even directory the applications are located in. Although knowing the fi le direc-

tory is straightforward, the publisher and fi le hash may not be as evident. With

the Get-AppLockerFileInformation cmdlet, you can quickly parse through a

directory. Th is command gets the information for all the .exe fi les in the Microsoft

Games directory:

Get-AppLockerFileInformation -directoryi
 “c:\Program Files\Microsoft Games” -recurse i
-filetype exe

c09.indd 220c09.indd 220 4/21/2011 1:19:26 PM4/21/2011 1:19:26 PM

 M A N A G E A P P L O C K E R 2 2 1

M
an

ag
in

g
De

sk
to

ps

w
ith

 P
ow

er
Sh

el
l

CHAPTER 9

CHAPTER 5

Although the results in a PowerShell session may not be easy to read, using the

Out-Gridview cmdlet makes the results easier to work with. So if you pipe the

previous command to Out-Gridview, your results will look similar to Figure 9.14.

As you can see, there is a lot of information that you can leverage in AppLocker

with the Get-AppLockerFileInformation cmdlet. Th is is the information you

need to use in the New-AppLockerPolicy cmdlet, and you can combine the cmd-

lets to create an AppLocker policy. Th is command makes a publisher rule for the

.exe fi les in the c:\program files\microsoft games directory. It will also

create an XML fi le of the policy. One good switch is the optimize switch to auto-

matically reduce the number of AppLocker policies by grouping similar AppLocker

policies together if possible.

F I G U R E 9.14 Get-AppLockerFileInformation

Get-AppLockerFileInformation -directory i
“c:\program files\microsoft games” -recurse i
-Filetype exe | New-AppLockerPolicy -RuleType Publisheri
 -user everyone -RuleNamePrefix Games i
-Optimize -XML > c:\applocker\games.xml

One last function you can work with on AppLocker policies is to test to make sure

your policy has the desired outcome. With the Test-AppLockerPolicy cmdlet,

c09.indd 221c09.indd 221 4/21/2011 1:19:26 PM4/21/2011 1:19:26 PM

2 2 2 C H A P T E R 9 • M A N A G I N G D E S K T O P S W I T H P O W E R S H E L L

you can take a look at the results of a AppLocker policy. Th is command checks to see

the eff ects of the AppLocker policy from the games.xml fi le for solitaire.exe:

Test-AppLockerPolicy c:\applocker\games.xmli
-path “c:\program files\microsoft games\i
solitaire\solitaire.exe” -user everyone

Your results will look similar to Figure 9.15.

F I G U R E 9.15 Test-AppLockerPolicy

EXERCISE 9: TURN OFF THE DISPLAY CONTROL PANEL IN GROUP POLICY
WITH POWERSHELL

Use PowerShell to create a new Group Policy object linked to an OU that turns off the
display control panel for the users in the Executive OU.

c09.indd 222c09.indd 222 4/21/2011 1:19:26 PM4/21/2011 1:19:26 PM

CHAPTER 10

Managing IIS Web Server
with PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

USE POWERSHELL AND IIS 224

Work with Confi guration Files . 225

Back Up and Recover IIS Confi guration . 229

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL
DIRECTORIES WITH POWERSHELL 231

Manage Sites with PowerShell . 231

Work with Web Application Pools . 236

Work with Virtual Directories . 240

c10.indd 223c10.indd 223 4/21/2011 1:20:38 PM4/21/2011 1:20:38 PM

CH
APTER 10

M

anaging your web servers and web farms is an ideal scenario for PowerShell. With

PowerShell you can confi gure IIS as well as manage applications, sites, application

pools, and many other aspects of IIS.

Managing the core server confi guration of IIS is one key aspect of working with

IIS. Another scenario is working with the websites themselves, including the sites,

directories, and web applications on the server. From working with your server

confi guration to deploying your applications, PowerShell can help you accomplish

this in a scalable, automated, and consistent fashion.

Th is chapter highlights working with PowerShell and the many aspects of IIS.

Use PowerShell and IIS

You need to load the WebAdministration module from an administrative

PowerShell session or with an account that has administrative rights to manage

Internet Information Services (IIS). If you do not have administrative access and try to

import the WebAdministration module, you will see an error similar to Figure 10.1.

F I G U R E 10 .1 Importing WebAdministration: access denied

From an administrative PowerShell session, run the following command:

Import-Module WebAdministration

To see the list of commands for the WebAdministration module, run the

 following command:

Get-Command -module WebAdministration

Your results will look similar to Figure 10.2.

c10.indd 224c10.indd 224 4/21/2011 1:20:43 PM4/21/2011 1:20:43 PM

 U S E P O W E R S H E L L A N D I I S 2 2 5

M
an

ag
in

g
IIS

 W
eb

Se

rv
er

 w
ith

 P
ow

er
Sh

el
l

CHAPTER 10

F I G U R E 10 . 2 IIS cmdlets

Work with Configuration Files
In IIS 7.0 and IIS 7.5, confi guration is stored in XML fi les. (In prior versions, the

confi gurations were stored in a location called the metabase.) Th ese XML fi les can

be stored in a centralized location and are much easier to work with compared to

the metabase. Th is enables a shared confi guration for all your web servers.

Th ree main fi les make up the IIS manager confi guration. Th e fi les are by default

located in your Windows directory in the System32\Inetsrv\Config folder:

administration.config Th is confi guration fi le contains all the management

settings for your IIS server and your management console.

applicationhost.config Th is stores all the settings for the websites located

on your web server.

redirection.config Th is fi le allows you to have centralized settings. You can

use the redirection.config fi le to redirect the IIS server’s confi guration to a

central server location.

c10.indd 225c10.indd 225 4/21/2011 1:20:43 PM4/21/2011 1:20:43 PM

2 2 6 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

Th ese fi les set the main default settings for your web server. To learn more about

the shared confi guration fi les, see http://learn.iis.net/page.aspx/264/

shared-configuration/.

You can use PowerShell to work with these confi guration fi les as well. Several

cmdlets allow you to work with the confi guration fi les, as described in Table 10.1.

TAB LE 10 .1 IIS confi guration cmdlets

Cmdlet Description

Get-WebConfigFile Displays the location of the web confi guration fi le on your server
(applicationhost.config). You need to know this location to
be able to view or modify settings.

Add-WebConfiguration Allows you to add a section to the web confi guration fi le.

Get-WebConfiguration Allows you to locate the various values of the web confi guration to
take a look at the sections of the web confi guration.

Clear-WebConfiguration Clears a section out of the confi guration fi le. With the confi guration
fi le being shared centrally and inherited, this lets you clear certain
sections for specifi c websites.

Get-

WebConfigurationProperty

Displays the property value from a specifi c section in the confi gura-
tion fi le. This lets you see how the website is confi gured.

Set-

WebConfigurationProperty

Lets you confi gure a specifi c property in a web confi guration
section.

Remove-

WebconfigurationProperty

Clears a property of a specifi c section in the web confi guration fi les.

Backup-WebConfiguration Backs up the web confi guration fi les on your IIS server. This backs
up all three web confi guration fi les.

You can use the Get-WebConfigFile cmdlet to look at the confi guration fi les

of an IIS server. With this cmdlet, you can also look at the confi guration of a

specifi c website. Th is command gets the confi guration fi le for a website called

MyCompanySite:

Get-WebConfigFile ‘IIS:\sites\MyCompanySite

Your results will look similar to Figure 10.3.

You can view what sections are in the web confi guration fi le by running the

 following command:

Get-WebConfiguration system.webserver

c10.indd 226c10.indd 226 4/21/2011 1:20:44 PM4/21/2011 1:20:44 PM

 U S E P O W E R S H E L L A N D I I S 2 2 7

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

F I G U R E 10 . 3 Get-WebConfigFile

Although the previous command shows you the available sections for the central con-

fi guration, you can also target specifi c sites. For example, if you want to see all the sec-

tions of the confi guration fi le for the site MyCompanySite, use the following command:

Get-WebConfiguration system.webserver/* i
iis:\sites\MyCompanySite |Format-Table i
-property sectionpath

Your results will look similar to Figure 10.4.

F I G U R E 10 . 4 Web confi guration sections

Once you know what sections are available, you can change or view the

specifi c properties with the Get-WebConfigurationProperty or

Set-WebConfigurationProperty cmdlet.

c10.indd 227c10.indd 227 4/21/2011 1:20:44 PM4/21/2011 1:20:44 PM

2 2 8 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

For example, to see the ASP section of the confi guration fi le for the website

MyCompanySite, run the following command:

Get-WebConfiguration system.webserver/asp/* i
iis:/sites/mycompanysite

Your results will look similar to Figure 10.5.

F I G U R E 10 . 5 ASP confi guration

To see just a specifi c property, you need to know its name. Th en you can reference

it to either view it or change it. For example, if you wanted to look at the

scriptFileCacheSize property for the site MyCompanySite, you would run the

following command:

Get-WebConfigurationProperty system.webserver/asp/*i
 iis:/sites/mycompanysite -name scriptfilecachesize

Your results will look similar to Figure 10.6.

F I G U R E 10 . 6 Script fi le cache size

c10.indd 228c10.indd 228 4/21/2011 1:20:44 PM4/21/2011 1:20:44 PM

 U S E P O W E R S H E L L A N D I I S 2 2 9

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

You can set the value of the scriptFileCacheSize property with the following

command:

Set-WebConfigurationproperty system.webserver/asp/cachei
 iis:/sites/mycompanysite -name i
scriptfilecachesize -value 600

When you are working with the confi guration fi les, you may run into sections that

are locked, as shown in Figure 10.7.

F I G U R E 10 .7 Locked confi guration section

Th is can occur when you are working with a section that is inherited from a central

confi guration fi le. You can work around this by using the PSPath and Location

parameters:

Set-WebConfigurationproperty system.webserver/asp/cachei
 -name scriptfilecachesize -value 600 i
-pspath iis:\ -location mycompanysite

Working with the confi guration fi les can take some time and investigative work at

fi rst, but PowerShell can ease the process of managing these confi guration fi les for

your entire web farm.

Back Up and Recover IIS Configuration
Making sure your IIS confi guration is properly backed up is an essential part

of administering a web server. Fortunately, with IIS you get some help from the

Application Host Helper Service (AppHostSvc). By default, AppHostSvc checks

for changes in the ApplicationHost.config fi le every two minutes. If the ser-

vice detects a change, it will create a backup automatically. Th is feature, introduced

with IIS 7.0, is called IIS Confi guration History.

Th e backup is stored in the %system drive%\inetpub\history directory. Th e

fi le has a default name beginning with CFGHISTORY_ and a 10-digit serial number.

To view the current backups of your IIS confi guration, run the following command:

Get-WebConfigurationBackup

c10.indd 229c10.indd 229 4/21/2011 1:20:45 PM4/21/2011 1:20:45 PM

2 3 0 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

Your results will look similar to Figure 10.8.

F I G U R E 10 . 8 Current web backups

You can also create your own manual backups using PowerShell. To create a backup

called WebConfigBackup, run the following command:

Backup-WebConfiguration -name WebConfigBackup

Your results will look similar to Figure 10.9.

F I G U R E 10 . 9 Backed-up web confi guration

APPSVCHOST BACKUPS

The AppSvcHost backups are a bit diff erent from the Backup-WebConfiguration
backups. The directory for Backup-WebConfiguration is diff erent for the AppSvcHost
backup folder. AppSvcHost stores its backup information in %windir%\System32\
inetsrv\backup. In addition to being stored in diff erent locations, they back up diff er-
ent fi les. For example, AppSvcHost backs up ftp_schema and DAV_schema, whereas
Backup-WebConfiguration does not. However, Backup-WebConfiguration
backs up more than just the application confi g fi les. It also includes the metabase fi les
and redirection.config fi le. So, AppSvcHost does a little more than just IIS, and
Backup-WebConfiguration is purely IIS. These diff erences explain issues you may see
when trying to restore from the AppSvcHost backups.

c10.indd 230c10.indd 230 4/21/2011 1:20:45 PM4/21/2011 1:20:45 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 3 1

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

If you need to recover your web confi guration fi les, you can do so with the Restore-

WebConfiguration cmdlet. You need to know the name of the backup you want to

restore, which you can obtain with the Get-WebConfigurationBackup cmdlet.

To restore a web confi guration backup called WebConfigBackup, run the following

command:

Restore-WebConfiguration -name WebConfigBackup

One special note for the Restore-WebConfiguration cmdlet: it cannot be used

to restore the backups created by AppSvcHost; those backups need to be restored

manually. You can do so by copying the confi guration fi les from the backup direc-

tory to the confi guration directory.

Deploy Websites, Application Pools, and Virtual
Directories with PowerShell

As you begin to manage websites in IIS, you need to understand how three compo-

nents work together for a website. Th e three components are as follows:

 ▶ Websites

 ▶ Web applications

 ▶ Virtual directories

Websites are the location where you store your web documents. Th ese contain at least

one web application. Websites are the core building block to the web infrastructure.

Web applications are the second building block, and the nature of web applications

can vary dramatically — from web applications accomplishing collaboration to

expense reporting, marketing products, and services to customer relationship man-

agement. Th e possibilities for applications in IIS are endless, and they fi ll a variety of

business needs. Virtual directories map to a physical directory on a local or remote

server. Web applications use virtual directories to reference data for the application.

Virtual directories, although helpful, are not mandatory for a website unless your

infrastructure requires it. All three components can work together for a website. In

this section, you will see how to work with all three components in PowerShell.

Manage Sites with PowerShell
You can create new websites or manage existing ones via PowerShell. With the

New-Website cmdlet, you can create a new website with any settings.

c10.indd 231c10.indd 231 4/21/2011 1:20:45 PM4/21/2011 1:20:45 PM

2 3 2 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

To create a new website called Company Portal on port 8080 with the website stored

on the f:\cp drive location, you would run the following PowerShell command:

new-website “Company Portal” -port 8080 -physicalpath “f:\cp”

Your results will look similar to Figure 10.10.

F I G U R E 10 .10 New website created

When you create a new website with a specifi c path, make sure the directory exists;

otherwise, you will see an error similar to Figure 10.11.

F I G U R E 10 .11 New website error

Depending on your current server and how the website was created, it may not be

started by default. You can start the website aft er you have created the site with

the Start-Website cmdlet. For example, this command would start the website

called Company Portal:

Start-Website ‘Company Portal’

You could also pipe the New-Website cmdlet into the Start-Website cmdlet to

create a new website and start it:

new-website “Company Portal” -port 8080 i
-physicalpath “F:\CP” |Start-Website

If you do not want have the website started or you want to stop the website, you can

use the Stop-Website cmdlet.

Working with Bindings

When setting up websites, you need to understand how to work with web bindings.

Bindings for your websites control how your server responds to requests for websites

from users. Bindings also allow you to provide security to your websites with SSL.

c10.indd 232c10.indd 232 4/21/2011 1:20:45 PM4/21/2011 1:20:45 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 3 3

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

Although site visitors will use something like www.companyportal.com, behind

the scenes that is being sent to a server binding. A server binding consists of three

components: IP address, port, and host header. Host headers are useful because they

allow multiple websites with the same port to share the same IP address. Th e bind-

ing for a particular site has to be unique for your website or the website will not start.

Figure 10.12 shows an example of a website failing to start because of a port confl ict.

F I G U R E 10 .12 Port confl ict error

When you work with websites in PowerShell, you can control the bindings to avoid

confl icts and add security. Th e default website binding in IIS is set to *:80:*. Th is

sends all web requests to the default site.

To see what bindings are currently used on your server, run the following

command:

Get-WebBinding

Your results will look similar to Figure 10.13.

F I G U R E 10 .13 IIS server web bindings

When you want to add a binding to a website, use the New-WebBinding cmdlet.

Th e following command adds the HTTPS protocol for all IP addresses over port 443

for the MyCompanySite website:

New-WebBinding -Name “MyCompanySite” -IP “*” -Port 443 -Protocol https

c10.indd 233c10.indd 233 4/21/2011 1:20:46 PM4/21/2011 1:20:46 PM

2 3 4 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

In the previous example, the HTTPS protocol was assigned for the Company Portal

site. Although this enables the port for secure communication, it does not secure

the communication for the website. To fi nish confi guring the SSL binding for the

site, you will need to work with the IIS provider.

Working with the IIS Provider

In addition to using the WebAdministration cmdlets, you can use the IIS

provider to access the web server confi guration. To access the IIS confi guration, you

can use the built-in function IIS:. Th is takes you directly to the IIS confi guration

and website locations.

When using the IIS provider, you can navigate to three locations. You can navigate

to application pools, sites, and SSL bindings. Figure 10.14 shows the IIS provider.

F I G U R E 10 .14 IIS confi guration

You can view any of those areas by using directory navigation commands such as

cd and dir to view the information. With the simple dir command, you can see

the following:

 ▶ Website name

 ▶ Website path for the physical fi les for the website

 ▶ Status, if the website is started or stopped

 ▶ Bindings for ports and protocols of the diff erent sites on the server

Figure 10.15 shows an example of the sites on an IIS server.

F I G U R E 10 .15 Sites on an IIS server

c10.indd 234c10.indd 234 4/21/2011 1:20:46 PM4/21/2011 1:20:46 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 3 5

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

You can also get the same results in with the Get-Website cmdlet. When you run

the Get-Website cmdlet, it displays the same information you saw when you

ran the dir command with the IIS provider.

You can also navigate to the SslBindings directory to work with security certifi -

cates on your server and add them with the HTTPS bindings on your server. If you

have certifi cates already installed on your server, you can leverage them, or you can

use a self-signed certifi cate for testing purposes.

To be able to add a certifi cate to a binding, you need to know the certifi cate hash.

You can browse the certifi cate store to fi nd the hash. Figure 10.16 shows listings for

the self-signed certifi cate on the local machine.

F I G U R E 10 .16 Local machine certifi cate

Aft er you know the hash, you can then use the following command to install the

certifi cate and bind it for SSL to work properly. 0.0.0.0 is used to reference all IP

addresses on the server. You can use specifi c addresses as well if you need to have

SSL assigned to a particular IP.

Get-Item cert:\LocalMachine\my\i
161F4EB304196D3C84FDA3CDC0A6C1DB3C6861E8 |i
 New-Item 0.0.0.0!443

Your results will look similar to Figure 10.17.

F I G U R E 10 .17 Certifi cate bound to all IP addresses on port 443

c10.indd 235c10.indd 235 4/21/2011 1:20:46 PM4/21/2011 1:20:46 PM

2 3 6 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

You can run the dir command to be able to see all the existing certifi cate bindings

on the server while you are in the SslBindings location of the IIS provider.

Work with Web Application Pools
Your websites may contain some type of dynamic content generated from an appli-

cation on your web server. One of the areas you need to understand is how IIS

works with web applications. Specifi cally, you need to understand the nature of

application pools and how they work with websites.

Application pools allow you to separate running applications on your web server.

If one application crashes on your server, it should not aff ect any other applications

currently running on your web server. Working with application pools also lets you

confi gure how applications are run on your server. However, working with applica-

tion pools means you need to understand how the applications need to run on your

server. You may need to speak to a website developer to make sure you provide the

proper support for the application.

When you create an application pool, you need to know a couple of aspects about the

application you are going to support. First, if the application is using managed code,

it means the application requires the .NET Framework to properly run. Second, you

need to know how the application pipe will be managed, either integrated or classic.

Classic is provided for backward compatibility for application support and means IIS

does not use the IIS integrated pipeline for managed code. Again, it is worth your time

for a quick conversation to help provide adequate support to your web developers.

Application pools let you work with the access not only to your web server but

potentially to databases and other servers on your network. An application pool

has an identity associated with it. Th is identity is used to connect to a database

with Security Support Provider Interface (SSPI) and is also used to access the fi le

system. Application pools allow you to control and work with the identity for these

applications.

To look at application pools currently on your server, use the IIS provider. When

you access the IIS provider, you can access the AppPools directory. To see the

application pools on your server, use dir. Th is command will show you the name of

each application pool, its state, and the applications associated with the application

pool. Figure 10.18 shows an example.

c10.indd 236c10.indd 236 4/21/2011 1:20:46 PM4/21/2011 1:20:46 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 3 7

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

F I G U R E 10 .18 Web application pools

Working with application pools and web applications is a two-step process.

Normally you create the application pool, and then you associate the web application

to the pool. You also associate the web application with the website or websites that

leverage the application. Both of these can be created in PowerShell. Th e following

command creates and starts a new application pool called MyPool:

New-WebAppPool MyPool

Aft er you have created the application pool, you can then assign a web application

to the pool. When you fi rst create a web application, you are just creating a direc-

tory that will hold all the fi les necessary to run the application. To create a new web

application called MyApp for the MyCompanySite website stored on the

f:\MyApp directory associated with the MyPool application pool, run the follow-

ing command:

New-WebApplication -Name MyApp -Site ‘MyCompanySite’i
 -PhysicalPath f:\MyApp -ApplicationPool MyPool

Your results will look similar to Figure 10.19.

F I G U R E 10 .19 New web application

c10.indd 237c10.indd 237 4/21/2011 1:20:47 PM4/21/2011 1:20:47 PM

2 3 8 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

You can use the Get-WebConfiguration cmdlet to view the settings of an applica-

tion pool. Th e following command will show you the settings for the MyPool pool:

get-webconfiguration “/system.applicationHost/i
applicationPools/add[@name=’MyPool’]//.” -PSPath iis:\i
 | foreach { $_.attributes | select name,value }

Your results will look similar to Figure 10.20.

F I G U R E 10 . 2 0 Application pool properties

When you work with application pools, you may need to change the identity the

application pool uses to access resources on the server as well as remote servers. You

can confi gure the properties including the identity for the application pool by using

the Set-ItemProperty cmdlet. Th e following command would change

c10.indd 238c10.indd 238 4/21/2011 1:20:47 PM4/21/2011 1:20:47 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 3 9

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

the identity for the MyPool application pool to PoolUser with the password of

pass@word1:

Set-ItemProperty iis:\apppools\MyPool -name processModeli
 -value @{userName=”PoolUser”;password=”pass@word1”;identitytype=3}

Th e last parameter identitytype specifi es the type of account you are using; the

values can be as follows:

 ▶ 0: Local system

 ▶ 1: Local service

 ▶ 2: Network service

 ▶ 3: Specifi c user

In Chapter 8, you saw how to use managed service accounts. Managed service

accounts can be assigned to application pools. Th is off ers the same benefi ts of

security for service accounts with automatic password management. Aft er you

have installed the managed service account on your server, you then can assign

the account to your application pool. When you assign the account, make sure you

end the account name with a $, leave the password blank, and set identitytype

to 3. Th e following command assigns the managed service account Contoso\

WebServer to the web application pool MyPool:

Set-ItemProperty iis:\apppools\MyPool -name processModeli
 -value @{userName=”Contoso\WebServer$”;identitytype=3}

Aft er you assign the managed service account, use the Stop-WebAppPool and

Start-WebAppPool cmdlets to stop and start the application pool you modifi ed.

Although managed service accounts are useful, you may recall from Chapter 8

that managed service accounts are server-specifi c and are really good for a

scenario where you have your websites on only one server. Th is may not work

for your environment if you scale your web servers to multiple servers. In that

case, you would need to use a common identity across the servers to make it easy

to debug and develop, and you would normally create a separate dedicated user

account for this.

One last task you may need to perform from time to time is recycling your applica-

tion pool. Th is helps free up resources on your web server in case an application

encounters an error. Recycling your application pools periodically lets you maintain

c10.indd 239c10.indd 239 4/21/2011 1:20:47 PM4/21/2011 1:20:47 PM

2 4 0 C H A P T E R 1 0 • M A N A G I N G I I S W E B S E R V E R W I T H P O W E R S H E L L

your applications and keep them running smoothly. When you recycle an applica-

tion pool, you essentially clear up system resources and system state information.

Th is could negatively impact users of your website, so you need to try to recycle the

applications in off -hours. To recycle the web application pool called MyPool, you

would run the following command:

Restart-WebAppPool MyPool

Work with Virtual Directories
Virtual directories can be an invaluable component to your websites. Th ey allow

you to keep fi les stored on separate directory locations so you do not have to move

or use multiple copies of the same fi les. Th is lets you store fi les such as pictures on

separate servers and distribute the workload.

Virtual directories can also add a small measure of security through obscurity.

Because it is really not security, you will want to make sure you do have other

 security layers in place. Using virtual directory names that diff er from the actual

physical directories obscures the original directory location. Virtual directory

names are displayed in the URL path of the web request.

To see the virtual directories for a particular site, you can run use the

Get-WebVirtualDirectory cmdlet. Th e following command displays the virtual

directories for the MyCompanySite website:

Get-WebVirtualDirectory -site MyCompanySite

Your results will look similar to Figure 10.21.

F I G U R E 10 . 21 Virtual directories

c10.indd 240c10.indd 240 4/21/2011 1:20:48 PM4/21/2011 1:20:48 PM

 D E P L O Y W E B S I T E S , A P P L I C A T I O N P O O L S , A N D V I R T U A L D I R E C T O R I E S W I T H P O W E R S H E L L 2 4 1

M
an

ag
in

g
IIS

 W
eb

 Se
rv

er
 w

ith
 P

ow
er

Sh
el

l

CHAPTER 10

Th e following command creates a virtual directory called MyVirDir for the

MyCompanySite website directory that is physically at f:\myvirdir. You can also

use UNC path names for the PhysicalPath parameter as well.

New-WebVirtualDirectory -site “MyCompanySite” i
-name MyVirDir -PhysicalPath f:\myvirdir

If you wanted to map to a virtual directory to a share called rvdir on server5, the

command would be the following:

New-WebVirtualDirectory -site “MyCompanySite” i
-name MySharedVirDir -PhysicalPath \\server5\rvdir

EXERCISE 10: CREATE A WEBSITE WITH POWERSHELL

Write a PowerShell script that creates a website called MySite. The site will have an
application called App1 with the application pool called Pool1 assigned to MySite.
Pool1 will have the user named WebApp. You will also need to create a virtual direc-
tory for pictures stored on a separate server. After you have created the site, create a
backup of the confi guration fi les.

c10.indd 241c10.indd 241 4/21/2011 1:20:48 PM4/21/2011 1:20:48 PM

c10.indd 242c10.indd 242 4/21/2011 1:20:49 PM4/21/2011 1:20:49 PM

CHAPTER 11

PowerShell and
Deployment Services

IN THIS CHAPTER, YOU WILL LEARN TO:

WORK WITH WINDOWS DEPLOYMENT SERVICES 244

Understand WDS . 245

Install WDS . 246

Work with WDS in PowerShell . 247

Use WDSUTIL . 248

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 253

Understand the MDT. 253

Deploy with Windows Imaging Format. 254

Install MDT . 256

Work with MDT in PowerShell . 257

Put It All Together. 265

c11.indd 243c11.indd 243 4/21/2011 1:22:44 PM4/21/2011 1:22:44 PM

CH
APTER 11

I

f you have ever been asked to deploy an operating system, such as Windows 7, for

your business, you have probably asked a few questions. You may have had some

concerns about how to accomplish this task in the easiest fashion. You most likely

looked at a centralized imaging solution (such as Symantec Ghost) to accomplish

the deployment with the least amount of work to be done on the client.

Being able to deploy desktops in a centralized fashion can save you time and off er

your users a consistent experience. Windows Server 2008 R2 servers, combined

with some free tools, have the ability to deploy operating systems and applica-

tions in a standard image. Th is chapter focuses on two tools to create a centralized

deployment environment using PowerShell: Windows Deployment Services (WDS)

and Microsoft Deployment Toolkit (MDT).

WDS is a built-in role on your Windows Server 2008 R2 servers. WDS responds to

Preboot Execution Environment (PXE) boots or booting across the network. With

a PXE boot, WDS can forward the request to the centralized image store to deploy

the desktop to the requesting system.

MDT is a free downloadable tool that provides similar capabilities. Th e toolkit

allows you to automate the deployment of computers in your organization. It also

lets you deploy custom drivers and set up a workfl ow. MDT directly supports

PowerShell. Th e bottom line is that you can deploy faster and more easily with

MDT 2010.

Although the tools by themselves are very useful, when combined, they become

invaluable to working with your environment. Adding the ability to create

PowerShell scripts to maintain the environment makes this a nice addition to your

IT tool belt.

Work with Windows Deployment Services

One of the core roles you can install on your Windows Server 2008 R2 servers

is Windows Deployment Services. Although this service does not have specifi c

PowerShell cmdlets, you can work with WDS inside PowerShell either with a script

or via the Windows Deployment Server COM.

To leverage WDS with PowerShell scripts, it is essential you understand this core

service and how it works. Th is will help you understand the working relationship

between WDS and MDT and how it provides a robust deployment environment.

c11.indd 244c11.indd 244 4/21/2011 1:22:49 PM4/21/2011 1:22:49 PM

 W O R K W I T H W I N D O W S D E P L O Y M E N T S E R V I C E S 2 4 5

CHAPTER 11
Po

w
er

Sh
el

l a
nd

De

pl
oy

m
en

t S
er

vi
ce

s

Understand WDS
WDS is built on the former deployment tool set known as Remote Installation Services

(RIS). WDS now replaces RIS and provides deployment services for your Windows

Server 2008 R2 environment. WDS allows you to create a network installation and

avoid going to each client system with a DVD or CD to deploy an operating system.

WDS leverages PXE boot systems as well as provides a location to store your instal-

lation fi les, with its centralized image repository. Th e repository contains boot

images, install images, and fi les that you need specifi cally for network booting. In

addition to the PXE environment over TFTP, there is a multicast component to help

WDS scale.

WDS has two components that make up the server role:

 ▶ Deployment server

 ▶ Transport server

Th e deployment server is the main component that provides all the necessary services

for a network boot environment. Th e PXE listener gives WDS and MDT the ability to

handle network requests. Th e deployment server also provides a WDS image server,

which supports booting and standard corporate images. When a PXE request is

picked up by the WDS server, it gives the user the choice of images to use to continue

the boot process. Th is role also supports both unicasting and multicasting, although

using the transport server role for multicasting is recommended.

UNICAST VS. MULTICAST

The main diff erence between unicast and multicast is the number of connections and
streams of data the server sends to the clients. In unicast, the server sends a single
dedicated stream of data to each client requesting the data. The server has a one-to-one
relationship with each of the requesting clients.

With multicasting, the server sends a single stream of data to a multicast address. The
clients subscribe or connect to this address, and they all share and receive the stream
of data. The server has a one-to-many relationship with the clients being provisioned
by the server.

In general, if you are a large organization with bandwidth restrictions and large amount
of deployments, you should consider multicasting. This can really help reduce network
load since the deployment image is sent out just once. If you just have a few clients
and no bandwidth restrictions, unicast is the way to go.

c11.indd 245c11.indd 245 4/21/2011 1:22:49 PM4/21/2011 1:22:49 PM

2 4 6 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

Th e main role the transport server provides for WDS is multicasting support.

Although the transport server does not need other servers in the environment, it is

also used only in multicast scenarios. Basically this allows you to have a stand-alone

server to support multicasting protocols without all the other WDS components.

WDS gets involved in the process when you have a PXE client. Aft er the client gets an

IP address from DHCP, the PXE listener on the server picks up the request and pres-

ents the client a boot menu. You can see an example of the boot menu in Figure 11.1.

F I G U R E 11.1 WDS boot menu

Aft er the client makes their selection, WDS provides the necessary boot fi les from

the image store, and the deployment to the client begins.

Install WDS
To install WDS, you have to be a member of the local administrators group and the

domain users group for the domain. You also need to make sure your server and

network meet the following prerequisites:

 ▶ Active Directory domain member or domain controller

 ▶ DHCP server to respond to PXE requests

 ▶ DNS

 ▶ NTFS volume for WDS image store

You can install WDS on your Windows Server 2008 R2 server using the

Add-WindowsFeature cmdlet inside the ServerManager module. As you learned

c11.indd 246c11.indd 246 4/21/2011 1:22:49 PM4/21/2011 1:22:49 PM

 W O R K W I T H W I N D O W S D E P L O Y M E N T S E R V I C E S 2 4 7

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

in Chapter 7, you can import the ServerManager module with the following

command:

Import-Module ServerManager

Aft er you have loaded the ServerManager module, install WDS by running the

following command:

Add-WindowsFeature WDS

Your results will look similar to Figure 11.2.

F I G U R E 11. 2 Installing WDS

Th e WDS server installs the two service roles, the deployment server and the

transport server, by default. You have two options when you install WDS: you can

either install both services or install just the transport server. You can install the

individual components.

If you just want to install one server role over the other, you can do so with the fol-

lowing commands.

To install just the deployment server, run this command:

Add-WindowsFeature WDS-Deployment

To install just the transport server, run this command:

Add-WindowsFeature WDS-Transport

Work with WDS in PowerShell
Th ere are two ways to work directly with WDS in a PowerShell session. You can

use the command prompt tool WDSUTIL, or you can load the WDS COM object.

In this section, you will see how to work with both. However, the focus will be

on WDSUTIL, because this tool provides an easier way to incorporate MDT into

PowerShell scripts.

c11.indd 247c11.indd 247 4/21/2011 1:22:49 PM4/21/2011 1:22:49 PM

2 4 8 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

Working with COM objects in PowerShell requires some exposure to the program-

matic side of PowerShell. Having a developer background here will assist you in

working with this area of PowerShell.

Th e COM object you need for WDS is WdsMgmt.WdsManager. You can access

the COM object easily by setting a variable for the COM object with the following

command:

$WDScom = New-Object -ComObject WdsMgmt.WdsManager

Use the Get-Member cmdlet to see what methods work with the COM Object.

Using the previous variable, run this command:

$WDScom | Get-Member *

Your results will look similar to Figure 11.3.

F I G U R E 11. 3 Get-Member for WDS

Aft er you have loaded the WDS object, you can then access the diff erent methods to

work with the COM object. For more information on working with COM objects,

see http://msdn.microsoft.com/en-us/library/ms680573(v=vs.85)

.aspx. Also, Ravikanth Chaganti discusses this on his blog at www.ravichaganti

.com/blog/?p=1561.

Use WDSUTIL
Although working with the COM object provides access in PowerShell, leveraging

WDSUTIL is a little more intuitive. Th is is installed when you install the WDS role

c11.indd 248c11.indd 248 4/21/2011 1:22:50 PM4/21/2011 1:22:50 PM

 W O R K W I T H W I N D O W S D E P L O Y M E N T S E R V I C E S 2 4 9

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

on your Windows Server 2008 R2 server. More importantly, this tool is designed to

specifi cally work with WDS on your server.

To see a list some of the switches available for WDSUTIL, run the following

command:

WDSUTIL /?

Running /? shows some of the switches for WDSUTIL. It mainly shows the prefi xes

for all the commands. One of the switches you may have noticed is the /AllHelp

switch. When you run the following command, you will see some interesting

switches:

WDSUTIL /AllHelp

Your results will look similar to Figure 11.4.

F I G U R E 11. 4 Using WDSUTIL

WDS does not have native support for PowerShell, but the commands do share

some of the syntax of PowerShell. Table 11.1 describes some of the common

switches used with WDSUTIL.

c11.indd 249c11.indd 249 4/21/2011 1:22:50 PM4/21/2011 1:22:50 PM

2 5 0 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

TAB LE 11.1 WDSUTIL common switches

Switch Description Example

Initialize-

Server

Used to perform the initial confi gura-
tion of the server to enable the image
share and the remote installation
directories.

This example initializes WDS on Server1
and confi gures the remote installa-
tion directory to be located at d:\
RemoteInstall: /Server:Server1 /
RemInst:”d:\RemoteInstall”.

Add-Image Allows you to add images to your WDS
share for either boot systems or oper-
ating systems.

This example adds an install named
corpimage.wim from the D:\MDT
directory to the current server: WDSUTIL
/ImageFile:”D:\MDT\corpimage

.wim” /ImageType:Install.

Update-

Serverfiles

Ensures the validity of your remote
installation directory. Any time you
make a change to your server’s share or
remote installation directory, you need
to make sure the directory confi gura-
tion is still valid.

This example updates the current server:
WDSUTIL /Update-ServerFiles.You
can also designate a specifi c server with
the /server switch.

Set-Server Used to confi gure the WDS server. This example turns on the architecture
autodiscovery method for the WDS;
this specifi cally helps when X64 clients
do not properly report their architec-
ture: WDSUTIL /Set-Server /
ArchitectureDiscovery:Yes.

Get-Server Used in a variety of ways to learn the
current confi guration of the WDS
server.

This example shows the current
images confi gured on the current WDS
server: WDSUTIL /Get-Server /
Show:Images.

One of the switches mentioned in Table 11.1 was the Get-Server switch. With this

switch you can view the confi guration of the server. You can view just the informa-

tion of the images or of the server or the information for both. For example, if you

want to see the entire confi guration for the current server, you run this command:

WDSUTIL /Get-Server /Show:All

Your results will look similar to Figure 11.5.

A key switch when you are combining WDS and MDT is the Add-Image switch.

With this switch, you can copy images into the remote installation directory of

c11.indd 250c11.indd 250 4/21/2011 1:22:50 PM4/21/2011 1:22:50 PM

 W O R K W I T H W I N D O W S D E P L O Y M E N T S E R V I C E S 2 5 1

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

your WDS server. In MDT, when you create your images and shares, fi les you create

include boot images to direct you to the proper confi guration on your MDT server.

Th ese boot images need to be copied into the WDS server so the PXE requests can

be handled correctly. More importantly, once the boot image is loaded, then the

server will access the MDT confi gurations.

F I G U R E 11. 5 WDS confi guration

Th is command copies a boot image fi le named MDTboot.wim in the d:\mdt direc-

tory to your WDS server:

WDSUTIL /Add-Image /ImageFile:”D:\MDT\Boot.wim”i
 /ImageType:Boot

While you are working with WDSUTIL, the tool’s switches may not seem relevant

for PowerShell. In the “Put It All Together” section of this chapter, you will see

how it all comes together by combining WDSUTIL and your PowerShell scripts for

deployment.

c11.indd 251c11.indd 251 4/21/2011 1:22:50 PM4/21/2011 1:22:50 PM

2 5 2 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

A WORD ABOUT /VERBOSE AND /PROGRESS

Often when you are working with the WDS you are going to be working with a lot of
output and large fi les. Image fi les can be several gigabytes in size, and sometimes the
tasks you have WDSUTIL perform can take some time. The two switches /verbose and
/progress can give you feedback on the commands you run with WDSUTIL.

These two switches can be used with any of the other WDSUTIL commands. These
commands also have to be used directly after WDSUTIL. For example, this command
shows the progress of copying the litetouchPE_x86.wim boot image fi le from
d:\deploymentshare to the server:

WDSUTIL /verbose /progress /Add-Image i
/ImageFile:”D:\Deploymentshare\Boot\LiteTouchPE_x86.wim”i
 /ImageType:Boot

Your results will look like this.

Without these two switches, you would not see an indicator that the command was
running until the command completed. Using these two switches with your longer
operations involving larger fi les is a good idea so that you can see the progress of
your operations.

c11.indd 252c11.indd 252 4/21/2011 1:22:51 PM4/21/2011 1:22:51 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 5 3

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

Work with the Microsoft Deployment Toolkit

Th e MDT allows you to create a custom image fi le for deployment in your infra-

structure. Th e custom image not only contains a preconfi gured operating system

but can also contain custom drivers, update packages, language packages, and

applications. Th is lets you fully deploy a desktop and all the components necessary

for your users’ desktops.

MDT 2010 supports the deployment of Windows 7 and Windows Server 2008 R2,

in addition to the deployment of Windows Vista, Windows Server 2008, Windows

Server 2003, and Windows XP. Th is section outlines how the MDT works, how to

install it, and how to confi gure it to perform custom image deployments for your

infrastructure.

Understand the MDT
Th ree terms for deploying soft ware with Microsoft technologies indicate how much

work you have to do on the client:

 ▶ High-touch

 ▶ Light-touch

 ▶ Zero-touch

High-touch installations usually involve doing a lot of work with the client system

you are deploying to. Th ere is no automation during the installation, and you have

to perform the steps by hand. Th e most basic form of high-touch installations is

placing a DVD or CD in the drive and stepping through the installation wizard.

Light-touch installations normally automate the majority of the installation

process. You need to do some minimal work on the client systems you want to

deploy to. Th is may involve starting a PXE boot on the client system (by pressing

a function key like F12). You then need to make a selection from the MDT menu

c11.indd 253c11.indd 253 4/21/2011 1:22:51 PM4/21/2011 1:22:51 PM

2 5 4 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

to choose your deployment option. Figure 11.6 shows an example of the Windows

Deployment Wizard for MDT.

F I G U R E 11. 6 Windows Deployment Wizard for MDT

With light-touch installations, you have to do a little work to pull the installation

down to the client system. Aft er you make your selection, you can then step away

from the system.

Zero-touch, as the name implies, allows you as the administrator to push the instal-

lation to the system, with no direct interaction on the client system. Th e MDT can

be used to perform zero-touch installations; however, to accomplish zero-touch, you

also need to have System Center Confi guration Manager (SCCM) installed in your

environment. Th is section focuses on light-touch installations involved in

custom image deployment. To learn more about zero-touch, take a look at this arti-

cle on zero-touch, high-volume deployment: http://technet.microsoft.com/

en-us/library/dd919178(WS.10).aspx.

Deploy with Windows Imaging Format
Although MDT may seem similar to other imaging tools such as Symantec Ghost,

it is quite diff erent. Other imaging tools lay down a copy of a standard desktop to

c11.indd 254c11.indd 254 4/21/2011 1:22:51 PM4/21/2011 1:22:51 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 5 5

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

new systems, but MDT actually installs a new copy of the operating system and any

other components you have in place for your standard desktops.

Th e key technology to the centralized deployment of Microsoft platforms is a fi le

format for images called the Windows Imaging Format (WIM). Th e WIM format

is also heavily utilized by the MDT tool. MDT creates both the boot WIM fi les for

booting to the preinstallation environment and the custom desktop images.

WIM is a fi le-based image format that was introduced with the Systems Management

Server (SMS) 2003 OSD feature pack. Th e WIM format lets you store multiple OS

images in one fi le. With Windows 7, all the DVDs shipped are WIM fi les that have

been prepared with Sysprep for a fresh installation of Windows 7. Windows 7 has two

WIM fi les, boot.wim and install.wim, as shown in Figure 11.7.

F I G U R E 11.7 Windows 7 WIM fi les

What happens when you install Windows 7 from a DVD in a high-touch fashion is

that you are building the answer fi le as you go through the installation wizard. With

MDT, when deploying the custom WIM fi le, you are also deploying an answer fi le

(Unattend.XML), which creates the custom installation.

You could have one image for your marketing desktops and another image for your

accounting desktops all stored in a single WIM fi le. Th is makes it easy to store

and work with your images. Th e WIM fi le also supports compression and single

instancing to help keep the size of the fi le at a minimum. Although the fi les can be

2GB–3GB in size on average, the WIM fi le is an effi cient fi le format.

When a WIM fi le is applied to a system, it actually performs an installation, and

this allows the WIM fi le to be hardware-agnostic. Th e WIM fi le relies on the driver

detection of the installation process to make sure the system gets installed properly.

Th is also has the added benefi t that you can deploy WIM fi les to systems whose

hard drives are of a diff erent size than the WIM fi le being used. As long as the hard

c11.indd 255c11.indd 255 4/21/2011 1:22:52 PM4/21/2011 1:22:52 PM

2 5 6 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

drive is big enough to hold all the data in the WIM fi le, you will be able to use this

added fl exibility.

Th is is important because regardless of the hardware platform you are installing to,

you can use one WIM fi le for them all. Th is is diff erent from traditional imaging

systems in that they normally would require a separate image for each hardware

platform. Th e one exception is 32-bit vs. 64-bit architecture. Although there are

some ways to combine the two architectures in the same fi le, it is not recommended.

Lastly, the WIM fi les can be serviced and maintained offl ine. Th is allows you to

modify individual fi les in the WIM fi le or add additional fi les, such as DLL fi les, to

make sure the WIM fi le is up-to-date with corporate standards. With other tradi-

tional imaging formats, if anything changed, even if it was a 1KB change, you would

have to re-create the image.

Install MDT
To install MDT, you fi rst need to download the tool, which is about 10MB. Th ere are

32-bit and 64-bit versions of the tool. You can download MDT at www.microsoft

.com/downloads/en/details.aspx?familyid=3bd8561f-77ac-4400-

a0c1-fe871c461a89&displaylang=en&tm.

Aft er you download MDT, step through the installation wizard. Th is installs the

deployment workbench (GUI) and the PowerShell snap-in.

In addition to MDT, you also need to download and install the Windows

Automated Installation Kit (WAIK). Th e WAIK is approximately 1.7GB in

size, so you may need to plan for the download depending on the bandwidth

of your network. You can download the WAIK at www.microsoft.com/

downloads/en/details.aspx?FamilyID=696dd665-9f76-4177-a811-

39c26d3b3b34&displaylang=en.

Th e fi le is in ISO format, so you have to burn a DVD, or you can use a free

utility called Virtual CloneDrive (located at www.slysoft.com/en/virtual-

clonedrive.html) with the WAIK fi les. When you load the DVD and insert it

into your drive, you will see a screen similar to Figure 11.8.

To install the WAIK, make sure you select Windows AIK setup in the menu on the

left . Th ere are two main tools that are installed as part of the WAIK that you need to

know about. First, the Windows System Image Manager is the component that

provides the answer fi les for the customized image.

c11.indd 256c11.indd 256 4/21/2011 1:22:52 PM4/21/2011 1:22:52 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 5 7

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

Th e second tool is ImageX, which is the utility that allows you to work directly with

WIM fi les. ImageX allows you to capture, mount, and apply WIM fi les. MDT uses

it under the covers to work with the WIM fi les, and it is the main component apply-

ing your custom images. ImageX primarily runs in the Windows PE, which is the

primary installation environment used as a bootable tool that provides OS features

for installation, troubleshooting, and recovery. Windows PE is a minimal operating

system built from Windows components to help complete the installation. If you

have ever installed Windows 7 from a boot DVD, you were working in Windows PE.

F I G U R E 11. 8 WAIK DVD autorun screen

Work with MDT in PowerShell
Creating a light-touch installation point involves several steps. Th e MDT helps organize

those steps to create your custom image. Th e overall steps for MDT are the following:

 1. Create a deployment share.

 2. Add your OS, applications, packages, and drivers to the share.

 3. Create a task sequence to perform the installation.

 4. Build the image.

 5. Deploy the image.

c11.indd 257c11.indd 257 4/21/2011 1:22:52 PM4/21/2011 1:22:52 PM

2 5 8 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

Th is section shows how to use PowerShell to accomplish these steps.

To work with the MDT in PowerShell, you need to load the MDT snap-ins. For more

information on the diff erences between snap-ins and modules, see Appendix E.

You can view which snap-ins are currently loaded in your PowerShell session by

running the following command:

Get-PSSnapin

Your results will look similar to Figure 11.9.

F I G U R E 11. 9 Current PowerShell snap-ins

To load the MDT snap-in, run the following command:

Add-PSSnapin Microsoft.BDD.PSSnapin

To see a list of the MDT cmdlets, run the following command:

Get-Command -module Microsoft.BDD.PSSnapin

Your results will look similar to Figure 11.10.

One way to learn the cmdlets for MDT is to use the tool. Almost all the tasks you

perform in MDT give you a chance to see the script that was created to perform

c11.indd 258c11.indd 258 4/21/2011 1:22:52 PM4/21/2011 1:22:52 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 5 9

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

the task. As you can see in Figure 11.11, which is the screen you get aft er adding an

application to the deployment share, there is a button labeled View Script. Clicking

this button shows you the underlying PowerShell script that performed the

command. Th is provides another way to learn the PowerShell commands for MDT.

F I G U R E 11.10 MDT cmdlets

F I G U R E 11.11 MDT view script

c11.indd 259c11.indd 259 4/21/2011 1:22:53 PM4/21/2011 1:22:53 PM

2 6 0 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

Along with cmdlets in the snap-in, you can work directly with the PowerShell pro-

vider for MDT. Th e provider for the MDT is named MDTProvider.

Working with a Deployment Share

Th e fi rst task you need to do is create a deployment share. A deployment share is not

created by default. Aft er you have created the deployment share, you are then able to

create all the necessary components to set up your centralized deployment.

The following command creates a deployment share with a name of MDT01and

a description of My MDT Share; it’s located at d:\MyMDTShare with the share

UNC name \\2008R2DEP\MyMDTShare$. The $ makes the share hidden.

Add-MDTPersistentDrive allows you to make the drive available and persis-

tent so it can be reused.

New-PSDrive -Name “MDT01” -PSProvider “MDTProvider” i
-Root “d:\MyMDTShare” -Description “My MDT Share”i
 -NetworkPath “\\2008R2DEP\MyMDTShare$” -Verbose i
| add-MDTPersistentDrive -Verbose

Your results will look similar to Figure 11.12.

F I G U R E 11.12 Creating a deployment share

As you work with MDT and create multiple deployment shares, you can access

them in PowerShell. Before you can access them in a PowerShell session, you need

to run the following command:

Restore-MDTPersistentDrive

c11.indd 260c11.indd 260 4/21/2011 1:22:53 PM4/21/2011 1:22:53 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 6 1

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

To see what persistent drives are available to you in your PowerShell session, run the

following command:

Get-MDTPersistentDrive

Your results will look similar to Figure 11.13.

F I G U R E 11.13 Deployment shares

With the MDT provider you can access the shares directly in PowerShell by typing

in the name of the deployment share. For example, if you wanted to see the contents

of the deployment share called MDT01, you would type in the following:

cd MDT01:

You can then work with the provider like any other providers. You will be able to use

dir, cd, and many other commands to access the deployment share. Figure 11.14

shows the dir command run in the MDT01 share.

F I G U R E 11.14 Deployment share contents

Aft er you create the deployment share, you then can add all the components from

operating systems, applications, drivers, and packages. Th e PowerShell commands

c11.indd 261c11.indd 261 4/21/2011 1:22:54 PM4/21/2011 1:22:54 PM

2 6 2 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

to add these diff erent components to your deployment share all follow a similar

pattern. Before you begin managing your deployment share directory, you need to

make sure your MDT persistent drives have been loaded. You can load the drives

directly via the provider with a command similar to this one:

New-PSDrive -Name “MDT01” -PSProvider “MDTProvider” i
-Root “d:\MyMDTShare”

Alternatively, you can load all the drives with the Restore-MDTPersistentDrive

mentioned earlier.

Th e following command copies the Windows 7 operating system from D:\source\

Windows7 to the operating systems folder on the MDT01 share:

Import-MDTOperatingSystem -path “MDT01:\Operating Systems”i
 -SourcePath “D:\Source\Windows7” -DestinationFolder “Windows 7” i
-Verbose

Your results will look similar to Figure 11.15.

F I G U R E 11.15 Importing the OS

In Figure 11.15, you see a list of four diff erent operating systems — Home Basic,

Home Premium, Professional, and Ultimate — stored in a Windows 7 WIM fi le.

Th e CommandLine switch confi gures the installation of the application. To make

the installation as silent as possible, you will have to research how to install each

application silently. For example, this command silently installs Adobe Reader:

c11.indd 262c11.indd 262 4/21/2011 1:22:54 PM4/21/2011 1:22:54 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 6 3

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

AdbeRdr930_en_US.exe /sAll /rs /l /msi”/qb-! i
/norestart ALLUSERS=1 EULA_ACCEPT=YES DISABLE_AIRi
_SHARE=1 SUPPRESS_APP_LAUNCH=YES”

Th is command imports the application SnagIt from D:\source\snagit to

the applications folder on the MDT01 share and installs it, despite not having the

silent switch:

Import-MDTApplication -path “MDT01:\Applications”i
 -enable “True” -Name “Camtasia Snagit” -ShortNamei
 “snagit” -Version “” -Publisher “camtasia” i
-Language “” -CommandLine “snagit.exe” i
-WorkingDirectory “.\Applications\snagit” i
-ApplicationSourcePath “D:\source\snagit” i
-DestinationFolder “snagit” -Verbose

Th e following command imports the drivers from D:\source\drivers to the

Out-of-Box drivers folder on the MDT01 share. Th e ImportDuplicates

switch allows your driver to be used over the Windows driver if one exists.

Import-MDTDriver -path “MDT01:\Out-of-Box Drivers” i
-SourcePath “D:\source\drivers\” -ImportDuplicates i
-Verbose

Th is imports the Dutch language pack from d:\source\dutch to the packages

folder on the MDT01 share:

Import-MDTPackage -path “MDT01:\packages” i
-SourcePath “D:\source\dutch\” -Verbose

Creating a Task Sequence

Aft er importing all the fi les necessary for your standard desktop, you can create

a task sequence. Th e task sequence controls the order and process of your custom

image deployment. In MDT, you have six XML templates you can use to create a

task sequence and a custom XML template for your installation. Th e templates are

located in the %SystemDrive%\Program Files\Microsoft Deployment

Toolkit\Templates directory. Table 11.2 describes the templates and the

fi lenames you would use in the MDT script.

c11.indd 263c11.indd 263 4/21/2011 1:22:55 PM4/21/2011 1:22:55 PM

2 6 4 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

TAB LE 11. 2 Task sequence templates

Task sequence Description File name

Sysprep and Capture Prepares a client machine by using a utility called
Sysprep. When sysprep is run on a client machine
it removes the unique properties of the system.
After sysprep is run then this task sequence will
capture the desktop in a WIM fi le and places it on
the MDT deployment share.

CaptureOnly.xml

Standard Client Task
Sequence

Standard desktop deployment including OS, appli-
cations, and drivers. This sequence could include
user state migration and replacement.

Client.xml

Standard Client Replace
Task Sequence

Captures the state of the client system and then
cleans the client system for replacement.

ClientReplace

.xml

Litetouch OEM Task
Sequence

Deployment option for OEM computer providers. LTIOEM

Standard Server Task
Sequence

Allows you to also deploy server roles as part of
your deployment process. MDT can also deploy
servers in your environment.

Server

Post OS Installation Task
Sequence

Allows you to perform tasks that occur after the
OS is already deployed. This sequence could help
cover anything you could not deploy as part of the
standard deployment process.

StateRestore

Custom Task Sequence Sequence to utilize the custom tasks. MDT allows
you to create custom tasks.

Custom.xml

Th e following command creates a task sequence using the standard client template

and deploying Windows 7 Professional with a username of Desktop User and the

IE home page of www.bing.com.

Import-MDTTaskSequence -path “MDT01:\Task Sequences”i
 -Name “Deploy Windows 7” -Template “Client.xml” i
-Comments “Select this task Sequence to deploy the i
standard Windows 7 desktop” -ID “DepWin7” -Version i
“1.0” -OperatingSystemPath “MDT01:\Operating Systemsi
\Windows 7 PROFESSIONAL in Windows 7 x64 install.wim”i

c11.indd 264c11.indd 264 4/21/2011 1:22:55 PM4/21/2011 1:22:55 PM

 W O R K W I T H T H E M I C R O S O F T D E P L O Y M E N T T O O L K I T 2 6 5

Po
w

er
Sh

el
l a

nd

De
pl

oy
m

en
t S

er
vi

ce
s

CHAPTER 11

 -FullName “Desktop User” -OrgName “deploy.com”i
 -HomePage “www.bing.com” -Verbose

Your results will look similar to Figure 11.16.

F I G U R E 11.16 Importing a task sequence

With the task sequence, you also control what the menu item looks like on the client

system you are deploying to. Whatever text you place in the -comments parameter

will be displayed on the client side. Th is is your opportunity to provide guidance

to the user or administrator performing the installation to make sure they make a

proper choice. So, make sure you provide descriptive documentation to help ensure

a successful deployment.

Put It All Together
Aft er you have created the task sequence, the last step is to update the deployment

share. Updating the deployment share ties together all of your work. Th is updates

the confi guration and generates custom versions of the Windows PE environ-

ment. Specifi cally, the update process creates the LiteTouchPE_x86.iso and

LiteTouchPE_x86.wim fi les for 32-bit target computers or LiteTouchPE_x64

.iso and LiteTouchPE_x64.wim fi les for 64-bit target computers in the Boot

folder of your deployment share.

Updating the deployment share can take several minutes depending on your server con-

fi guration. To update a deployment share named MDT01, run the following command:

Update-MDTDeploymentShare -path “MDT01: “ -Verbose

c11.indd 265c11.indd 265 4/21/2011 1:22:55 PM4/21/2011 1:22:55 PM

2 6 6 C H A P T E R 1 1 • P O W E R S H E L L A N D D E P L O Y M E N T S E R V I C E S

Your results will look similar to Figure 11.17.

 F I G U R E 11.17 Updated deployment share

Th e boot directory on the MDT share includes WIM fi les and ISO fi les. You can

take the ISO fi les and burn them to DVDs, and if you boot the client system to the

DVD, this is the same as if they made a selection from a PXE boot.

To tie together MDT and WDS, add the light-touch WIM boot fi le to the WDS

boot images. Th is creates the choice in the PXE boot menu of the client for the

light-touch image you added. Aft er the MDT option is selected from the PXE menu,

the request will then be handled by the MDT process. Th e architecture of the cli-

ent, 32-bit or 64-bit, determines which fi le to copy — LiteTouchPE_x86.wim or

LiteTouchPE_x64.wim, respectively.

Th e following command adds the 64-bit light-touch fi le to the WDS boot images:

WDSUTIL /verbose /progress /Add-Image i
/ImageFile:”D:\Deploymentshare\Boot\LiteTouchPE_x64.wim”i
 /ImageType:Boot

EXERCISE 11: CREATE A DEPLOYMENT SHARE

Create a deployment share called Win7 that will deploy Windows 7 Ultimate.

Optionally, if you have WDS, you can add the 32-bit boot image to the WDS boot images.

c11.indd 266c11.indd 266 4/21/2011 1:22:55 PM4/21/2011 1:22:55 PM

CHAPTER 12

PowerShell and
Virtualization

IN THIS CHAPTER, YOU WILL LEARN TO:

INSTALL AND ACCESS HYPER-V 268

Install Hyper-V. 269

Access Hyper-V in PowerShell. 270

WORK WITH HYPER-V 276

Work with Virtual Networks . 276

Confi gure Virtual Machines. 278

Connect to Virtual Machines. 283

Work with Snapshots . 285

c12.indd 267c12.indd 267 4/21/2011 1:24:16 PM4/21/2011 1:24:16 PM

CH
APTER 12

V

irtualization technologies are common in today’s IT environments. Being able

to eff ectively work with and confi gure your virtual servers is key to successfully

maintaining a proper virtual environment. Microsoft ’s Hyper-V platform lets you

virtualize a wide variety of environments. In fact, a majority of the examples and

samples used in this book were done in a Hyper-V environment.

You can use PowerShell with Hyper-V to confi gure, provision, and maintain your

virtualization environment. PowerShell provides the necessary tool set to quickly

work with your virtual infrastructure.

Th is chapter shows how to install Hyper-V with PowerShell for Windows Server

2008 R2 servers. Th e main focus of the chapter is how to work with virtual servers,

from creating the virtual networks to connecting your servers to maintaining the

virtual servers.

Th e chapter touches briefl y on Windows Management Instrumentation (WMI).

You may be familiar with using WMI to manage virtual servers. However, you will

also see a new tool set used to manage the virtual environment from PowerShell

cmdlets.

Install and Access Hyper-V

Hyper-V is Microsoft ’s virtualization technology for Windows Server 2008 R2 serv-

ers. Hyper-V allows you to run virtual guest operating systems on your host server.

Th is provides an environment to help you consolidate and fully utilize your existing

hardware. Hyper-V also provides a platform for testing and developing future appli-

cations for the business.

Currently in its second version, Hyper-V provides support for virtualization of

many operating systems, including Windows Server 2003 through the current ver-

sion of Windows servers and some versions of Linux distributions including SUSE

and Red Hat. With such a wide variety of client support, you can build production

and test environments off a single server. Th is helps you avoid server sprawl and

improve your IT infrastructure.

Th e systems you create with Hyper-V are fully functional systems in your infra-

structure; the only diff erence is they are virtual and do not have their own hardware.

Th is means you need to install, confi gure, back up, and maintain these servers like

full-fl edged members of your network. Before you can begin working with Hyper-V,

you need to install it.

c12.indd 268c12.indd 268 4/21/2011 1:24:20 PM4/21/2011 1:24:20 PM

 I N S T A L L A N D A C C E S S H Y P E R V 2 6 9

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

Install Hyper-V
Hyper-V is an installable role on Windows Server 2008 R2 servers. Hyper-V can be

installed on the Standard, Enterprise, or Datacenter versions of Windows Server

2008 R2. You can also install Hyper-V on Windows Server 2008 R2 Server Core

installations.

Hyper-V has specifi c hardware requirements:

 ▶ Th e system needs to be 64-bit. Th e system must support hardware-assisted

virtualization. Specifi cally, the processors need to support Intel VT or

AMD-V technology.

 ▶ Hardware-assisted virtualization also needs to be enabled in the BIOS.

Normally this is not enabled by default.

 ▶ Th e processors also must have hardware-enforced data execution prevention

(DEP), which is enabled in BIOS as well. Th is is normally enabled by default.

To install Hyper-V with PowerShell, import the Server Manager module. Aft er you

have imported the Server Manager module, you can then run the following com-

mand to install Hyper-V on either full or core versions of Windows Server 2008 R2:

Import-Module ServerManager

Add-WindowsFeature Hyper-V

Your results will look similar to Figure 12.1.

F I G U R E 12 .1 Installing Hyper-V

When you run the Add-WindowsFeature cmdlet, you may see a screen similar to

Figure 12.2.

c12.indd 269c12.indd 269 4/21/2011 1:24:21 PM4/21/2011 1:24:21 PM

2 7 0 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

F I G U R E 12 . 2 Wrong processor

Th is indicates the processor you currently have installed on your Windows Server

2008 R2 server does not have hardware-assisted virtualization. An error similar to

this could also indicate you have not enabled the hardware-assisted virtualization in

the BIOS of your system. You need to install Hyper-V on another server.

Access Hyper-V in PowerShell
Aft er you install Hyper-V, you can begin working with virtual servers. Th ere are

two methods you can use in working with PowerShell and Hyper-V. Th e fi rst lever-

ages the ability of PowerShell to work directly with the Windows Management

Instrumentation (WMI) provider. Th e second method uses a free, downloadable

Hyper-V module built aft er Windows Server 2008 R2 was launched.

Take a Quick Look at WMI

WMI is a key management technology for Windows systems. WMI essentially pro-

vides a logical data structure of information describing the various aspects of your

server. Th is data structure contains all aspects of the server you want to manage and

maintain. Th is data structure is referred to as a namespace. Namespaces are made up

of classes and instances. Classes and instances help defi ne the various aspects of the

system you can manage. Classes can also be organized into subclasses. When you are

working with WMI, you will do a majority of your confi guration in the classes.

WMI is one of the fi rst tools scripters used to manipulate and manage systems with

scripts prior to PowerShell. WMI allows you to manage local settings and remote

computers. Before you can start to dig into the various classes you can mange with

WMI via PowerShell, you will want to know what namespaces you can work with

c12.indd 270c12.indd 270 4/21/2011 1:24:21 PM4/21/2011 1:24:21 PM

 I N S T A L L A N D A C C E S S H Y P E R V 2 7 1

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

on your system. To view the namespaces on your server, you can run the following

command:

Get-WmiObject -namespace “root” -class “__Namespace” | Select Name

Your results will look similar to Figure 12.3.

F I G U R E 12 . 3 Namespaces

Th ese namespaces all have the prefi x of root, and when you want to reference them

in your PowerShell commands, you need to use root\ before each WMI namespace

you want to access. For example, if you wanted to use the virtualization

namespace, you would use root\virtualization. Likewise, if you wanted to see

the WebAdministration namespace, you would use root\webadministration.

Each namespace contains all the classes and instances under the hood, allowing you

to manage and maintain the various aspects of your system. Th e default and most

common namespace is root\cimv2. Th is contains the main classes for your server,

from hardware to BIOS settings.

Access the diff erent WMI classes in PowerShell with the Get-WmiObject cmdlet.

To see a list of the available aspects in the default namespace (root\cimv2) you

can access in WMI, use the following command:

Get-WmiObject -List

If you want to see just the classes used for Hyper-V, run the following command:

Get-WmiObject -Namespace root\virtualization -List

Your results will look similar to Figure 12.4.

c12.indd 271c12.indd 271 4/21/2011 1:24:21 PM4/21/2011 1:24:21 PM

2 7 2 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

F I G U R E 12 . 4 Hyper-V classes in WMI

To access any of the aspects of Hyper-V with WMI, you have to know the name of

the class and instance you want to modify. Although this can be extremely powerful

and detailed, digging into WMI can take some time.

Appendix F touches on some of the Win32 classes in WMI. You can also fi nd a

more detailed look at all the classes available for Hyper-V. Check out the Hyper-V

provider reference here:

http://msdn.microsoft.com/en-us/library/cc136992(v=VS.85).aspx

Use the Hyper-V Module

WMI is a tool you can use in PowerShell to access components with no built-in

cmdlets, but working with the WMI provider can sometimes be daunting.

Fortunately, for managing Hyper-V, the IT pros at Microsoft made a Hyper-V mod-

ule. Th is provides access to your Hyper-V environment using PowerShell cmdlets

without having to dig deep into WMI. Th e rest of this chapter focuses on using these

cmdlets to manage your Hyper-V environment.

Th e Hyper-V module is located in the PowerShell Management Library for Hyper-V

located on CodePlex and is free. You can download the management library from

http://pshyperv.codeplex.com/.

c12.indd 272c12.indd 272 4/21/2011 1:24:21 PM4/21/2011 1:24:21 PM

 I N S T A L L A N D A C C E S S H Y P E R V 2 7 3

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

Th e fi le is in ZIP format. You may need to unblock the fi le so it can install properly.

Before you extract the ZIP fi le, go to the properties of the fi le and click Unblock, as

shown in Figure 12.5.

F I G U R E 12 . 5 Unblocking the download

If you do not unblock the fi le, you will see an error message similar to Figure 12.6.

F I G U R E 12 . 6 Security error

Even though the error message indicates the certifi cate-signing issue, you will still

see the error regardless of your remote execution policy level.

Aft er you have unblocked and extracted the fi les, you can then install the module.

Th e developers created an install.cmd to step through the confi guration of

c12.indd 273c12.indd 273 4/21/2011 1:24:22 PM4/21/2011 1:24:22 PM

2 7 4 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

the tool set. From an administrative PowerShell session, navigate to the extracted

 directory, and perform the following procedure:

 1. Run .\install.cmd from the directory. Remember that when you run a

command from PowerShell, you have to include the .\ to represent the direc-

tory you are currently located in. Aft er you run the command, you will see a

screen similar to Figure 12.7.

F I G U R E 12 .7 Installing the PowerShell Management Library for Hyper-V

 2. Press any key to continue the installation process.

 3. Aft er the installation verifi es the prerequisites, review the results, and then

press any key to continue to extract the modules and support fi les. Your

screen will look similar to Figure 12.8.

F I G U R E 12 . 8 Extracting the management library

c12.indd 274c12.indd 274 4/21/2011 1:24:22 PM4/21/2011 1:24:22 PM

 I N S T A L L A N D A C C E S S H Y P E R V 2 7 5

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

 4. Press any key to continue. Th e installation process makes changes to the

 registry. You will see a warning similar to Figure 12.9. Click Yes to continue.

F I G U R E 12 . 9 Registry warning

 5. Aft er the changes have been made, click OK, and return to the PowerShell

session you started the installation from. Press any key. Th is launches a

PowerShell session with the Hyper-V module loaded.

Aft er you have successfully installed the PowerShell Management Library for

Hyper-V, you can work with the Hyper-V cmdlets. If you close the PowerShell

session and you want to use the cmdlets again, you can always import them with

the following command:

Import-Module HyperV

Aft er you have loaded the module, you can then see all the cmdlets in this module

by running the following command:

Get-Command -module hyperv

Your results will look similar to Figure 12.10.

As you can see from the extensive list of cmdlets, the developers of the

PowerShell Management Library for Hyper-V did a thorough job to include the

necessary cmdlets to manage Hyper-V. Make sure you check back regularly at

http://pshyperv.codeplex.com/ to see whether they have made any addi-

tions to the library.

c12.indd 275c12.indd 275 4/21/2011 1:24:22 PM4/21/2011 1:24:22 PM

2 7 6 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

F I G U R E 12 .10 Hyper-V cmdlets

Work with Hyper-V

Once you have the PowerShell Management Library for Hyper-V, you can then

directly manage your virtual environment using the Hyper-V cmdlets. From work-

ing with virtual networks to connecting to running virtual systems, this can all be

done in PowerShell. Th is section focuses on the basic concepts of Hyper-V and how

to access them in a PowerShell session.

Work with Virtual Networks
One of the fi rst concepts in working with virtual systems is connecting them with

other systems in your infrastructure. Normally, prior to creating virtual systems,

you need to create virtual networks. Th is allows you to connect your virtual servers

to keep them up-to-date and even isolate and sandbox your servers.

c12.indd 276c12.indd 276 4/21/2011 1:24:23 PM4/21/2011 1:24:23 PM

 W O R K W I T H H Y P E R V 2 7 7

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

In Hyper-V, you can create three types of virtual networks:

External Th is type of virtual network binds the physical adapter on the host

system so the virtual systems can access your physical network. Th is network allows

your virtual systems to access your production infrastructure.

Internal Th is type of virtual network allows only the virtual systems to communi-

cate with other virtual systems on the local Hyper-V server. Th is network also allows

communication with the local host.

Private Th is type of virtual network allows only the virtual systems to communi-

cate with the other virtual systems on the local Hyper-V server. Th is network does

not allow communication with the local host. Th is network is ideal for sandboxing

your virtual servers for testing to keep them from communicating with your

production environment.

When you create virtual servers, it is not uncommon for a virtual server to have net-

work adapters assigned to diff erent virtual networks. Th ere are three cmdlets to help you

create these virtual networks: New-VMExternalSwitch, New-VMKInternalSwitch,

and New-VMPrivateSwitch.

Th e following command creates an external virtual network called External Network

bound to a physical adapter with a name beginning with Intel on the server MT400:

New-VMExternalSwitch -VirtualSwitchName “External Network”i
 -ext “Intel” -Server MT400

You will be prompted for confi rmation. Your results will look similar to Figure 12.11.

F I G U R E 12 .11 Hyper-V cmdlets

Aft er you have created the virtual network, you can then assign the network adapter

to a virtual server. Th e following command sets the virtual switch for the virtual

server pshellR2 to the private1 virtual network:

Set-VMNICSwitch -NIC (Get-VMNIC pshellr2) -VirtualSwitchi
 “Private1”

Your results will look similar to Figure 12.12.

c12.indd 277c12.indd 277 4/21/2011 1:24:23 PM4/21/2011 1:24:23 PM

2 7 8 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

F I G U R E 12 .12 Setting a virtual network

You can add one or multiple network adapters to either support cluster confi gura-

tions or support other multiple NIC scenarios. You also have the choice to create

a native network adapter or a legacy adapter. Th e legacy adapter is used mainly to

perform PXE booting for network-based installations. Th e following command

adds a legacy virtual network adapter to the virtual machine pshellR2 and lets you

choose the virtual network to connect to the virtual NIC:

Add-VMNIC “pshellR2” -virtualSwitch (select-VMSwitch)i
 -legacy

Your results will look similar to Figure 12.13.

F I G U R E 12 .13 Adding a virtual NIC

Configure Virtual Machines
Creating virtual machines and working with them involves a few steps. You fi rst

need to add the virtual machine to the Hyper-V server. Th e virtual machine you

create consists of several components that are similar to a real server. You need to

work with two main things when creating a virtual machine — the settings and

the virtual hard drives. When you confi gure the virtual machine settings, you are

c12.indd 278c12.indd 278 4/21/2011 1:24:23 PM4/21/2011 1:24:23 PM

 W O R K W I T H H Y P E R V 2 7 9

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

basically confi guring the BIOS settings for the server. Th e settings include the

confi guration for RAM, processors, hard drive controllers (Virtual SCSI and IDE

are available), and network adapters. When you confi gure the virtual hard drives,

you are confi guring the storage location as well as the hard drives that will be pres-

ent inside the virtual machine.

To create a new virtual machine called PShellVM on a server called MT400, type

the following command:

New-VM -Name PShellVM -Server MT400

Your results will look similar to Figure 12.14.

F I G U R E 12 .14 Creating a VM

Th is creates a default virtual machine with 512MB of RAM, one processor, and two

IDE controllers. Th is system does not have any hard drives attached to the system.

Understand Virtual Hard Drives

A virtual hard drive for your virtual server is a physical fi le with the .vhd fi le

extension. Th is fi le is the storage location for your virtual machine and also the

hard drive or drives appearing in your virtual server. You can create three main

virtual hard drives in a virtual server:

Dynamically Expanding VHD Th is is the default VHD fi le format. As the name

suggests, it grows to meet the needs of your virtual machine. Th is fi le starts out

small and increases as you use your virtual machine. Whenever you install new

programs, add fi les, or work with the virtual machine, this fi le expands to meet the

needs of the virtual machine until the limit of the VHD is met.

Fixed Size VHD Th is is a VHD of a specifi c size. Th e VHD does not grow dynam-

ically. No matter how much data or how many programs you add to the virtual

machine, this fi le remains the same size you created it. Th is also means when you

create a VHD of 300GB, you need that much free space on your host system to hold

the fi le.

c12.indd 279c12.indd 279 4/21/2011 1:24:24 PM4/21/2011 1:24:24 PM

2 8 0 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

Diff erencing VHD Th is VHD allows you to create changes to a parent VHD

drive without changing the parent VHD. All of the changes you make are stored in

the diff erencing disk. Th e diff erencing disks help keep the need for storage space

of the VHD to a minimum. Th e diff erencing VHDs are normally much smaller

than the parent VHD from which they are created.

You can create a VHD as part of the creation of a new virtual machine. You can also

connect an existing VHD fi le to a new or existing virtual machine. Th e following

command creates a dynamically expanding VHD called pshellvm.vhd in the

F:\pshellvm directory with a maximum size of 150GB. If you wanted to make a

fi xed size VHD, you would add the -Fixed switch to the command.

New-VHD F:\pshellvm\pshellvm.vhd -Size 150GB

Use the Get-VHDInfo cmdlet to see information for an existing VHD. When

you use the Get-VHDInfo cmdlet on a dynamically expanding fi le, note the actual

fi le size. It will be quite a bit less than the size presented in the virtual machine. Th e

following command gets the information for the pshellvm.vhd fi le in the

F:\pshellvm directory:

Get-VHDInfo f:\pshellvm\pshellvm.vhd

Your results will look similar to Figure 12.15.

Note that the actual fi le size is about 309KB.

F I G U R E 12 .15 VHD information

Aft er you have created the VHD you want to use for an existing virtual machine,

you can connect it to the virtual machine. Th e following command connects the

c12.indd 280c12.indd 280 4/21/2011 1:24:24 PM4/21/2011 1:24:24 PM

 W O R K W I T H H Y P E R V 2 8 1

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

pshellvm.vhd fi le in the F:\pshellvm directory to PShellVM on the 0 hard

drive controller and the 0 drive:

Add-VmDisk -VM PShellVM 0 0 -path F:\pshellvm\pshellvm.vhd

Th e developers of the PowerShell Management Library for Hyper-V also included the

Add-NewVMHardDisk alias that combines the creation and connection of a VHD

to an existing virtual machine. Th is command creates a new virtual hard drive

called PShelldata.vhd in the F:\pshellvm directory. Th e drive is a dynamically

expanding drive of 100GB on the 0 controller and the 1 drive.

Add-NewVMHardDisk -VM PshellVM 0 1 -VHDPath i
f:\pshellvm\pshelldata.vhd -size 100GB

Your results will look similar to Figure 12.16.

F I G U R E 12 .16 VHD information

Work with the Virtual Machine Settings

Aft er you have created the virtual machine, you can then confi gure all the

settings to meet the needs of your infrastructure. Th ere are several cmdlets for

modifying the existing settings, including Set-VMMemory to confi gure the

RAM for the virtual machine and Set-VMCPUCount to add CPUs to an existing

VM. However, there is an easier way. Th ere is a special function called

Show-VMMenu that provides a PowerShell console to make it easy to see and

confi gure the settings for a virtual server.

c12.indd 281c12.indd 281 4/21/2011 1:24:24 PM4/21/2011 1:24:24 PM

2 8 2 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

Th e following command displays the PowerShell console for the virtual machine

PShellVM:

Show-VMMenu PShellVm

Th e menu will look similar to Figure 12.17.

F I G U R E 12 .17 Virtual machine menu

USING THE MENUS

Another way to manage the Hyper-V environment with the management library is a
series of menus created in PowerShell. These PowerShell menus allow you to work
directly with Hyper-V without having to use the cmdlets directly. These menus are
intuitive and show the ability in PowerShell to make user-friendly interfaces. You can
see how to create a GUI in PowerShell in Appendix F.

In the library, there are four functions to access the menus to manage Hyper-V:

Show-HyperVMenu With Show-HyperVMenu, you can manage a local or remote Hyper-V
server. From this menu, you can manage your virtual networks and create and import
virtual machines. You also can access the virtual machines on the local Hyper-V server.

c12.indd 282c12.indd 282 4/21/2011 1:24:24 PM4/21/2011 1:24:24 PM

 W O R K W I T H H Y P E R V 2 8 3

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

Show-VHDMenu This allows you to manage the VHD files located on the current
server. You can edit and inspect individual VHD files. By default, the menu is con-
figured to work in the %system Drive%\users\public\documents\Hyper-V\
Virtual Hard Disks directory. This is the default directory where Hyper-V stores
the VHD files. In the menu, you can change the directory to look at other directories.

Show-VMDiskMenu This allows you to work with an individual virtual machine’s
hard drives.

Show-VMMenu This menu allows you to work with a specific VM. This is the menu
mentioned earlier in this chapter with which you can configure all the settings for a
specific virtual machine.

Even though you can call the individual menus, the best menu option is
Show-HyperVMenu. This is the master menu option that calls the other menus as you
move through the various confi gurations.

Connect to Virtual Machines
Aft er you create and confi gure virtual machines, you need to boot the systems to

install an operating system and programs. To start a virtual machine, you can use

the Start-VM cmdlet. Th e following cmdlet starts the PShellVm virtual machine:

Start-VM PShellVM

c12.indd 283c12.indd 283 4/21/2011 1:24:25 PM4/21/2011 1:24:25 PM

2 8 4 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

You can also connect to a virtual machine with the New-VMConnectSession

cmdlet. Th is starts a GUI remote session into the specifi ed VM. Th e following

command opens a virtual machine connection to the DeployDC server:

New-VMConnectSession DeployDC

Th ere are three cmdlets to turn off a virtual machine and have diff erent results and

impact on your virtual machine:

Stop-VM Th is turns off the virtual machine in an unclean fashion. Th is is akin to

hitting the power button on a system.

ShutDown-VM Th is issues a shutdown command to the virtual machine so it

performs a clean shutdown of the operating system loaded in the virtual server.

Th en the virtual machine will be turned off .

Save-VM Th is suspends the VM in its current confi guration. If you perform a

stop-VM command to a virtual machine in a save state, the save state information

is deleted. Essentially, the server is in a hibernated state waiting to be turned on to

continue from the point where you turned it off .

To see the overall state of all the virtual machines on your Hyper-V server, you can

run the following command:

Get-VMState |Format-List VMElementName, EnabledState

Your results will look similar to Figure 12.18.

F I G U R E 12 .18 Virtual machine state

c12.indd 284c12.indd 284 4/21/2011 1:24:25 PM4/21/2011 1:24:25 PM

 W O R K W I T H H Y P E R V 2 8 5

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

Work with Snapshots
A snapshot is a point-in-time picture of the server. Snapshots provide a way to set

points of recovery in virtual machines. For example, you just fi nished building

and properly confi guring a new server. Th is is a perfect time to take a snapshot of

the server. With a snapshot in hand, you can then begin to install the programs or

modify other settings to allow this server to go into production. If the installation of

the new applications causes issues in the server, you can revert to the previous build

of the server stored in that snapshot.

Snapshots are stored in fi les with an .avhd fi le extension. You are allowed to have

multiple snapshots of a virtual machine, essentially allowing you take the system

back to any point in time you have saved. However, when you do revert to a snap-

shot, this takes a system completely back to the time of creation of the snapshot.

Th is is important to note because any data created aft er the snapshot is created

will be deleted when you revert to a previous snapshot. Th is includes all user data,

security patches, and settings; it is just like stepping into a time machine for your

server, taking it directly back to the day and time you created the snapshot. Th is

also means snapshots are good for reverting an entire server to a point in time, but

you still need to perform regular backups of your virtual machines if they are in

production.

To take a snapshot of a virtual machine, use the New-VMSnapshot cmdlet. Taking

a snapshot does not turn off a virtual machine if it is currently running. During the

process, you should not perform any actions on the server. Th e following command

will start the process to take a snapshot of the DeployDC and prompt the user for

confi rmation:

New-VMSnapshot DeployDc

Your results will look similar to Figure 12.19.

F I G U R E 12 .19 Taking a virtual machine snapshot

c12.indd 285c12.indd 285 4/21/2011 1:24:25 PM4/21/2011 1:24:25 PM

2 8 6 C H A P T E R 1 2 • P O W E R S H E L L A N D V I R T U A L I Z A T I O N

To list the snapshots of a current server, you can use either Get-VMSnapshot or

Get-VMSnapshotTree. In Figure 12.20, you can see an example of both the

cmdlets for the DeployDC virtual machine.

F I G U R E 12 . 2 0 Virtual machine snapshots

To revert to a snapshot, you need these two cmdlets: Select-VMSnapshot and

Restore-VMSnapshot. Th e Select-VMSnapshot cmdlet allows you to choose

the snapshot to be used if there is more than one for the virtual machine. If there is

only one snapshot, it will be used. You can pipe the Select-VMSnapshot output

into the Restore-VMSnapshot cmdlet to revert the virtual machine to a

particular snapshot. Th e following command allows you to choose a snapshot to be

restored on the DeployDC virtual machine:

Select-VMSnapshot DeployDC | Restore-VMSnapshot

c12.indd 286c12.indd 286 4/21/2011 1:24:25 PM4/21/2011 1:24:25 PM

 W O R K W I T H H Y P E R V 2 8 7

Po
w

er
Sh

el
l a

nd

Vi
rt

ua
liz

at
io

n

CHAPTER 12

Your results will look similar to Figure 12.21.

F I G U R E 12 . 21 Restoring a snapshot

During the restoration of a snapshot, your virtual machine will be suspended or

turned off if it is not turned off before starting the process.

EXERCISE 12: CREATE A VIRTUAL MACHINE AND TAKE A SNAPSHOT

Create a new virtual server with Internet connectivity and with a 200GB fi xed size
virtual hard drive. When you make the drive, make sure you have 200GB free space
to perform the lab. If you do not have 200GB available, reduce the example size to
20GB. After you create the virtual machine, take a snapshot. For the purpose of the
exercise, the virtual machine will be called VM2K8R2 and will leverage the PowerShell
Management Library for Hyper-V.

c12.indd 287c12.indd 287 4/21/2011 1:24:25 PM4/21/2011 1:24:25 PM

c12.indd 288c12.indd 288 4/21/2011 1:24:26 PM4/21/2011 1:24:26 PM

APPENDIX A

Solutions to Exercises

IN THIS APPENDIX, YOU WILL LEARN TO:

SOLUTION 1 : INVENTORY YOUR SCRIPTS 290

SOLUTION 2: INSTALL POWERSHELL 290

SOLUTION 3: CREATE A POWERSHELL PROFILE 290

SOLUTION 4: CREATE YOUR OWN ALIAS 291

SOLUTION 5: CREATE A SCRIPT TO FIND STARTUP
PROGRAMS 292

SOLUTION 6: SET UP A REMOTE POWERSHELL SESSION 292

SOLUTION 7: CREATE A SCHEDULED BACKUP WITH
POWERSHELL 293

SOLUTION 8: POPULATE AN ACTIVE DIRECTORY TEST
ENVIRONMENT 293

SOLUTION 9: TURN OFF THE DISPLAY CONTROL PANEL IN
GROUP POLICY WITH POWERSHELL 295

SOLUTION 10: CREATE A WEBSITE WITH POWERSHELL 296

SOLUTION 11: CREATE A DEPLOYMENT SHARE 296

SOLUTION 12: CREATE A VIRTUAL MACHINE AND TAKE
A SNAPSHOT 297

bapp01.indd 289bapp01.indd 289 4/18/2011 12:56:09 PM4/18/2011 12:56:09 PM

APPENDIX A

Solution 1 : Inventory Your Scripts

Th is is one exercise for which you will not have a clear-cut solution. However, taking

the time to look at your current scripts will allow you to gain a better understanding

of your environment and where PowerShell is the best fi t to help accomplish your

tasks easier.

Solution 2: Install PowerShell

Th e great thing about XP mode is that it is a full 32-bit version of Windows XP

running in your Windows 7 environment. Just like other operating systems, you

can install PowerShell in XP mode by downloading and installing the necessary

components.

 1. On your Windows 7 system, start your XP mode virtual system.

 2. Click Start ‚ All Programs ‚ Windows Virtual PC ‚ Select Virtual

Windows XP.

 3. Once your Virtual Windows XP loads, then you can install the components

to make PowerShell work.

 4. Download and install the 32-bit version .NET Framework version you want to

install on XP.

 5. Download and install the 32-bit version of the Windows Management

Framework.

Aft er you have completed this, you will have PowerShell installed on your XP mode

system.

Solution 3: Create a PowerShell Profile

In this exercise, fi rst you make a profi le and then you add commands to the profi le:

 1. Create a profi le:

New-Item -Path $profile -ItemType File -force

 2. Open the profi le you just created:

notepad $profile

bapp01.indd 290bapp01.indd 290 4/18/2011 12:56:11 PM4/18/2011 12:56:11 PM

So
lu

ti
on

s
to

Ex

er
ci

se
s

 APPENDIX A

 C R E A T E Y O U R O W N A L I A S 2 9 1

 3. Type the two following commands to load the proper modules for IIS and

Active Directory on your server. If you do not have those roles installed, load

another role of your choosing. If you are not sure which modules to load, use

Get-Module -ListAvailable to show you a list of modules available

to you.

Import-Module -Name ActiveDirectory

Import-Module -Name WebAdministration

 4. Save the profi le in Notepad: select File ‚ Save, and then close Notepad.

 5. Exit your existing PowerShell session.

 6. Start PowerShell, and run the following to verify the modules loaded

correctly:

Get-Module

Ultimately when you are working with profi les, their eff ectiveness will be based on

what tools and settings you want to use most frequently. Make profi les your own,

and customize them to fi t your needs.

Solution 4: Create Your Own Alias

Th is combines several techniques covered in Chapter 4 as well as Chapter 3.

Th e script can be done a number of ways.

You can pipe two Where-Object clauses together into one command line as

follows:

Get-Service | Where-Object {$_.status -eq “running”} |i
 Where-Object {$_.DependentServices} |i
Format-Table -property status, servicename, dependentservices |i
 Out-File c:\users\matt\depends.txt

You could also use the -and operator in the initial Where-Object cmdlet to

 combine the two, shortening the command line:

Get-Service | Where-Object {$_.status -eq “running” -andi
 $_.DependentServices} |Format-Table -property i
status, servicename, dependentservices |i
 Out-File c:\users\matt\depends.txt

bapp01.indd 291bapp01.indd 291 4/18/2011 12:56:11 PM4/18/2011 12:56:11 PM

2 9 2 A P P E N D I X A • S O L U T I O N S T O E X E R C I S E S

If you wanted to make a function out of this command, simply place this script in

the script block of the function command, as shown in the following code:

Function Get-Depend { Get-Service | Where-Object i
{$_.status -eq “running” -and$_.DependentServices} |i
Format-Table -property status, servicename, dependentservices |i
 Out-File c:\users\matt\depends.txt

If you wanted to make this an alias, you would to fi rst need to create the function

and then create an alias for the function. Using the previous function Get-Depend,

the command would look like this:

New-Alias gds Get-Depend

Solution 5: Create a Script to Find Startup Programs

Here are the commands you would need to put into a PowerShell script fi le:

Write-Host {Here are the programs in the Run Registry}

Write-Host

Get-ItemProperty -path i
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\run

Write-Host {Here are the programs in the RunOnce Registry:}

Write-Host

Get-ItemProperty -path i
HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\runOnce

Solution 6: Set Up a Remote PowerShell Session

Th is exercise is all about leveraging the power of profi les, which you learned about

in Chapter 3. You can place the New-PSSession cmdlets for the servers inside the

profi le.

 1. Open PowerShell, make sure you have created a local profi le, and set your

remote execution policy to RemoteSigned.

 2. Enter Notepad $profile.

 3. Use the New-PSSession cmdlet followed by the server names you want to

manage. If you wanted to connect remotely to Server2 and Server3, for exam-

ple, the cmdlet would look as follows:

New-PSSession Server2, Server3

bapp01.indd 292bapp01.indd 292 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

So
lu

ti
on

s
to

Ex

er
ci

se
s

 APPENDIX A

 P O P U L A T E A N A C T I V E D I R E C T O R Y T E S T E N V I R O N M E N T 2 9 3

 4. Save the profi le in Notepad.

 5. Close the existing PowerShell session.

 6. Reopen the PowerShell session, and verify the remote sessions are created.

You can verify the sessions with the Get-PSSession cmdlet.

Solution 7: Create a Scheduled Backup with
PowerShell

 1. Create the following PowerShell script:

$policy = New-WBPolicy

$volume = get-WBVolume -VolumePath c:

Add-WBVolume -Policy $policy -volume $volume

Add-WBSystemState -Policy $policy

$target = New-WBBackupTarget -VolumePath Z:

Add-WBBackuptarget -Policy $policy -target $target

Start-WBBackup -Policy $policy

 2. Give the script a name like backup1.ps1.

 3. Create a Task Scheduler task to run backup1.ps1. Th e full command line

would look like this if the script was stored in the scripts directory:

powershell -noninteractive c:\scripts\backup1.ps1

Solution 8: Populate an Active Directory Test
Environment

Creating the users is straightforward, but you also have to remember the order of

operations for this. Create the OU fi rst, and then add the users. Also key to the suc-

cess of this exercise is making sure you enable the recycle bin before deleting your

users. Here is one example of the PowerShell commands you could run to perform

the exercise. For this exercise, I used a Windows Server 2008 R2 native forest; you

would replace the deploy.com with the domain you are working with:

 1. Create the OU test:

New-ADOrganizationalUnit –Name “Test” –Path

“DC=deploy,DC=com”

bapp01.indd 293bapp01.indd 293 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

2 9 4 A P P E N D I X A • S O L U T I O N S T O E X E R C I S E S

 2. Create the users:

New-ADuser chrissmith -GivenName “Smith” - Surnamei
 “Chris” -Displayname “Chris Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser sarahsmith -GivenName “Smith” - Surnamei
 “Sarah” -Displayname “Sarah Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser kevinsmith -GivenName “Smith” - Surnamei
 “Kevin” -Displayname “Kevin Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser debsmith -GivenName “Smith” - Surnamei
 “Deb” -Displayname “Deb Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser caitlinsmith -GivenName “Smith” - Surnamei
 “Caitlin” -Displayname “Caitlin Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser mitchellsmith -GivenName “Smith” - Surnamei
 “Mitchell” -Displayname “Mitchell Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser nicolesmith -GivenName “Smith” - Surnamei
 “Nicole” -Displayname “Nicole Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser mattsmith -GivenName “Smith” - Surnamei
 “Matt” -Displayname “Matt Smith” -Path i
‘OU=test,DC=deploy,DC=com’

New-ADuser billsmith -GivenName “Smith” - Surnamei
 “Bill” -Displayname “Bill Smith” -Path i
‘OU=test,DC=deploy,DC=com’

 3. For the purpose of this exercise, you can choose to enable the accounts. When

you fi rst create the accounts, they are not enabled by default, and they do not

bapp01.indd 294bapp01.indd 294 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

So
lu

ti
on

s
to

Ex

er
ci

se
s

 APPENDIX A

 T U R N O F F T H E D I S P L A Y C O N T R O L P A N E L 2 9 5

have passwords set. When you enable each account, you also need to make

sure the new passwords are set and they meet your domain’s policy. To enable

accounts, use a command similar to the following one for each of your user

objects:

Enable-ADAccount -Identity kevinsmith

 4. To set passwords, run a similar command for all your users:

Set-adaccountpassword --identity sarahsmith -reset i
-newpassword (ConvertTo-SecureString -AsPlainTexti
 “p@ssw0rd” -force)

 5. Enable the recycle bin (depending on your environment you may need to

 prepare your domain):

Enable-ADOptionalFeature “Recycle Bin Feature” –Scopei
 ForestorConfigurationSet –Target ‘your domain name’

 6. Delete the users in the Test OU:

Get-ADUser -Filter * -SearchBase “OU=test,DC=deploy,DC=com” i
| Remove-ADUser

 7. Aft er the users have been deleted, run the following:

Get-ADObject –SearchBase “CN=Deleted Objects,i
DC=deploy,DC=Com” –Filter {lastKnownParent i
-eq “OU=test,DC=deploy,dc=com”} -includeDeletedObjectsi

| Restore-ADObject

Solution 9: Turn Off the Display Control Panel in
Group Policy with PowerShell

Th is PowerShell command is a matter of piping three cmdlets together:

New-GPO

New-GPLink

Set-GPRegistryValue

Order also matters. When you run the following command, you create the GPO

fi rst, set the values second, and then link it last. Th e following example will create a

bapp01.indd 295bapp01.indd 295 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

2 9 6 A P P E N D I X A • S O L U T I O N S T O E X E R C I S E S

new GPO called NoDisplay with the Display Control Panel disabled and linked to

the Executives OU in sample.com:

New-GPO NoDisplay | Set-GPRegistryValue -keyi
“HKCU\Software\Microsoft\Windows\CurrentVersion\Policiesi
\System” -ValueName NoDispCPL -Type DWORD -value 1i
| New-GPLink -target “ou=executive,dc=sample,dc=com”

Solution 10: Create a Website with PowerShell

Th is exercise combines all the techniques presented in this chapter to create the

structure for a website:

New-WebSite -Name MySite -Port 80 -HostHeader MySite i
-PhysicalPath “c:\mysite”

New-WebAppPool Pool1

Set-ItemProperty iis:\apppools\Pool1 -name processModeli
 -value @{userName=”WebApp”;password=”pass@

word1”;identitytype=3}

New-WebApplication -Name App1 -Site ‘MySite i
-PhysicalPath c:\MyApp -ApplicationPool Pool1

New-WebVirtualDirectory -site “MySite” -name PictureVirDiri
 -PhysicalPath \\server1\images

Backup-WebConfiguration -Name MySiteBackup

Solution 11: Create a Deployment Share

Th is exercise will require you to have the source fi le for Windows 7 on your server.

You will also need to have downloaded and installed the MDT and WAIK tools. Th e

exercise is then just applying what you saw in this chapter.

Th is creates the share:

bapp01.indd 296bapp01.indd 296 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

So
lu

ti
on

s
to

Ex

er
ci

se
s

 APPENDIX A

 C R E A T E A V I R T U A L M A C H I N E A N D T A K E A S N A P S H O T 2 9 7

New-PSDrive -Name “Win701” -PSProvider “MDTProvider” i
-Root “d:\win7” -Description “My Windows 7 Share” Share”i
 -NetworkPath “\\<yourserver>\Win7$” -Verbose i
| add-MDTPersistentDrive -Verbose

Th is copies the Windows 7 fi les to your deployment share.

Import-MDTOperatingSystem -path “Win701:\Operating Systems”i
 -SourcePath “<Source files for Win7>” -DestinationFolder

“Windows 7” i
-Verbose

Th is creates the task sequence:

Import-MDTTaskSequence -path “Win701:\Task Sequences”i
 -Name “Deploy Windows 7” -Template “Client.xml” i
-Comments “Select this task Sequence to deploy the i
standard Windows 7 desktop” -ID “DepWin7” -Version i
“1.0” -OperatingSystemPath “Win701:\Operating Systemsi
\Windows 7 PROFESSIONAL in Windows 7 x64 install.wim”i
 -FullName “Desktop User” -OrgName “deploy.com”i
 -HomePage “www.bing.com” -Verbose

Th is updates the deployment share:

Update-MDTDeploymentShare -path “Win701:” -Verbose

To add the image to WDS if you have it installed, the command would be nearly

identical (except the path for the light-to\uch fi le) to what you saw in this chapter:

WDSUTIL /verbose /progress /Add-Image i
/ImageFile:”D:\win7\Boot\LiteTouchPE_x64.wim”i
 /ImageType:Boot

Solution 12: Create a Virtual Machine and Take a
Snapshot

Th e fi rst step is to create the virtual machine:

New-VM -Name VM2K8R2 -Server Hyperv1

bapp01.indd 297bapp01.indd 297 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

2 9 8 A P P E N D I X A • S O L U T I O N S T O E X E R C I S E S

Th en you will create the external virtual machine switch and associate the new

switch with the virtual machine. Th e fi rst command creates the switch based on

whether your NIC for your host starts with Intel on a server called Hyperv1.

New-VMExternalSwitch -VirtualSwitchName “External Network”i
 -ext “Intel” -Server Hyperv1

Th en you will add the virtual NIC to the virtual machine and associate it with the

virtual machine:

Add-VMNIC “ VM2K8R2” -virtualSwitch “External Network”

Th en you will create the fi xed size hard drive, if you store your hard drives on drive d:.

Add-NewVMHardDisk -VM PshellVM 0 1 -VHDPath i
d:\VM2K8R2\VM2K8R2.vhd -size 200GB -Fixed

Lastly, you will take a snapshot of the virtual machine:

New-VMSnapshot VM2K8R2

bapp01.indd 298bapp01.indd 298 4/18/2011 12:56:12 PM4/18/2011 12:56:12 PM

APPENDIX B

Developing at a Command
Prompt

IN THIS APPENDIX, YOU WILL LEARN TO:

CHOOSE BETWEEN THE ISE AND
THE COMMAND PROMPT 300

Write Code at a Command Prompt . 301

Write Scripts in the ISE . 302

WORK WITH OBJECTS IN POWERSHELL 304

Understand Properties . 305

Create Your Own Custom Object . 307

bapp02.indd 299bapp02.indd 299 4/21/2011 1:47:35 PM4/21/2011 1:47:35 PM

APPENDIX B

A

lthough the chapters in this book cover the fundamentals of PowerShell from an IT

perspective, you may want a guide for scripting some processes to make the IT team’s

job a lot easier. Th e fi rst part of this appendix is for any developer who is not familiar

with or comfortable developing at a command prompt or with such simple tools.

Understanding objects and how to write scripts for objects can be a little intimidat-

ing because some developers struggle with understanding the concepts of objects

and object-oriented programming. In the second part of this appendix, you will

look at objects and how properties are tied to these objects, learning about object-

oriented concepts with PowerShell.

Choose Between the ISE and the Command Prompt

As a developer, you may be used to working in Visual Studio, WebMatrix, LightSwitch,

or another integrated development environment (IDE), rather than working at a

command prompt. In fact, some developers may panic and get writer’s block when

they see a command prompt. However, as intimidating as it may seem to write code

without a GUI and without IntelliSense, PowerShell is fairly easy to work with and can

be a good experience even for the most timid developer at the command prompt.

You may see the Integrated Scripting Environment (ISE) and fi nd comfort in that

environment. Although you may prefer to do all of your work in the GUI, there will

be times when you should load just the command prompt. For example, if you have

to scramble at work to resolve an emergency and need to use PowerShell to solve it,

it is quicker to just type the code at the command prompt, rather than loading all of

the goodies that come with the ISE. Th is section covers these two environments and

explains when you would want to work in each particular environment.

STARTING POWERSHELL FROM THE TASKBAR

Although you can start PowerShell from the menu, you may find it tedious to go
through Start ‚ All Programs ‚ Accessories ‚ Windows PowerShell every time you
want to start it. Save yourself time and take advantage of one of the operating system’s
features: pin it to the taskbar. By doing this, you only have to click the shortcut on
the taskbar to start PowerShell. In addition, the Run As Administrator, Import system
modules, ISE, and help fi le shortcuts appear on the context menu of the taskbar icon.
This will be especially helpful when you need to open PowerShell quickly in order to
deal with an emergency.

bapp02.indd 300bapp02.indd 300 4/21/2011 1:47:41 PM4/21/2011 1:47:41 PM

D
ev

el
op

in
g

at
 a

Co

m
m

an
d

Pr
om

pt

 APPENDIX B

 C H O O S E B E T W E E N T H E I S E A N D T H E C O M M A N D P R O M P T 3 0 1

Write Code at a Command Prompt
As noted in Chapter 2, starting PowerShell is simple. You can fi nd it on your menu

under Start ‚ All Programs ‚ Accessories ‚ Windows PowerShell. To work

strictly with a command prompt, choose one of the options without ISE in

their name.

When you open PowerShell, you start at its command prompt. Rather than panick-

ing at seeing the command prompt, remember the problem you are trying to solve.

Th ink about the problem in English fi rst, and then use PowerShell’s commands to

resolve your issue.

Although there isn’t any IntelliSense to help you remember syntax, you do have the

following tools to help you:

 Get-Help

 Get-Command

 Tab completion

Suppose you notice that a print spooler on a particular server has been problematic

and needs to be restarted, and this just happens to be broken when the CEO needs

to print handouts for a meeting that started a few minutes ago. Although you could

go through the windows in the operating system to start and stop the print spooler,

you could get the job done quicker with a script. Try the following command:

Restart-Service Spooler

If this spooler were on a remote machine and if remoting and security allowed it,

you could restart the spooler remotely with the following command:

Invoke-Command -ComputerName Server1 -ScriptBlock {Restart-

Service Spooler}

With a script that short and without having to connect to the server and navigate

through various screens to restart the service, you could quickly get the print

spooler back up and running.

When you can solve your problem in a few lines of code, go with the command

prompt. If you happen to fi nd yourself writing more than a few lines of code in the

command prompt, then it’s time to move to the ISE. You can launch the ISE from

the command prompt by running the following alias:

ise

bapp02.indd 301bapp02.indd 301 4/21/2011 1:47:41 PM4/21/2011 1:47:41 PM

3 0 2 A P P E N D I X B • D E V E L O P I N G A T A C O M M A N D P R O M P T

Write Scripts in the ISE
Th e command prompt is great for quick solutions. But what if you need to write

more than one line of code? What if you wanted to add some logic, putting to

use what was covered in Chapter 5? Sure, you could use the command prompt.

However, the interface for working with logic can be a bit clunky.

Suppose your company hosts websites, and you need to allocate IP addresses to

machines in two environments — one for developers to work on proofs of concept

and one for production. Rather than set up the websites manually, you should fi nd

it helpful to script the website setup. Th e following code sample is a snippet of what

you might use in your script:

$ComputerName = Get-Content Env:\COMPUTERNAME

if ($ComputerName -contains “Developer”){

 $WebsiteIPAddress = “172.16.42.1”

} else {

 $WebsiteIPAddress = “10.10.42.1”

}

$WebsiteIPAddress

It’s already more than a few lines of code, and this is just the beginning of the script.

Although you could write this at the command prompt, it is a bit awkward to read.

Take a look at Figure B.1 to see what this looks like.

F I G U R E B .1 Script block at the command prompt

Although the tabs help keep some of the code in line, it is hard to read when the

start of the code doesn’t line up with the rest of the code. Th is is one of those cases

bapp02.indd 302bapp02.indd 302 4/21/2011 1:47:42 PM4/21/2011 1:47:42 PM

 C H O O S E B E T W E E N T H E I S E A N D T H E C O M M A N D P R O M P T 3 0 3

D
ev

el
op

in
g

at
 a

Co

m
m

an
d

Pr
om

pt

 APPENDIX B

where the command line isn’t ideal. So, in this case, you should start the ISE.

Figure B.2 shows how readable the code is when displayed in the script pane of the ISE.

F I G U R E B . 2 Script block in the ISE

In addition to readability, the ISE lets developers who are familiar with Visual

Studio adapt quickly thanks to the shared keyboard shortcuts between the two.

Th ese shared shortcuts help alleviate some of the pains that come with adjusting to

a new development environment. Take a look at some of these shared developer-

specifi c keyboard shortcuts in Table B.1.

TAB LE B .1 Shared developer-specifi c keyboard shortcuts

Command Keyboard shortcut

Run/Continue F5

Stop Debugging Shift+F5

Toggle Breakpoint F9

Remove All Breakpoints Ctrl+Shift+F9

Step Over F10

Step Into F11

Step Out Shift+F11

bapp02.indd 303bapp02.indd 303 4/21/2011 1:47:42 PM4/21/2011 1:47:42 PM

3 0 4 A P P E N D I X B • D E V E L O P I N G A T A C O M M A N D P R O M P T

Although the ISE comes with the script pane on top, the command pane in the mid-

dle, and the output pane on the bottom, you can reposition these default positions.

Table B.2 lists other positions for the script pane, as well as the keyboard shortcuts

to easily toggle through them.

TAB LE B . 2 Script pane positions

Position Keyboard shortcut

Top Ctrl+1

Right Ctrl+2

Maximized Ctrl+3

In addition to rearranging the script pane, you can toggle its visibility with the

keyboard shortcut Ctrl+R or with the arrow button in the upper-right corner of the

script pane. You can also fl ip the command and output panes, either using the green

arrow icons that appear in the upper-right corner of the command pane or via the

menu View ‚ Command Pane Up.

By combining these shortcuts and positions, you can fi nd a setup that you are com-

fortable working with while using the ISE. Once you are comfortable in the ISE, you

can use your developer understanding of logic plus the syntax of PowerShell to cre-

ate some powerful scripts to help simplify your processes.

Work with Objects in PowerShell

Objects can be a tough concept to understand. However, I fi nd that it’s easier to under-

stand them if you think of a problem fi rst in English and then translate it to code.

Step away from the code for a minute, and think about the computer you’re cur-

rently working with. Maybe you’re working on a multiprocessor server with a lot of

memory. It could be manufactured by Dell, IBM, Apple, or someone else. Perhaps it

is part of a domain. If I were to ask you to describe your current machine to me, you

probably could give me information like that.

In that exercise, your computer is considered an object. All of the other things I sug-

gested — manufacturer, number of processors, amount of memory, whether it’s on

a domain — tell me more about your computer. Th ese can be considered properties.

Basically, objects have properties.

bapp02.indd 304bapp02.indd 304 4/21/2011 1:47:43 PM4/21/2011 1:47:43 PM

 W O R K W I T H O B J E C T S I N P O W E R S H E L L 3 0 5

D
ev

el
op

in
g

at
 a

Co

m
m

an
d

Pr
om

pt

 APPENDIX B

Understand Properties
Now that you have a basic understanding of what objects and properties are

in English, let’s look at them in terms of PowerShell. Start with the following

command:

$MyComputer = Get-WmiObject win32_computersystem

Here you’re storing the computer information in a variable to get a better under-

standing of objects. $MyComputer is a variable, specifi cally, an object representing

the WmiObject that was returned by the Get-WmiObject cmdlet. Now what does

win32_computersystem really tell you about your computer? You can fi nd out

that information — things that describe your computer, or its properties — just by

typing the variable name at the PowerShell command prompt. When you do this,

you should see something similar to Figure B.3.

F I G U R E B . 3 $MyComputer output

By default, it shows only a few properties of your computer. WMI usually has a

lot more information about the computer, and it is included in the $MyComputer

object. So if WMI has more information and yet you’re seeing only a few properties

currently, how do you know what properties exist on your $MyComputer object?

As noted in Chapter 3, the Get-Member cmdlet can be useful when working with

objects and wanting to learn more about a particular one. Get-Member shows you

everything about an object, including the properties. Because WMI has a lot of

bapp02.indd 305bapp02.indd 305 4/21/2011 1:47:43 PM4/21/2011 1:47:43 PM

3 0 6 A P P E N D I X B • D E V E L O P I N G A T A C O M M A N D P R O M P T

information and because you are concerned only with properties at the moment,

you need to run this command:

$MyComputer | Get-Member -type property

Th e output should look similar to Figure B.4. Here are some things to note:

 Every property has a name. Although some appear in PascalCase (or

CamelCase) and others appear in ALL CAPS, these properties are not case

sensitive.

 Th e defi nition of each property contains two pieces of information:

 Th e type of each property. In Figure B.4, these start with System. and are

followed by the type name.

 What you can do with the property’s value. If get; is present, then you

are able to get the value of that property. If set; is present, then you are

able to set the value of that property. More oft en than not, get; is present.

However, read-only properties have only get;. Th ey do not have set;.

F I G U R E B . 4 List of $MyComputer’s properties

Now that you have used Get-Member to list the properties of your object, you can

take this one step further and use these properties. Suppose you need to take inven-

tory of the computers in your company. For this example, you need to keep track of

the machine name, manufacturer, model, domain, and total physical memory. You

may want to run something like this:

$MyComputer | Format-Table Name, Manufacturer, Model, Domain,

TotalPhysicalMemory

bapp02.indd 306bapp02.indd 306 4/21/2011 1:47:43 PM4/21/2011 1:47:43 PM

 W O R K W I T H O B J E C T S I N P O W E R S H E L L 3 0 7

D
ev

el
op

in
g

at
 a

Co

m
m

an
d

Pr
om

pt

 APPENDIX B

By looking at the list of properties provided while exploring $MyComputer with

Get-Member, you can tailor this command to meet whatever details you may need

to track if you did need to use this script. You could easily replace the list aft er

Format-Table with any of the properties in the list.

Create Your Own Custom Object
Now that you understand objects and properties, you may be wondering how to

create your own object so that you can use it with PowerShell’s powerful pipelining.

Although there are many ways to create custom objects, you will look at two ways to

do this in PowerShell 2.0:

 Using New-Object with a hash table

 Compiling a class written in a .NET language with Add-Type

Using New-Object with a Hash Table

Although the New-Object cmdlet was the only way to create objects in PowerShell

1.01, it still works in PowerShell 2.0. In fact, they stepped it up a little bit to make

it easier to create objects. You no longer have to pipe New-Object through

Add-Member to append properties to the object. In PowerShell 2.0, you can now

create a hash table with sample data to build your object. Th e following example

would be helpful if you had multiple servers across multiple buildings and wanted

to keep track of their location and wanted to create an object to track basic server

location and identifi cation information:

$TrackedServerProperties = @{

 SerialNumber = ‘SN8675309’;

 Building = ‘Building 42’;

 IsDomainController = $true;

 Floor = 3;

 Room = 311;

}

$TrackedServer = New-Object PSObject -property

$TrackedServerProperties

$TrackedServer

$TrackedServer.GetType().Name

You can see the output in Figure B.5. Note that the $TrackedServer object comes

back as a PSCustomObject. When you want to create a custom object, rather

than derive from an existing type, use PSObject with New-Object to return a

PSCustomObject.

bapp02.indd 307bapp02.indd 307 4/21/2011 1:47:44 PM4/21/2011 1:47:44 PM

3 0 8 A P P E N D I X B • D E V E L O P I N G A T A C O M M A N D P R O M P T

F I G U R E B . 5 Custom object from New-Object

In PowerShell, you do not have to specify the type for each parameter. However,

if you are curious as to how PowerShell handled those properties, pipe

$TrackedServer through Get-Member to see more details. You should see some-

thing similar to Figure B.6.

F I G U R E B . 6 Get-Member results of $TrackedServer

Something to note about those properties is that they were added as a

NoteProperty property. Whenever you add a property to a PSObject that doesn’t

bapp02.indd 308bapp02.indd 308 4/21/2011 1:47:44 PM4/21/2011 1:47:44 PM

 W O R K W I T H O B J E C T S I N P O W E R S H E L L 3 0 9

D
ev

el
op

in
g

at
 a

Co

m
m

an
d

Pr
om

pt

 APPENDIX B

already exist, it gets added as NoteProperty. However, if you try adding a nonex-

istent property to any other type of object, PowerShell reports an error.

Creating objects with the New-Object cmdlet and a hash table of properties is

fairly simple, which is great if you are just starting out with a scripting language or

if you are in a hurry.

Compiling a Class with Add-Type

Although IT professionals with little developer experience may prefer using the

New-Object cmdlet with a hash table to create their custom object, developers

dabbling in PowerShell may feel more comfortable using the Add-Type cmdlet.

Developers may think of objects more in terms of classes, and the Add-Type cmdlet

is the way to bring the concept of classes to PowerShell 2.0. What’s nice about this is

that, as a .NET developer, you can use the .NET language of your choice to write the

class. Using the same scenario as the previous example, here’s what it would look

like if you used a C# class:

Add-Type @’

public class TrackedServer{

 public string SerialNumber = “SN8675309”;

 public string Building = “Building 42”;

 public bool IsDomainController = true;

 public int Floor = 3;

 public int Room = 311;

}

‘@

$TrackedServer = New-Object TrackedServer

$TrackedServer

$TrackedServer.GetType().Name

Notice in this case that $TrackedServer comes back as the TrackedServer

class, rather than PSCustomObject. If you pipe $TrackedServer through

Get-Member, as shown in Figure B.7, the properties are of the type Property

rather than NoteProperty. You have better control over defi ning your property

types when creating your own class.

If you want to create your own classes and work with your own data types, then use

this Add-Type method before creating your object.

bapp02.indd 309bapp02.indd 309 4/21/2011 1:47:45 PM4/21/2011 1:47:45 PM

3 1 0 A P P E N D I X B • D E V E L O P I N G A T A C O M M A N D P R O M P T

 F I G U R E B .7 Get-Member results from a custom type

At this point, you should be able to choose between the command prompt and the

ISE. Should you need more help with the ISE, run the following:

help about_Windows_PowerShell_ISE

You should also be able to identify objects and properties in PowerShell or create

your own. If you do fi nd yourself in PowerShell and drawing a blank on how to

work with objects or properties, the help system is there. You can always fall back

on the following commands:

help objects

help properties

bapp02.indd 310bapp02.indd 310 4/21/2011 1:47:45 PM4/21/2011 1:47:45 PM

APPENDIX C

Providing for PowerShell

IN THIS APPENDIX, YOU WILL LEARN TO:

WORK WITH BUILT-IN PROVIDERS 312

Understand Provider Basics . 313

Use PowerShell-Specifi c Providers . 314

Use Other Built-in Providers . 317

WORK WITH ADDITIONAL PROVIDERS 322

INSTALL AND REMOVE PROVIDERS 322

CREATE YOUR OWN PROVIDER 323

Understand Basic Provider Concepts . 323

Build a Custom Provider . 327

bapp03.indd 311bapp03.indd 311 4/21/2011 1:48:34 PM4/21/2011 1:48:34 PM

APPENDIX C

W

hether you are working with the registry, using environment variables, or even

working with the fi le system, providers are used for a variety of tasks. Th ey make it

easier to access data and objects that are typically hard to reach at a command line.

Although the data is organized in a data store, there are few command-line utilities

that make these easily accessible. In the fi rst part of this appendix, you will work

with the built-in providers. You will also look into some of the other providers that

have been created to make administration easier.

Although the built-in providers and additional providers from custom modules are

helpful, you may see a need to create your own provider. In the second part of this

appendix, you will create a custom provider.

Th e beauty of PowerShell is that you can administer a large part of your server

within PowerShell without having to open another administration tool. Providers

are one of the tools that open up various avenues of administration. Working with

certifi cate stores and managing parts of the registry are just a couple things that

providers help with.

Work with Built-in Providers

As with many of the concepts in this book, there is a Get- cmdlet that shows all the

providers in your session. Th at command is Get-PSProvider. Figure C.1 shows a

list of the providers that come with the default installation of PowerShell.

F I G U R E C .1 List of built-in providers

bapp03.indd 312bapp03.indd 312 4/21/2011 1:48:40 PM4/21/2011 1:48:40 PM

 W O R K W I T H B U I L T I N P R O V I D E R S 3 1 3

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

Some of these providers were created to make the PowerShell environment easier

to work with, but others help with parts of everyday server administration. Before

looking into the specifi c providers, there are a few concepts you need to understand.

Understand Provider Basics
Two columns in Figure C.1 need to be explained before going further. Capabilities

and drives are a couple of the basics of providers you should understand. While

you are looking at these, you will also learn about another unique feature called

dynamic parameters.

Provider Capabilities

Provider capabilities note features that are supported by the provider. As shown in

Figure C.1, a provider may have multiple capabilities. Table C.1 describes the sup-

ported capabilities.

TAB LE C .1 Capabilities

Name Description

None Has no additional support other than what is provided in the base class

Include Has the ability to include items via wildcards

Exclude Has the ability to exclude items via wildcards

Credentials Allows credentials to be included at the command line

Expand Wildcards Supports wildcards within an internal path

Filter Allows additional fi ltering via a string

ShouldProcess Supports user confi rmation before running its cmdlets and allows the
-WhatIf parameter to be used

Transactions Supports its cmdlets to be used within a transaction

Provider Drives

Th ese are the tools that make it easier to access data stores. For example, the

WebAdministration provider includes the IIS drive to access the IIS confi gura-

tion. As another example, the Registry provider includes two drives that are set

to the shortened versions of the long names of two popular Windows registry

hives — HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER.

bapp03.indd 313bapp03.indd 313 4/21/2011 1:48:40 PM4/21/2011 1:48:40 PM

3 1 4 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Th ese are listed as part of the default output of the Get-PSProvider cmdlet.

Navigating provider drives is as simple as navigating disk drives at the command

prompt. Th anks to the aliases provided by PowerShell, you can still use cd and dir

to gain a better understanding of a drive’s structure.

Dynamic Parameters

Dynamic parameters are parameters available only when a provider’s cmdlet is

being used with the provider’s drive. For example, the Certificate provider

has a CodeSigningCert parameter that can be used with the Get-Item and

Get-ChildItem cmdlets when working with the cert: drive. Figure C.2 shows an

example of how this parameter can be used and what happens when you try to use

the CodeSigningCert parameter with a drive other than the cert: drive.

F I G U R E C . 2 CodeSigningCert dynamic parameter

Use PowerShell-Specific Providers
Th e following providers are built around concepts within the PowerShell environ-

ment. Note that these providers do not support the Invoke-Item cmdlet.

Alias Provider

As noted in Chapter 4, you can create aliases to shorten commands in PowerShell.

Th e Alias provider gives you a quick way of working directly with the aliases as

objects. Although you can use Get-Alias to see a list of aliases currently available

bapp03.indd 314bapp03.indd 314 4/21/2011 1:48:40 PM4/21/2011 1:48:40 PM

 W O R K W I T H B U I L T I N P R O V I D E R S 3 1 5

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

to you, you can also use Get-Item -path alias: to list these aliases. Another

way you can see all aliases is via the following steps:

 1. Run cd alias:.

 2. Run Get-Item -path *.

T I P If the path you are working with is in the current drive, you do not have to include
the drive name as part of the path variable.

Although the Alias provider can provide access to the aliases as objects, you

can still use the built-in cmdlets Import-Alias, Export-Alias, New-Alias,

Get-Alias, and Set-Alias to work with aliases. If you prefer to work with the

built-in cmdlets, you should not include the alias: drive.

Note that the built-in cmdlets do not include Copy-Alias, Rename-Alias, or

Remove-Alias. However, the Alias provider supports working with the

Copy-Item, Rename-Item, Clear-Item, and Remove-Item cmdlets. Th anks to

this provider, you can create these commands.

N O T E If you need to remove a read-only item, then use the Remove-Item cmdlet
with its Force parameter. Clear-Item will not work for read-only items.

As noted, the Alias provider has one dynamic parameter, the Options parameter,

which can be used with the New-Item and Set-Item cmdlets. Table C.2 describes

the values that can be used with the Options parameter.

TAB LE C . 2 Options values

Value Description

None Default value. No options.

AllScope Alias is copied to any new scopes.

Private Alias is in the current scope only.

Constant Alias cannot be deleted and cannot be changed. This option is available only
when creating an alias.

ReadOnly The properties cannot be changed except by using the Force parameter.
You need to use Remove-Item -Force to remove aliases that are marked
ReadOnly.

bapp03.indd 315bapp03.indd 315 4/21/2011 1:48:40 PM4/21/2011 1:48:40 PM

3 1 6 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Function Provider

Chapter 4 introduced the concept of functions. Th e Function provider allows

you to work directly with the functions. As noted previously, Get-Function

does not exist. However, thanks to the Function provider, you can create your

own Get-Function command. Remove-Function, Rename-Function, and

Copy-Function could also be created, similar to what was described for the

Alias provider.

Th e Function provider gives you access to both functions and fi lters. Th e best way

to see this is by doing the following:

 1. If you do not have any fi lters in your PowerShell session, add a fi lter to your

PowerShell session. For example, perhaps you want to list functions that do

not refer to Set-Location. You may have a fi lter like this:

filter NotSetLocation { $_.Definition i
-notcontains “Set-Location” }

 2. Run dir Function:*. Th is fi lter should appear in the output, with Filter

as its CommandType.

Note that although the item is a type of fi lter, it still is listed under the Function:

drive. Th ere is no Filter: drive.

Th e Function provider has one dynamic parameter as well. Like the Alias

provider, the Function provider’s Options parameter can be used with the

New-Item and Set-Item cmdlets. Its values are the same as those for the Alias

provider; however, they apply to functions rather than aliases.

Variable Provider

Chapter 5 explains the concept of variables. Th e Variable provider allows you to

work directly with variables as objects. Similarly to the Alias provider, there are

built-in cmdlets to work with variables: Get-Variable, New-Variable, Set-

Variable, Remove-Variable, and Clear-Variable. As with the Alias provider,

you do not need to use the provider drive with the built-in Variable cmdlets. Also, if

you are referencing a variable by name — such as $ComputerName — you

do not need to include the drive name.

bapp03.indd 316bapp03.indd 316 4/21/2011 1:48:41 PM4/21/2011 1:48:41 PM

 W O R K W I T H B U I L T I N P R O V I D E R S 3 1 7

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

Use Other Built-in Providers
PowerShell also has built-in providers that bring administrative processes that nor-

mally occur outside of the PowerShell console to PowerShell. Th e following providers

come in the default PowerShell installation and help make outside processes easier.

Certificate Provider

Th e Certificate provider makes it easy to work with X.509 certifi cates and their

stores.

Th ere are three levels when it comes to certifi cate stores:

 Store locations

 Certifi cate stores

 X.509 certifi cates

To gain a better understanding of how these work, follow these steps:

 1. In your PowerShell session, run cd cert: to set your current location to the

certifi cate provider’s drive.

 2. Run dir to see a list of the store locations. Th e output should be similar to

Figure C.3.

F I G U R E C . 3 List of store locations

bapp03.indd 317bapp03.indd 317 4/21/2011 1:48:41 PM4/21/2011 1:48:41 PM

3 1 8 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

 3. Let’s look into the certifi cate stores that are in the LocalMachine store loca-

tion. Change directories to LocalMachine.

 4. Once the current location is set to LocalMachine, run dir to see the names

of the certifi cate stores.

 5. Th e X.509 certifi cates themselves are within those stores. Let’s look into the

AuthRoot certifi cate store. Change directories to AuthRoot.

 6. Once in the AuthRoot certifi cate store, run dir to see a list of the X.509

certifi cates with the store. Th e output should be similar to Figure C.4.

F I G U R E C . 4 List of certifi cates

In addition to listing the data down to the certifi cates level, you can take it one step

further with the CodeSigningCert dynamic parameter, which will allow you to

fi nd only the certifi cates that can be used for signing code. Th is can be extremely

benefi cial if you run many secure servers and have only a certain set of certifi cates

that can be used to sign your developers’ applications. Th is dynamic parameter can

be used with the Get-Item and Get-ChildItem cmdlets.

One fi nal thing to note with the Certificate provider is that, unlike the

PowerShell-specifi c providers, it does support the Invoke-Item cmdlet. When

you use the Invoke-Item cmdlet with the Certificate provider, you invoke the

certifi cate manager. By running the following command, you should see something

similar to Figure C.5.

Invoke-Item cert:\CurrentUser

bapp03.indd 318bapp03.indd 318 4/21/2011 1:48:41 PM4/21/2011 1:48:41 PM

 W O R K W I T H B U I L T I N P R O V I D E R S 3 1 9

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

F I G U R E C . 5 Certifi cate manager

Environment Provider

Th e Environment provider makes it easy to work with environment variables.

Listing environment variables’ name and value pairs is as simple as dir env:*.

Th e Environment provider supports adding, getting, setting, clearing, and

removing environment variables. Like the PowerShell-specifi c providers, the

Environment provider does not support the Invoke-Item cmdlet.

FileSystem Provider

Th e FileSystem provider makes it easy to work with the server’s fi les and directo-

ries. Its provider drives map your local machine’s drives — including those mapped

to network shares — and allow you to access them from within PowerShell. Th is

provider is what allows you to type dir c:\ and see the directory listing within

your PowerShell environment.

Th e FileSystem has a few dynamic parameters: Encoding, Delimiter, and

Wait. Th e Encoding dynamic parameter is used to note the fi le encoding, which is

ASCII by default. It can be used with the Add-Content, Get-Content, and

bapp03.indd 319bapp03.indd 319 4/21/2011 1:48:41 PM4/21/2011 1:48:41 PM

3 2 0 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Set-Content cmdlets. Th e Delimiter dynamic parameter is used to split a fi le

into a collection of objects, based on a string. By default, it uses the new line escape

(\n). Th is can be used with the Get-Content cmdlet. Finally, the Wait dynamic

parameter waits for a fi le to change and then returns either the updated content or

the entire fi le, depending on what change was made. Get-Content polls the fi le

every second until you stop it with Ctrl+C.

Registry Provider

Th e Registry provider makes it easy to work with the registry. Although you

can use regedit to invoke the Registry Editor to make changes to the regis-

try, the Registry provider gives you the ability to maintain the registry via

PowerShell.

For example, let’s say you wanted to see what shell extensions were registered

on a computer. You could run the following command, with output similar to

Figure C.6:

Get-ItemProperty “hklm:software\microsoft\ i
windows\currentversion\shell extensions\approved”

F I G U R E C . 6 Registry properties

Th e registry provider has one dynamic parameter — Type. You can use this

dynamic parameter with the Set-Item and Set-ItemProperty cmdlets. Table

C.3 shows the possible values.

Although the Certificate provider supports launching the certifi cate

manager via the Invoke-Item cmdlet, the Registry provider does not launch

the Registry Editor with Invoke-Item. Th is cmdlet is not supported by the

Registry provider.

bapp03.indd 320bapp03.indd 320 4/21/2011 1:48:41 PM4/21/2011 1:48:41 PM

 W O R K W I T H B U I L T I N P R O V I D E R S 3 2 1

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

TAB LE C . 3 Registry types

Value Registry equivalent Description

String REG_SZ Null-terminated string

ExpandString REG_EXPAND_SZ Null-terminated string that contains unexpanded
references to environment variables

MultiString REG_MULTI_SZ An array of null-terminated strings, terminated by two
null characters

Binary REG_BINARY Binary

DWord REG_DWORD 32-bit binary number

Qword REG_QWORD 64-bit binary number

Unknown Unsupported registry data type

WSMan Provider

Th e WSMan provider makes it easy to work with Web Services for Management

(WS-Management, or WSMan for short) confi guration information.

WS-Management is discussed in Chapter 6. Th e WSMan provider supports adding,

changing, clearing, and deleting WSMan confi guration data. Of all the providers

covered here, the WSMan provider has the most dynamic parameters — more than

50 dynamic parameters. Table C.4 shows some of its dynamic parameters.

TAB LE C . 4 Some WSMan dynamic parameters

Name Supported cmdlets Description

Address Get-Item Specifi es an address for the selected
listener. This value can be bound to * (all
IP addresses), IP: (followed by a specifi c
IPv4 or IPv6 address), or MAC: (followed by
a specifi c MAC address).

AllowRemoteShellAccess Get-Item, Set-Item Enables access to remote shells. The
default value is true.

AllowUnEncrypted Get-Item, Set-Item Allows the client to request unencrypted
traffi c. As the name suggests, the client
defaults to requiring encrypted data.

Certificate Get-Item, Set-Item Allows certifi cates to be used for authenti-
cation purposes.

Port Get-Item, Set-Item Defi nes the listener’s TCP port, within a
range of 1 - 65535.

bapp03.indd 321bapp03.indd 321 4/21/2011 1:48:42 PM4/21/2011 1:48:42 PM

3 2 2 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

For a detailed list of the WSMan dynamic parameters, see the following site:

http://technet.microsoft.com/en-us/library/dd819476.aspx

Work with Additional Providers

Other Microsoft teams and other vendors are creating their own providers

to further help automate administration. As mentioned in Chapter 10, the

WebAdministration module makes it easy to manage IIS at the command line.

Other providers that may be of interest to you as an administrator include providers

for Remote Desktop Services, BizTalk, Exchange Server, and Windows Mobile. Some

of these providers may be installed with the soft ware package, as is the case with

Exchange Server. Others may be available when a server role is enabled, as is the case

with Remote Desktop Services. Finally, you can fi nd others via a search engine online

and install them once downloaded, as is the case with BizTalk and Windows Mobile.

N O T E Although this book covers Windows Server 2008 R2, the WebAdministration
provider is also available for IIS 7. However, in order to install the WebAdministration
provider for IIS 7, you have to add it using the Add-PSSnapIn cmdlet. You can download
the IIS 7 PowerShell snap-in from www.iis.net/download/PowerShell.

Install and Remove Providers

Providers can be loaded via two methods — modules and snap-ins. Appendix E

explains how to create your own custom modules and snap-ins. When you import

a custom module, such as the WebAdministration module, you automatically get

everything in the module, including providers. So when you run Import-Module

WebAdministration, you get the beauty of navigating the IIS setup through the

IIS: drive. Snap-ins are just as easy to work with. Use the Add-PsSnapin cmdlet

to add the snap-in to your session.

Removing providers is as easy as installing them. If you imported the provider

via a module, you can remove the provider when you remove the module via the

Remove-Module cmdlet. If you added the provider via a snap-in, you can remove

the provider via Remove-PSSnapIn cmdlet. If you want to remove only a drive

created by a provider, you can use the Remove-PSDrive cmdlet.

One thing to note about modules vs. snap-ins is that modules are the more modern

way of deploying providers, cmdlets, and functions. Appendix E discusses further

diff erences between modules and snap-ins.

bapp03.indd 322bapp03.indd 322 4/21/2011 1:48:42 PM4/21/2011 1:48:42 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 2 3

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

Create Your Own Provider

Despite all the providers for management tasks, you may have an idea for creating

your own provider. Programming your own provider requires some developer

experience, because the tools to write them purely in PowerShell are still being

developed. You need to reference System.Management.Automation.Provider

in your Visual Studio Class Library project. Many of the objects discussed in this

section come from this library.

Understand Basic Provider Concepts
In addition to the provider basics discussed earlier, you need to understand a few

more concepts before creating your own provider. You will look at the functionality,

paths, supported cmdlets, and help fi le structure before you build your own custom

provider.

Provider Functionality

When programming your provider, you need to state the functionality it supports

by inheriting from a base class or interface. Table C.5 explains the base classes and

interfaces that can be derived from.

TAB LE C . 5 Functionality

Type Base Class/Interface Description

Container-

Enabled

ContainerCmdletProvider Allows users to manage containers

Content-

Enabled

IContentCmdletProvider Allows users to manage items’ content;
allows getting, setting, and clearing
content

Drive-

Enabled

DriveCmdletProvider Defi nes what drives are available to the
user and whether drives can be added or
removed

Item-

Enabled

ItemCmdletProvider Allows users to manage the items in the
data store; allows getting, setting, and
clearing items

Navigation-

Enabled

NavigationCmdletProvider Allows users to move items in the data
store

Property-

Enabled

IPropertyCmdletProvider,

IDynamicPropertyCmdletProvider

Allows users to manage items’ properties;
allows getting, setting, clearing, remov-
ing, moving, and renaming

bapp03.indd 323bapp03.indd 323 4/21/2011 1:48:42 PM4/21/2011 1:48:42 PM

3 2 4 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Provider Paths

Because your provider will be accessing a data store at some time, it needs to

support paths. Table C.6 explains the types of paths that a provider can support.

TAB LE C . 6 Provider paths

Type Description

Drive-Qualified Combines the Windows PowerShell drive, the container and any subcon-
tainers, and the object name. For example: D:\Projects\PowerShell.

Provider-Qualified Allows PowerShell to initialize and uninitialize your object. These start
with the provider name. For example: FileSystem::\\netserver\
shared\folder.

Provider-Direct Allows remote access to your provider. For example, the Registry pro-
vider supports \\remoteserver\registrypath.

Provider-Internal Allows accessing data via non-PowerShell APIs. This is the part after :: in
the provider-qualifi ed path. So, in line with the provider-qualifi ed example,
the provider-internal path would be \\netserver\shared\folder.

Provider Cmdlet and Cmdlet Parameters

In addition to functionality and paths, there are certain cmdlets that can be used in

providers. Many of these cmdlets are described throughout the book. Table C.7

breaks them down into diff erent categories and includes some notes on their

implementations.

TAB LE C .7 Provider cmdlets

Category Cmdlet name Notes

PSDrive
(DriveCmdletProvider)

Get-PSDrive Does not need any overrides

New-PSDrive Overrides NewDrive and
NewDriveDynamicParameters

Remove-PSDrive Overrides RemoveDrive

Item
(ItemCmdletProvider)

Clear-Item Overrides ClearItem and
ClearItemDynamicParameters

Copy-Item Overrides CopyItem and
CopyItemDynamicParameters

Get-Item Overrides GetItem and
GetItemDynamicParameters

bapp03.indd 324bapp03.indd 324 4/21/2011 1:48:42 PM4/21/2011 1:48:42 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 2 5

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

Category Cmdlet name Notes

Get-ChildItem Overrides GetChildItems,
GetChildItemsDynamicParameters,
GetChildNames,
GetChildNamesDynamicParameters

Invoke-Item Overrides InvokeDefaultAction

Move-Item Overrides MoveItem and
MoveItemDynamicParameters

New-Item Does not need any overrides

Remove-Item Overrides RemoveItem and
RemoveItemDynamicParameters

Rename-Item Overrides RenameItem and
RenameItemDynamicParameters

Set-Item Overrides SetItem and
SetItemDynamicParameters

Item content
(IContentCmdletProvider)

Add-Content Does not need any overrides

Clear-Content Overrides ClearContent and
ClearContentDynamicParameters

Get-Content Overrides GetContentReader and
GetContentReaderDynamicParameters

Set-Content Overrides GetContentWriter and
GetContentWriterDynamicParameters

Item property Clear-

ItemProperty

Overrides IPropertyCmdletProvider
.ClearProperty and
IPropertyCmdletProvider

.ClearPropertyDynamicParameters

Copy-

ItemProperty

Overrides
IDynamicPropertyCmdletProvider

.CopyProperty and
IDynamicPropertyCmdletProvider

.CopyPropertyDynamicParameters

Get-

ItemProperty

Overrides IPropertyCmdletProvider
.GetProperty and
IPropertyCmdletProvider

.GetPropertyDynamicParameters

Move-

ItemProperty

Overrides
IDynamicPropertyCmdletProvider

.MoveProperty and
IDynamicPropertyCmdletProvider

.MovePropertyDynamicParameters

(continues)

bapp03.indd 325bapp03.indd 325 4/21/2011 1:48:43 PM4/21/2011 1:48:43 PM

3 2 6 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Category Cmdlet name Notes

New-

ItemProperty

Overrides
IDynamicPropertyCmdletProvider

.NewProperty and
IDynamicPropertyCmdletProvider

.NewPropertyDynamicParameters

Remove-

ItemProperty

Overrides
IDynamicPropertyCmdletProvider

.RemoveProperty and
IDynamicPropertyCmdletProvider

.RemovePropertyDynamicParameters

Rename-

ItemProperty

Overrides
IDynamicPropertyCmdletProvider

.RenameProperty and
IDynamicPropertyCmdletProvider

.RenamePropertyDynamicParameters

Set-

ItemProperty

Overrides IPropertyCmdletProvider
.SetProperty and
IPropertyCmdletProvider

.SetPropertyDynamicParameters

Location Get-Location Does not need any overrides

Set-Location Does not need any overrides

Push-Location Does not need any overrides

Pop-Location Does not need any overrides

Path Join-Path Overrides NavigationCmdletProvider
.MakePath

Split-Path Does not need any overrides

Convert-Path Does not need any overrides

Resolve-Path Does not need any overrides

Test-Path Overrides ItemCmdletProvider
.ItemExistsDynamicParameters

Provider Cmdlet Help

PowerShell has a great internal help system for fi guring out the language. Adding

Get-Help support to provider cmdlets is easy to do once you understand the

format. For more information on writing help fi les, see Appendix E.

TAB LE C .7 (continued)

bapp03.indd 326bapp03.indd 326 4/21/2011 1:48:43 PM4/21/2011 1:48:43 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 2 7

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

Build a Custom Provider
It’s time to bring all the previous knowledge together and write a provider! As

noted earlier, there are tools that are being developed to write your providers in

PowerShell, but they are not stable as of this writing. Since these tools are still in

beta, you will create your custom provider in Visual Studio 2010 using C#. For

this example, you are taking the module approach of working with providers, as

opposed to working with a snap-in.

Before you get started writing code, let’s take a look at what the goals are for

this provider. For this appendix, you will look at the basics of implementing

a provider with the premise of being able to work with Windows 7 Libraries,

including Documents, Pictures, and Music. Th e sample code in this book allows

you to change directories to a special drive for these libraries and list what is in

the Libraries. Appendix D covers custom cmdlets related to these Windows 7

Libraries that would be included in a module. Appendix E walks through creat-

ing that module to distribute this Windows 7 Library provider and the custom

cmdlets.

To work with these Libraries, you need to get the Windows API code pack version 1.1

or higher for Microsoft .NET Framework:

http://code.msdn.microsoft.com/WindowsAPICodePack

Once you have the code pack downloaded and unpacked, you are ready to get into

the code. To get started, create a new project within Visual Studio, complete with the

necessary references, by following these steps:

 1. Open Visual Studio.

 2. Select File ‚ New Project.

 3. Change the following settings:

 a. Th e target framework should be .NET Framework 3.5. Note: .NET

Framework 4.0 will not work, as PowerShell 2.0 console and ISE run on the

.NET 2.0 core rather than the .NET 4.0 core.

 b. Th e type of project should be Class Library.

Your screen should look similar to Figure C.7.

 4. Click OK.

bapp03.indd 327bapp03.indd 327 4/21/2011 1:48:43 PM4/21/2011 1:48:43 PM

3 2 8 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

F I G U R E C .7 New Project window

At this point, you should be in the application. To access the PowerShell libraries,

you need to add a couple references. To do so, follow these steps:

 1. Open the Solution Explorer. You can access it via the View ‚ Solution

Explorer menu.

 2. Right-click the References folder, and select Add Reference. A window similar

to Figure C.8 should appear.

F I G U R E C . 8 Add Reference window

bapp03.indd 328bapp03.indd 328 4/21/2011 1:48:43 PM4/21/2011 1:48:43 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 2 9

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

 3. Click the .NET tab. Select System.Management, and then click OK.

 4. Repeat step 2. Th is time, click the Browse tab.

 5. Navigate to the following path: C:\Program Files\Reference

Assemblies\Microsoft\Windows PowerShell\v1.0. Note that if you

are working on a 64-bit machine, you may need to check in the Program Files

(x86) folder rather than the Program Files folder.

 6. Select System.Management.Automation.dll, and then click OK.

At this point, System.Management and System.Management.Automation

should appear in your references list, as shown in Figure C.9.

 F I G U R E C . 9 References list in the Solution Explorer

 7. Using steps 5 and 6 as a guide, add references to Microsoft

.WindowsAPICodePack.dll, Microsoft.WindowsAPICodePack

.Shell.dll, and Microsoft.WindowsAPICodePack

.ShellExtensions.dll, which should be in the folder where you have

unpacked the Windows API code pack for Microsoft .NET Framework.

At this point, all the references should be set up at the project level. Now let’s look

at the code. First, set up the using statements, specifying which namespaces to

refer to. Because this example uses the fi le system (specifi cally fi les and directories),

include a reference to System.IO. Also, because this example references collec-

tions, include a reference to System.Collections.ObjectModel. Th e other

namespaces listed here should look familiar:

using System.Collections.ObjectModel;

using System.IO;

using System.Management.Automation;

bapp03.indd 329bapp03.indd 329 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

3 3 0 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

using System.Management.Automation.Provider;

using Microsoft.WindowsAPICodePack;

using Microsoft.WindowsAPICodePack.Shell;

Once the namespaces are set up, you need to write the code to name your

provider and declare the provider type. In this example, you will call the provider

Win7LibraryProvider. Th e namespace declaration will be used in Appendix D

as well. Here is what the provider’s namespace and naming code should look like:

namespace Win7LibraryProvider

{

 [CmdletProvider(“Win7LibraryProvider”,i
ProviderCapabilities.None)]

 public class Win7LibraryProvider :i
NavigationCmdletProvider

 {

Th e CmdletProvider attribute tells the compiler that this Win7LibraryProvider

class is going to be a provider for PowerShell. Th e ProviderCapabilities option

allows you to specify which capabilities, as noted in Table C.1, are supported. For

this example, you will leave it at None. However, this book’s companion web page

includes examples of how to implement these provider capabilities.

Th is is an example of a NavigationCmdletProvider, which is also included in

that declaration. Table C.5 notes other types of providers that you can implement.

You need to set up some variables that will be used throughout this example. Set up

the following variables:

private string _defaultlibraryLocation = i
ShellLibrary.LibrariesKnownFolder.Path;

private string _libraryExtension = “.library-ms”;

private const string _pathSeparator = @”\”;

Th ese variables set up important default variables — the default library location, the

fi le extension for library fi les, and the path separator.

Ideally, the path structure you are going for is as follows:

lib:\LibraryName\

Since you know which drive you want to use (lib:), create the drive. To do this,

override the InitializeDefaultDrives() method and have it create the lib

drive. Here is the code for that:

bapp03.indd 330bapp03.indd 330 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 3 1

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

protected override Collection<PSDriveInfo>

InitializeDefaultDrives()

{

 Collection<PSDriveInfo> driveInfoCollection = i
new Collection<PSDriveInfo>();

 PSDriveInfo info = new PSDriveInfo(“lib”, i
this.ProviderInfo, _defaultlibraryLocation, i
“Libraries”, PSCredential.Empty);

 driveInfoCollection.Add(NewDrive(info));

 return driveInfoCollection;

}

Th e PSDrive line is confi guring the lib: drive, and the line aft er it is adding it to

the collection of drives. Finally, InitializeDefaultDrives returns the collec-

tion of drives that the provider is using.

Now that the drive is created, you need to work with its path and items. For this

example, the drive level (lib:) is considered the Root, the library level of the path

will be the Library, and everything else will not be a concern, so you will call it

Invalid. First, set up the path segment types:

private enum PathType

{

 Root,

 Library,

 Invalid

}

Next, create a method to determine the path and type of segment you may be

working with:

private PathType GetTypeFromPath(string path)

{

 bool bPathTest = i
(path == (_defaultlibraryLocation + “\\”));

 path = GetLibraryFromPath(path);

 string[] pathSegments = i
path.Split(_pathSeparator.ToCharArray());

 PathType pathType;

 if (path.Trim() == string.Empty || bPathTest)

 pathType = PathType.Root;

bapp03.indd 331bapp03.indd 331 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

3 3 2 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

 else if (pathSegments.Length == 1)

 pathType = PathType.Library;

 else

 pathType = PathType.Invalid;

 return pathType;

}

Th e previous code mentions a method called GetLibraryFromPath(string).

Th is method will get the library name based on a path. Th e code for this is as follows:

protected string GetLibraryFromPath(string path)

{

 return path.Replace(_defaultlibraryLocation + “\\”,i
“”);

}

To add PowerShell support to this NavigationCmdletProvider parameter, over-

ride IsValidPath(string). Th is code determines whether a path is valid. Th e

following code states that paths that are null or empty, as well as paths specifi ed as

Invalid, are invalid:

protected override bool IsValidPath(string path)

{

 bool IsValid = true;

 if (string.IsNullOrEmpty(path))

 IsValid = false;

 else

 {

 PathType pathType = GetTypeFromPath(path);

 if (pathType == PathType.Invalid)

 IsValid = false;

 }

 return IsValid;

}

Although this is what you are using for the defi nition of valid in this example, you

can include the logic for any particular pattern and defi ne a path’s validity based on

your own business requirements.

Th e following code determines whether an item is a container:

protected override bool IsItemContainer(string path)

{

bapp03.indd 332bapp03.indd 332 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 3 3

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

 bool IsContainer = true;

 PathType ContainerPathType = GetTypeFromPath(path);

 if (ContainerPathType == PathType.Invalid)

 IsContainer = false;

 return IsContainer;

}

Code needs to be in place to determine whether an item exists. Th is code is run at

various points, including whenever you try to use tab completion and when you run

a directory listing on the current folder. In this case, based on the path type, you are

checking to see whether the library exists:

protected override bool ItemExists(string path)

{

 PathType pathType = GetTypeFromPath(path);

 bool TestPath = false;

 if (pathType == PathType.Invalid)

 TestPath = false;

 else

 {

 switch (pathType)

 {

 case PathType.Root:

 TestPath = true;

 break;

 case PathType.Library:

 try

 {

 ShellLibrary lib = i
ShellLibrary.Load(path, false);

 TestPath = true;

 }

 catch

 {

 TestPath = false;

 }

 break;

 default:

 TestPath = false;

 break;

 }

bapp03.indd 333bapp03.indd 333 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

3 3 4 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

 }

 return TestPath;

}

Executing dir on a path runs the Get-ChildItem cmdlet. Use the following code

to support Get-ChildItem in your provider:

protected override void GetChildItemsi
(string path, bool recurse)

{

 if (HasChildItems(path))

 {

 PathType pathType = GetTypeFromPath(path);

 switch (pathType)

 {

 case PathType.Root:

 string[] Files =i
Directory.GetFiles(i
Path.Combine(_defaultlibraryLocation, path), i
“*” + _libraryExtension);

 foreach (string FileName in Files)

 {

 FileInfo FileDetails = new i
FileInfo(FileName);

 PSDriveInfo thisDriveInfo = new i
PSDriveInfo(FileDetails.Name.Replace(_libraryExtension,i
“”), this.ProviderInfo, FileName, i
FileDetails.Name.Replace(_libraryExtension, “”) +i
 “ Library”, PSCredential.Empty);

 WriteItemObject(thisDriveInfo, i
Path.Combine(path, FileName), true);

 }

 break;

 case PathType.Library:

 string LibraryName = i
GetLibraryFromPath(path);

 ShellLibrary lib = ShellLibrary.Load(path, i
 _defaultlibraryLocation, false);

 WriteItemObject(lib, path, true);

bapp03.indd 334bapp03.indd 334 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 3 5

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

 break;

 case PathType.Invalid:

 default:

 WriteWarning(“This has not been implemented.”);

 break;

 }

 }

}

If the path has child items, then the child items will be listed. Otherwise, nothing is

done. Th e HasChildItems code is as follows:

protected override bool HasChildItems(string path)

{

 bool HasChildren = false;

 PathType pathType = GetTypeFromPath(path);

 switch (pathType)

 {

 case PathType.Root:

 string[] Files = Directory.GetFiles(i
Path.Combine(_defaultlibraryLocation, path),i
“*” + _libraryExtension);

 if (Files.Length > 0)

 HasChildren = true;

 break;

 case PathType.Library:

 ShellLibrary lib = ShellLibrary.Load(path,i
 false);

 if (lib.Count > 0)

 HasChildren = true;

 break;

 case PathType.Invalid:

 default:

 WriteWarning(“Cannot determine child items.i
Not implemented.”);

 break;

 }

 return HasChildren;

}

bapp03.indd 335bapp03.indd 335 4/21/2011 1:48:44 PM4/21/2011 1:48:44 PM

3 3 6 A P P E N D I X C • P R O V I D I N G F O R P O W E R S H E L L

Th e GetChildItems code is displaying the Library names if the path is Root. If

you are running dir on a Library, it should output the list of items. Otherwise, it

will display the warning that the feature hasn’t been implemented. Th is is done to

add some simplicity to this example. WriteItemObject(object item, string

path, bool isContainer) is the way to write objects to the PowerShell session

when dealing with GetChildItems.

USING WARNING MESSAGES

When writing a provider, it might help to see when these methods are called. Try using
the following command in your methods to tell when a method is getting called:

WriteWarning(“MethodName”);

An example of this is shown here.

Finally, for those piecing these snippets together in Visual Studio while reading this,

make sure to include the closing brackets for the class and the namespace declara-

tions, as follows:

}

}

N O T E This example simply shows the general layout of a provider. This book’s com-
panion web page off ers a more complete version of this code.

bapp03.indd 336bapp03.indd 336 4/21/2011 1:48:45 PM4/21/2011 1:48:45 PM

 C R E A T E Y O U R O W N P R O V I D E R 3 3 7

Pr
ov

id
in

g
fo

r
Po

w
er

Sh
el

l

 APPENDIX C

With the little work you have done so far, you have a provider to navigate the

Libraries. If you want to create, delete, and work further with libraries, continue to

Appendix D. If you are eager to deploy your provider, look at Appendix E, where

you can learn about snap-ins and modules.

If you are more comfortable in PowerShell than in C#, you may want to check out

the PowerShell Script Provider at http://psprovider.codeplex.com/.

Now that you have built a sample provider, use this as a guide for when you are

ready to create your own provider.

bapp03.indd 337bapp03.indd 337 4/21/2011 1:48:45 PM4/21/2011 1:48:45 PM

bapp03.indd 338bapp03.indd 338 4/21/2011 1:48:45 PM4/21/2011 1:48:45 PM

APPENDIX D

Custom Cmdlets and
Advanced Functions

IN THIS APPENDIX, YOU WILL LEARN TO:

CHOOSE BETWEEN AN ADVANCED
FUNCTION AND A CMDLET 340

Parameters and Attributes. 340

Output . 346

Runtime Life Cycle . 347

CREATE AN ADVANCED FUNCTION 348

CREATE A CUSTOM CMDLET 349

bapp04.indd 339bapp04.indd 339 4/21/2011 1:49:35 PM4/21/2011 1:49:35 PM

APPENDIX D

lthough you can do plenty of things with existing commands, you may fi nd a need

that is not fulfi lled by any existing commands. Th is is when you need to look into

advanced functions and custom cmdlets. Th e fi rst thing you will look at in this

appendix is how to decide which to use.

Aft er comparing and contrasting cmdlets and functions, I will show how you can

create advanced functions to fi ll some of the gaps you saw earlier. Specifi cally, you

will improve on the Get-Function example used in Chapter 4.

In Appendix C, I covered writing a custom provider for the libraries feature in

Windows 7. In this appendix, you will create some custom cmdlets to work with

those libraries. Finally, in Appendix E, you will deploy your cmdlets and provider

from the previous appendixes.

Choose Between an Advanced Function and a Cmdlet

Functions and cmdlets may seem similar in functionality, but they are created

 diff erently. Functions are scripts written in PowerShell, whereas cmdlets are typi-

cally written in a .NET language and then compiled. Although you have to use

the verb-noun naming convention for cmdlets, it is not mandatory to follow that

convention for functions. Cmdlets and advanced functions are also similar in many

ways, including attributes, parameters, output, and runtime life cycle.

Parameters and Attributes
Both custom functions and custom cmdlets use attributes to identify important

parts of their code. Th e CmdletBinding attribute of functions — introduced

in PowerShell 2.0 — is similar to the Cmdlet attribute of cmdlets. If you use the

CmdletBinding attribute on a function and create an advanced function, you

unlock a lot of the Cmdlet capabilities and features. Both cmdlets and advanced

functions use the Parameter attribute to mark their parameters, specifying more

details via attribute keywords. Although these attribute keywords are optional,

they are benefi cial to use. Table D.1 shows the shared attribute keywords for the

Parameter attribute.

A

bapp04.indd 340bapp04.indd 340 4/21/2011 1:49:38 PM4/21/2011 1:49:38 PM

 C H O O S E B E T W E E N A N A D V A N C E D F U N C T I O N A N D A C M D L E T 3 4 1

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

TAB LE D.1 Parameter attribute keywords

Keyword Description

Mandatory Notes whether a parameter is required when the
command is run. If this is omitted, the parameter is
optional.

Position Specifi es the order of the parameter in the command.
If this is omitted, the parameter is considered a
named parameter and must be referenced by name in
commands. If the position is stated, the parameter is
considered a positional parameter and does not need its
name specifi ed.

HelpMessage Provides a message to be displayed within context.
For example, if you run a cmdlet that has parameters
without its parameters, you may get prompted for the
parameter values. This message is displayed then. Note
that this is not the message that is displayed when you
run Get-Help.

ParameterSetName Specifi es the parameter set for a parameter. For more
information, see the note on parameter sets later in this
appendix.

ValueFromPipeline Specifi es whether the value can come from an incoming
pipeline object.

ValueFromPipelineByPropertyName Specifi es whether the value can come from a property
of an incoming pipeline object.

ValueFromRemainingArguments Specifi es whether the parameter accepts all remaining
arguments for this parameter.

HelpMessageBaseName Specifi es the name of a resource assembly that has help
messages for international support. If this is used, the
HelpMessageResourceID attribute keyword must
also be used. Note that this message is displayed only
when the command is run and does not appear when
you run Get-Help.

HelpMessageResourceID Specifi es the resource identifi er for the help message.

When creating parameters, be it for a cmdlet or an advanced function, you can-

not use certain parameter names because they belong to common parameters,

bapp04.indd 341bapp04.indd 341 4/21/2011 1:49:38 PM4/21/2011 1:49:38 PM

3 4 2 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

parameters added to all cmdlets, and CmdletBinding functions at runtime by

default. Th ose names include the following:

 Confirm

 Debug

 ErrorAction

 ErrorVariable

 OutVariable

 OutBuffer

 UseTransaction

 Verbose

 WarningAction

 WarningVariable

 WhatIf

Th ere are a couple other things to be aware of when creating parameters. Th e

parameter needs to be marked as public in cmdlets to be seen by PowerShell. If a

parameter is not marked public, it is recognized as internal and cannot be seen

by PowerShell. Also, type selection makes a huge diff erence in terms of validation.

Use .NET types rather than assigning all of your parameters to a string in order to

get eff ective validation.

You can also use the Alias attribute to create aliases for a parameter. Suppose you

have a parameter named Overwrite. You may want to use shorter versions in the

command line, such as OW or Ovrwrt. Use the Alias attribute to specify these

aliases in a comma-delimited string, as shown here:

[Alias(“OW, Ovrwrt”)]

[Parameter()]

public SwitchParameter Overwrite

{

 get { return _overwrite; }

 set { _overwrite = value; }

}

bapp04.indd 342bapp04.indd 342 4/21/2011 1:49:38 PM4/21/2011 1:49:38 PM

 C H O O S E B E T W E E N A N A D V A N C E D F U N C T I O N A N D A C M D L E T 3 4 3

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

SWITCH PARAMETERS

The previous code sample shows a parameter of the type SwitchParameter. If this
type of parameter is present in the command line, then the value is true. Otherwise,
when omitted, the parameter is false. This is good for cases when something is either
true or false. For cases where a value may be true, false, or unspecifi ed, use a nullable
Boolean (Nullable<bool>) parameter. This is a recommendation in Microsoft’s
“Strongly Encouraged Development Guidelines” documentation, which is available
here:

http://msdn.microsoft.com/en-us/library/dd878270(VS.85).aspx

A unique feature of PowerShell is the ability to work with parameter sets. Th ese

parameter collections give the ability to return diff erent results based on the sup-

plied parameters. Although you can use multiple parameter sets, each set must have

at least one unique parameter. It does not have to be specifi ed for commands that

can run without parameters, but it is preferred to use a mandatory parameter as the

unique parameter. If multiple positional parameters are included in a parameter set,

then their positions will have to be explicitly declared in the parameter set — one

parameter per position. If a parameter is not marked as part of a specifi c parameter

set, it will appear in all sets. Finally, with regard to taking values from the pipeline,

multiple parameters can be marked with ValueFromPipelineByPropertyName

set to true; however, only one parameter can be marked with ValueFromPipeline

set to true.

When using multiple parameter sets, you can set a default parameter set using the

DefaultParameterSetName cmdlet attribute. Th e cmdlet attributes, which come

from CmdletBindingAttribute for advanced functions and CmdletAttribute

for cmdlets, defi ne the cmdlet name and some cmdlet capabilities. Table D.2

describes these attributes and which types support each one.

In addition to parameter and cmdlet attributes, cmdlets and advanced functions

also share validation attributes. Th ese help validate the parameters before attempt-

ing to use them. Table D.3 describes the validation attributes.

bapp04.indd 343bapp04.indd 343 4/21/2011 1:49:38 PM4/21/2011 1:49:38 PM

3 4 4 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

TAB LE D. 2 Cmdlet attributes

Name Description Supported by

VerbName Name of the cmdlet verb. This is
required for cmdlets.

CmdletAttribute

NounName Name of the cmdlet noun. This is
required for cmdlets.

CmdletAttribute

SupportsTransactions Indicates whether the cmdlet
can be used in transactions — a
feature that allows you to group
actions and then run them
together and commit the actions
only if all actions complete
successfully. This is optional.

CmdletAttribute,
CmdletBindingAttribute

SupportsShouldProcess Indicates whether the
cmdlet supports calls to the
ShouldProcess method. This is
optional. An example is provided
in the “Create a Custom Cmdlet”
section of this appendix.

CmdletAttribute,
CmdletBindingAttribute

ConfirmImpact Sets a threshold for calling to the
ShouldProcess. This is optional.
An example is provided in the
“Create a Custom Cmdlet” section
of this appendix.

CmdletAttribute,
CmdletBindingAttribute

DefaultParameterSetName Sets the default parameter set
name. This is optional.

CmdletAttribute,
CmdletBindingAttribute

TAB LE D. 3 Validation attributes

Name Description

AllowNull Allows a parameter to have a null value. This can
be helpful if you want the parameter to have a
null value and PowerShell’s type conversion isn’t
treating the $null input as expected.

AllowEmptyString Allows a parameter to be an empty string (“”),
even if it is mandatory.

AllowEmptyCollection Allows a parameter to be an empty collection, even
if it is mandatory.

ValidateNotNull Does not allow a parameter to have a null value.
Empty values are allowed.

ValidateNotNullOrEmpty Does not allow a parameter to have a null or empty
value.

bapp04.indd 344bapp04.indd 344 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

 C H O O S E B E T W E E N A N A D V A N C E D F U N C T I O N A N D A C M D L E T 3 4 5

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

Name Description

ValidateCount Sets the minimum and maximum numbers of
arguments for the parameter. For example, if a
parameter should take two to four arguments,
you would note it with the following attribute:
[ValidateCount(2,4)].

ValidateLength Sets the minimum and maximum parameter
length. For example, if you had a 128-bit IPv6
address written in hexadecimal with colons
as a parameter, it should be no longer than 39
characters. This attribute would be noted as
[ValidateLength(0,39)].

ValidatePattern Uses a regular expression to verify that the
parameter matches a particular pattern. If
the parameter is a collection, each item in
the collection must match the pattern. For
example, if you had to validate a parameter
for a port number, you could use the attribute
[ValidatePattern(“^\d*$”)] to verify the
value is solely digits. If the parameter does not
match the pattern, PowerShell will generate an error.

ValidateRange Sets the minimum and maximum values
acceptable for the parameter. For example,
if you had a script checking individual octets
of an IPv4 address, you would want a value
between 0 and 255. The attribute would look like
[ValidateRange(0,255)].

ValidateSet Sets a specifi c set of values that are acceptable for
the parameter. For example, if you are writing a
script to check a user’s groups, you may want to
specify that only administrators and power users
can do a particular action. If you have a user group
parameter, you could validate it like so:
[ValidateSet(“Administrators”,

”Power Users”)].

ValidateScript Sets a script to handle the parameter validation. When
regular expressions, ranges, lengths, and counts are
not enough, you may need to use a script to validate
the parameter. Using the IPv4 octets example, you
could also use [ValidateScript({$_ -le 255
- and $_ -ge 0})].

Something else to keep in mind with PowerShell parameters is the concept of

dynamic parameters. Th ese special parameters appear only when certain conditions

are met. As mentioned in Appendix C, the CodeSigningCert parameter appears

bapp04.indd 345bapp04.indd 345 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

3 4 6 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

only when the Path parameter references the cert: path. You can create dynamic

parameters based on your business requirements.

Output
Although parameters are helpful for getting user input, there is also the question

of output. Cmdlets and advanced functions have similar ways for writing output.

Table D.4 describes some of these writing cmdlets.

TAB LE D. 4 Writing methods

Name Description

WriteCommandDetail Writes a string to the execution log. To see this in the Windows
PowerShell log, make sure that LogPipelineExecutionDetail
is turned on. Once that is turned on, these entries will appear under
“Pipeline execution detail.”

WriteDebug Writes a string to the host. This allows you to provide debugging
information for their cmdlets.

WriteError Writes an ErrorRecord of nonterminating errors to the error
pipeline and continues processing. If you have an error that causes
termination, look into using the ThrowTerminatingError
method.

WriteWarning Writes a warning string to the host. Although the output is normally
discarded, it can be seen with -Verbose and -Debug command
options or confi gured by the $WarningPreference shell variable.

WriteProgress Writes a ProgressRecord of the command to the host.

WriteObject Writes an object to the output pipeline. Note that this returns a single
object, which can include an enumerable object.

WriteVerbose Writes a user-level message to the host. This should not be used for
error messages, but it can be used to let a user know what is going on
while a command is processing.

Th e following example shows the diff erent ways that some of these Write methods

display their output (see Figure D.1):

[Cmdlet(VerbsCommunications.Write, “Sample”)]

public class WriteExamples : Cmdlet

{

 protected override void ProcessRecord()

 {

 WriteDebug(“This is debugging information”);

 WriteWarning(“This is a warning”);

bapp04.indd 346bapp04.indd 346 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

 C H O O S E B E T W E E N A N A D V A N C E D F U N C T I O N A N D A C M D L E T 3 4 7

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

 WriteVerbose(“This is verbose”);

 WriteObject(this);

 }

}

F I G U R E D.1 Write-Sample example

Runtime Life Cycle
In addition to attributes and parameter functionality, advanced functions and cmd-

lets also have a similar runtime life cycle, as seen with the input processing methods.

When these commands are run, they execute code in the order shown in Table D.5.

TAB LE D. 5 Life cycle of input processing methods

Phase Cmdlet method Advanced function method

Starting BeginProcessing Begin

Processing ProcessRecord Process

Ending EndProcessing End

Stopping (when the cmdlet is
stopped in the middle of running,
for example, by pressing Ctrl+C)

StopProcessing N/A (currently not supported in
advanced functions)

You can write a simple function without referencing these methods, but it helps

to tap into these methods to inject logic to handle parameters, for example, before

bapp04.indd 347bapp04.indd 347 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

3 4 8 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

processing the action. Another time this can be helpful is if you are trying to debug

a function and want to see whether it is hitting each of these phases; you could

insert write statements to write out something in each phase to indicate that the

function made it through that phase. A simple example and its output of this is

shown here (see Figure D.2):

function DoStuff{

 Begin{

 Write-Host “Beginning DoStuff”

 }

 Process{

 Write-Host “Processing DoStuff”

 }

 End{

 Write-Host “Ending DoStuff”;

 }

}

F I G U R E D. 2 Life cycle in action

How can you determine which to use when the CmdletBinding attribute

makes functions complementary to cmdlets? If you want to unlock the power

of .NET and work with .NET libraries that may not have been designed for

PowerShell, you will need to use a cmdlet written in a .NET language that can

be compiled.

As mentioned throughout this book, PowerShell comes with a wealth of help. If you

want to learn more about functions vs. cmdlets, run Get-Help about_Functions_

Advanced and Get-Help about_Functions_CmdletBindingAttribute.

Create an Advanced Function

In Chapter 4, I noted that there is no Get-Function cmdlet in PowerShell.

However, I showed how to create a function to list all the functions with this code:

Function Get-Function { Get-ChildItem -path function: }

bapp04.indd 348bapp04.indd 348 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

 C R E A T E A C U S T O M C M D L E T 3 4 9

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

Although this function is helpful for listing functions in general, it does not support

wildcards. If you tried running Get-Function m*, you would still get a list of all

the functions, not functions whose names start with the letter m. Th is is because

the code between the brackets does not take any user input into consideration.

However, now that you have an understanding of parameters, you can create a func-

tion with a parameter to take in user input. Using the building blocks from this

appendix and throughout this book, you can come up with something like this:

Function Get-Function{

 Param(

 [parameter(Mandatory=$true, i
ValueFromPipeline=$true)]

 [String[]]

 $FunctionName

)

 Get-ChildItem -path function: | i
Where-Object {$_.Name -like $FunctionName}

}

Now, if you run Get-Function m*, you should get something similar to

Figure D.3.

F I G U R E D. 3 Get-Function with wildcard support

While writing your custom functions, you may want to fi nd out more about what you are

working with. Get-Help about_Functions_Advanced_Methods and Get-Help

about_Functions_Advanced_Parameters cover more about these building blocks.

Create a Custom Cmdlet

Th e focus of this book is on Windows Server 2008 R2, but you may fi nd yourself

dealing with Windows 7 clients. In Appendix C, I showed how to create a provider

to work with Windows 7’s libraries feature. Now I’ll show how to create some

bapp04.indd 349bapp04.indd 349 4/21/2011 1:49:39 PM4/21/2011 1:49:39 PM

3 5 0 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

cmdlets to work with the Windows 7 libraries feature using the building blocks

described in this appendix.

To work with these libraries, you need to include a reference to the Windows API

Code Pack for Microsoft .NET Framework, which you can download here:

http://code.msdn.microsoft.com/WindowsAPICodePack

Th ese examples are written in C# and are being stored in a .cs fi le. Th e frame of

the .cs fi le looks like this:

using System.IO;

using System.Management.Automation;

using Microsoft.WindowsAPICodePack;

using Microsoft.WindowsAPICodePack.Shell;

namespace Win7LibraryProvider

{

// put cmdlet code here

}

What are some of the things you may want to do with these Windows 7 libraries

from PowerShell? Creating a new library and removing a library are a couple of the

common tasks that you may want to do. Th is fi rst custom cmdlet will create a new

library, which is why the cmdlet is named New-Library:

[Cmdlet(VerbsCommon.New, “Library”)]

public class NewLibrary : Cmdlet

{

 private string _libraryname;

 private string _path;

 private bool _overwrite;

 [Parameter(Mandatory = true, i
HelpMessage = “Name of the library to create”, i
Position = 0)]

 [ValidateNotNullOrEmpty]

 public string LibraryName

 {

 get { return _libraryname; }

 set { _libraryname = value; }

 }

bapp04.indd 350bapp04.indd 350 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

 C R E A T E A C U S T O M C M D L E T 3 5 1

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

 [Parameter(HelpMessage = “Folder path to createi
 the library (optional)”)]

 public string FolderPath

 {

 get { return _path; }

 set { _path = value; }

 }

 [Parameter(HelpMessage = “Whether to overwritei
 an existing library (optional)”)]

 public SwitchParameter Overwrite

 {

 get { return _overwrite; }

 set { _overwrite = value; }

 }

 protected override void ProcessRecord()

 {

 ShellLibrary library;

 if (string.IsNullOrEmpty(FolderPath))

 library = new ShellLibrary(LibraryName,i
 Overwrite);

 else

 library = new ShellLibrary(LibraryName,i
 FolderPath, Overwrite);

 }

}

Th e bulk of the code in this case is consumed by setting up the param-

eters. Th e fi rst parameter — LibraryName — is a mandatory string that will

always be the fi rst parameter. Since the library needs a name, I’m using the

ValidateNotNullOrEmpty attribute to tell PowerShell that this must be fi lled in.

If this parameter is null or empty, you will get an error like Figure D.4.

Th e second parameter in the code is the FolderPath string, which is an optional

parameter to set the path of the library. Th e third parameter is the Overwrite

switch parameter, specifying whether to overwrite an existing library.

Once the parameters are specifi ed, then you get into the actual action done by the

cmdlet via ProcessRecord. If the FolderPath string is null or empty, the library

is created in the default location. Otherwise, it is created in the specifi ed path.

bapp04.indd 351bapp04.indd 351 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

3 5 2 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

F I G U R E D. 4 Validation error

Th e HelpMessage attribute keyword is used for adding the text seen when looking

for help with a cmdlet. Th is appears only as part of the help prompts and does not

appear when Get-Help is run. Figure D.5 shows this help output.

F I G U R E D. 5 HelpMessage in action

Although the New-Library example shows some of the basics of custom cmdlets,

there are more things that can be done with a custom cmdlet. If you can add librar-

ies, then you should be able to remove them as well. Since removing a library cannot

bapp04.indd 352bapp04.indd 352 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

 C R E A T E A C U S T O M C M D L E T 3 5 3

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

be undone, it would be helpful to require confi rmation from the user before actually

removing the library. Th e following code for a Remove-Library cmdlet will do that:

[Cmdlet(VerbsCommon.Remove, “Library”, i
SupportsShouldProcess = true, i
ConfirmImpact = ConfirmImpact.High)]

public class RemoveLibrary : Cmdlet

{

 private string _libraryExtension = “.library-ms”;

 private string _defaultlibraryLocation = i
 ShellLibrary.LibrariesKnownFolder.Path;

 private string _librarylocation;

 private string _libraryname;

 [Parameter(Mandatory = true, i
HelpMessage = “Name of the library to remove”, i
Position = 0)]

 [ValidateNotNullOrEmpty]

 public string LibraryName

 {

 get { return _libraryname; }

 set { _libraryname = value; }

 }

 [Parameter(HelpMessage = “Location of the library to

remove”)]

 public string LibraryLocation

 {

 get { return _librarylocation; }

 set { _librarylocation = value; }

 }

 protected override void ProcessRecord()

 {

 if (base.ShouldProcess(“”, i
“Removing library ‘” + LibraryName + i
“’. This CANNOT be undone.”,”Removing a Library”))

 {

 if (string.IsNullOrEmpty(_librarylocation))

bapp04.indd 353bapp04.indd 353 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

3 5 4 A P P E N D I X D • C U S T O M C M D L E T S A N D A D V A N C E D F U N C T I O N S

 File.Delete(i
Path.Combine(_defaultlibraryLocation, LibraryName) +i
 _libraryExtension);

 else

 File.Delete(i
Path.Combine(_librarylocation, LibraryName) +i
 _libraryExtension);

 }

 }

}

A few things factor into displaying the confi rmation message. Th e

SupportsShouldProcess attribute keyword indicates that the cmdlet supports

ShouldProcess, which is the method that requests confi rmation before proceed-

ing. Th e ConfirmImpact attribute keyword — new in PowerShell 2.0 — indicates

how much of an impact the operation will make, based on what the developer

thinks. For this example, ConfirmImpact is set to High since the action removes

a fi le structure and cannot be undone. Th is keyword should be used only if

SupportsShouldProcess is set. By including SupportsShouldProcess and

ConfirmImpact, you enable the -whatif and -confirm parameters.

Although these are only a couple of custom cmdlets, you may want to see what other

cmdlets can be created to work with these libraries, such as for adding and remov-

ing locations to a library, listing the locations in a library, and changing the location

of the library’s default folder. Be sure to check the online companion site for other

custom cmdlets to work with the Windows 7 libraries feature (see Figure D.6). Th e

online examples also cover some of the topics mentioned in this appendix in more

detail.

 F I G U R E D. 6 Cmdlets on the online companion

bapp04.indd 354bapp04.indd 354 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

 C R E A T E A C U S T O M C M D L E T 3 5 5

Cu
st

om
 C

m
dl

et
s

an
d

A
dv

an
ce

d
Fu

nc
ti

on
s

 APPENDIX D

DISPLAYING CMDLET CONFIRMATION WITH CONFIRMIMPACT

Although ConfirmImpact allows for the -confirm parameter, it does not necessarily
mean that the confi rmation will appear by default. The trick to getting the confi rmation to
appear is for your cmdlet to have an equal or higher ConfirmImpact value compared to the
PowerShell session’s $ConfirmPreference value, which is High by default. For example,
if your cmdlet’s ConfirmImpact is set to Medium and you try to run it in your PowerShell
session, the confi rmation will not appear, because the cmdlet’s ConfirmImpact is lower
than the $ConfirmPreference. However, if your cmdlet’s ConfirmImpact is set to High,
the confi rmation will appear because the cmdlet’s ConfirmImpact is higher than or equal
to the $ConfirmPreference. Suppose you use the code for the Remove-Library cmdlet
and set its ConfirmImpact to Medium. The following example shows what happens when
the ConfirmImpact value is higher than the $ConfirmPreference value, what happens
when the ConfirmImpact value is lower than the $ConfirmPreference value with the
-confirm parameter, and fi nally what happens when ConfirmImpact is lower than the
$ConfirmPreference without the -confirm parameter.

Now that you have an understanding of what it takes to build your own functions

and cmdlets, use the examples here as guides for creating your own custom func-

tions and cmdlets. To learn more about distributing your custom functions and

cmdlets, see Appendix E.

bapp04.indd 355bapp04.indd 355 4/21/2011 1:49:40 PM4/21/2011 1:49:40 PM

bapp04.indd 356bapp04.indd 356 4/21/2011 1:49:41 PM4/21/2011 1:49:41 PM

APPENDIX E

Packaging PowerShell
Extensions

IN THIS APPENDIX, YOU WILL LEARN TO:

WORK WITH EXISTING SNAP-INS 358

CREATE A CUSTOM MODULE 361

Understand Module Concepts . 361

Build Your Module . 368

bapp05.indd 357bapp05.indd 357 4/21/2011 1:50:54 PM4/21/2011 1:50:54 PM

APPENDIX E

hile working with PowerShell, you may become comfortable enough to extend it to

meet your business needs. If so, you can develop custom providers, cmdlets, and

functions to share with other people. Perhaps you looked at the sample provider

in Appendix C or the sample functions and cmdlets in Appendix D and wondered

how you could export them to your own machine to work with them.

In PowerShell 1.0, the packaging mechanism for custom extensions was the snap-in.

In PowerShell 2.0, modules replace snap-ins. Th is chapter explores the diff erence

between snap-ins and modules and how to create custom modules. Th is chapter

also shows how to package custom functions for reuse.

Work with Existing Snap-ins

Although snap-ins still work in PowerShell 2.0, they are considered to be the old

way of packaging extensions. It was the way to package custom cmdlets and provid-

ers in PowerShell 1.0. However, until Microsoft teams and third parties release their

snap-ins as modules for PowerShell 2.0, you may sometimes fi nd yourself needing

to work with the snap-ins and their related cmdlets in PowerShell.

Snap-ins — including snap-ins for IIS 7.0, SQL Server, and Exchange — have to

be installed and registered on the server before you can use them. You may need

administrative rights to install a snap-in.

INSTALLING AND REGISTERING A SNAPIN

Snap-ins need to be installed and registered via InstallUtil.exe. This installer
program comes as part of the .NET Framework. It helps to create an alias to work
with installutil from a PowerShell session. To create the alias, use the following
command:

Set-Alias installutil

$env:windir\Microsoft.NET\Framework\i
v2.0.50727\installutil

To install the snap-in from a PowerShell session with this alias, use the following syntax:

installutil SnapInDLLName.dll

To see all snap-ins loaded for the current session, use the following command:

Get-PSSnapIn

W

bapp05.indd 358bapp05.indd 358 4/21/2011 1:50:58 PM4/21/2011 1:50:58 PM

 W O R K W I T H E X I S T I N G S N A P I N S 3 5 9

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

Figure E.1 shows some of the snap-ins that come installed with PowerShell.

F I G U R E E .1 Get-PSSnapIn

To see all snap-ins registered on the server and not included by the PowerShell

installation, use the following command. Th e example in Figure E.2 shows the

CloudBerry Explorer snap-in, used for Amazon S3 cloud management, as a

 registered snap-in.

Get-PSSnapIn -Registered

F I G U R E E . 2 Get-PSSnapIn -Registered

To add a snap-in to the current PowerShell session, use the following command:

Add-PSSnapIn PSSnapInName

bapp05.indd 359bapp05.indd 359 4/21/2011 1:50:59 PM4/21/2011 1:50:59 PM

3 6 0 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

Using the CloudBerry example, the command is as follows:

Add-PSSnapIn CloudBerryLab.Explorer.PSSnapIn

Since snap-ins are used to package extensions, you may want to see what is

included in a particular snap-in. To see the contents of a snap-in, use the following

command:

Get-Command -PSSnapIn PSSnapInName

Using the CloudBerry example, the command is as follows:

Get-Command -PSSnapIn CloudBerryLab.Explorer.PSSnapIn

Figure E.3 shows the output from the previous command.

F I G U R E E . 3 Get-Command for the CloudBerry snap-in

With the advent of PowerShell 2.0, many snap-ins can be treated like binary

 modules — DLL fi les that contain cmdlet classes. Th is means you can import a

snap-in rather than installing it on the machine. Th is also means you can pull in

snap-ins without having administrative rights. As long as you know the location of

the snap-in DLL, you can try running the following command:

Import-Module PathToSnapInDLL\SnapInDLLName.dll

Although many snap-ins may load properly this way, there are a few things to keep

in mind. For example, a snap-in could set up custom formats or confi gurations

that may not be included via Import-Module. If a snap-in has dependencies, the

dependencies will not be included by Import-Module. However, you can fi x some

of these problems with a fi le; see the “Manifest File” section later in this chapter.

bapp05.indd 360bapp05.indd 360 4/21/2011 1:50:59 PM4/21/2011 1:50:59 PM

 C R E A T E A C U S T O M M O D U L E 3 6 1

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

Create a Custom Module

Modules, introduced in PowerShell 2.0, make it easier to package PowerShell

 extensions. Chapter 3 discussed how to work with modules. Th e benefi ts to using

modules rather than snap-ins include the following:

Portability Modules can be imported by their full paths. Th is means you can

copy modules you commonly use to a portable hard drive, USB stick, or memory

card and import them from whichever computer you are working with, as long as it

has PowerShell 2.0 installed.

Greater Amount of Supported Members Snap-ins include cmdlets and pro-

viders. Modules include functions, variables, aliases, and more, in addition to cmd-

lets and providers.

Ease of Import Unlike snap-ins, modules do not require administrative access to

use. Snap-ins had to be installed before use; modules do not have this problem.

With your custom extensions, you should take advantage of these benefi ts.

Understand Module Concepts
Before building your own module, you should understand what types of modules

are available, where modules are stored, how a manifest fi le works, and how to write

help for the module.

Types of Modules

PowerShell modules come in diff erent forms:

 Binary modules

 Script modules

 Manifest modules

 Dynamic modules

Binary modules are compiled .NET code assemblies that contain cmdlets. Th ese

fi les have the .dll fi le extension. By default, all cmdlets in a binary module are

exported. However, exported cmdlets can be controlled by a manifest fi le. An exam-

ple of a binary module is the module created later in this chapter for the Windows 7

libraries provider and cmdlets, as discussed in Appendixes C and D.

bapp05.indd 361bapp05.indd 361 4/21/2011 1:51:00 PM4/21/2011 1:51:00 PM

3 6 2 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

Script modules are modules written in PowerShell code. Th ese fi les use the .psm1

fi le extension. Script modules are especially convenient for those who prefer to work

strictly in PowerShell and not have to rely on another language, such as C#. Since

advanced functions are written in PowerShell, it makes sense to deploy advanced

functions via script modules. Th e script module later in this chapter will be used to

deploy the advanced functions from Appendix D.

Manifest modules are modules that take a manifest fi le, described in the “Manifest

File” section later in this chapter, without a root module. Th ese are convenient for

loading assemblies, types, and formats — all noted within keys in the manifest fi le.

Dynamic modules are modules that are not persistent. Th ink of these as “modules

on demand.” Th ese modules are created with the New-Module cmdlet and are not

seen with the Get-Module cmdlet, because they are meant to be around for short

periods of time.

Module Storage Locations

In addition to knowing which type of module to use, it also helps to know where

modules are stored. Th e PSModulePath environment variable stores this infor-

mation. By default, there are two locations — one in the system folder and one

in the user profi le. Figure E.4 shows the default module path for a PowerShell 2.0

environment.

F I G U R E E . 4 The PSModulePath environment variable

If you have a centralized location for your organization’s PowerShell modules,

you will want to add it to the PSModulePath environment variable. For example,

bapp05.indd 362bapp05.indd 362 4/21/2011 1:51:00 PM4/21/2011 1:51:00 PM

 C R E A T E A C U S T O M M O D U L E 3 6 3

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

if you store your modules on a server named central in a modules folder and

wanted to permanently update the environment variable, you would update the

PSModulePath permanently with the following command:

[Environment]::SetEnvironmentVariable(“PSModulePath”,i
$env:PSModulePath + “;\\central\modules”,”User”)

PERFORMANCE CONCERN WITH PSMODULEPATH

When Get-Module -ListAvailable is run, it recursively searches all locations in
the PSModulePath environment variable. If you add a folder with a lot of fi les and
subfolders, this command will run slower.

Note that you could also update the environment variable with the following com-

mand, but it would apply only to the current PowerShell session and any PowerShell

sessions spawned from the current PowerShell session.

$env:PSModulePath = $env:PSModulePath +i
 “;\\central\modules”

Also note that although these folders can be named however you like, the folder

structure should look like this:

 ModuleBase (one of the folders in the PSModulePath environment variable)

 Module folder

 Module fi les

Figure E.5 shows an example of this folder structure.

In terms of manifest modules, script modules, and binary modules, the Module

folder should typically have the same name as the module.

One other thing to note is that if you are working with modules in the system loca-

tion, it is advantageous to use Windows PowerShell with administrator privileges,

because you need administrator permissions to read/write from the system folders.

Manifest File

Th e manifest fi le, also known as a PowerShell defi nition fi le, uses the .psd1 fi le

extension. Th is optional fi le stores a variety of information about the module,

including metadata, dependencies, processing notes, and export restrictions. You

bapp05.indd 363bapp05.indd 363 4/21/2011 1:51:00 PM4/21/2011 1:51:00 PM

3 6 4 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

can use the New-ModuleManifest cmdlet to generate this fi le. Table E.1 describes

the keys in a manifest fi le.

F I G U R E E . 5 Module folder structure

TAB LE E .1 Manifest fi le keys

Name Description

ModuleToProcess Name of the root mod ule. This will refer to a script or binary module. If
a root module is not specifi ed, the manifest fi le is considered the root,
and the module is then considered a manifest module.

ModuleVersion Version of the module.

GUID Unique identifi er of the module. If the identifi er is not specifi ed, New-
ModuleManifest will generate its own GUID.

Author Name of the author(s) of the module.

CompanyName Name of the company or vendor responsible for the module. If
unspecifi ed, New-ModuleManifest will default it to Unknown.

Copyright Copyright text for the module. If unspecifi ed, the default value takes
the (c) CurrentYear Author. All rights reserved. form.

Description Description of what is included in the module.

bapp05.indd 364bapp05.indd 364 4/21/2011 1:51:00 PM4/21/2011 1:51:00 PM

 C R E A T E A C U S T O M M O D U L E 3 6 5

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

Name Description

PowerShellVersion Minimum version of the PowerShell engine. Acceptable values are 1.0
and 2.0. Versions higher than 2.0 are not enforced. This can be left as
an empty string (‘’).

PowerShellHostName Name of the PowerShell host required by the module. The host name
can be gathered from $host.name. This can be left as an empty
string (‘’).

PowerShellHostVersion Minimum version of the PowerShell host. This can be left as an empty
string (‘’).

DotNetFrameworkVersion Minimum version of the .NET Framework. This can be left as an empty
string (‘’).

CLRVersion Minimum version of the common language runtime. This can be left as
an empty string (‘’).

ProcessorArchitecture Processor required by the module. Options include None (used for
unknown or unspecifi ed), X86, Amd64, and IA64. If the value is
unspecifi ed, the value can be left as an empty string (‘’).

RequiredModules Modules the module depends on. These modules should be in the
global scope. Module names can be entered as strings or as a hash
table of ModuleName and GUID keys.

Note: PowerShell will not import these modules automatically. It just
checks that these modules are available. If these modules need to
be loaded, use a script to import them and include that script in the
ScriptsToProcess list.

RequiredAssemblies Assemblies the module depends on. PowerShell will load these fi les
before loading types, formats, nested modules, and root modules.
Include any DLL fi les that are needed for formatting and object types.

ScriptsToProcess Scripts the module depends on. These are run when the module is
imported.

TypesToProcess Type fi les the module depends on. These fi les use the.ps1xml fi le
extension. These fi les defi ne the custom .NET Framework types
used in a module. PowerShell processes these types via Update-
TypeData when it imports the module.

FormatsToProcess Format fi les the module depends on. These fi les use the .ps1xml fi le
extension. These fi les defi ne the output of diff erent types, controlling
how they display and what they display by default. For example,
these format fi les could force output to display as a table by default.
PowerShell processes these formats via Update-FormatData when
it imports the module.

NestedModules Modules nested within the module. These are .psm1 and .dll fi les
that are imported for the module to work with them but may not
be exposed to the user. These fi les can be exposed if the Global
parameter is included in the Import-Module line or if their parts are
included in one of the …ToExport values.

Note: The fi les will be run in the order they are listed.

(continues)

bapp05.indd 365bapp05.indd 365 4/21/2011 1:51:00 PM4/21/2011 1:51:00 PM

3 6 6 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

Name Description

FunctionsToExport Functions to export from the module. These are the functions that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Functions can be named explicitly, or an asterisk (*) can be used to
export all functions. If an asterisk is used, all functions, including
functions in nested modules, are exported to the PowerShell session.

CmdletsToExport Cmdlets to export from the module. These are the cmdlets that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Cmdlets can be named explicitly, or an asterisk(*) can be used to
export all cmdlets. If an asterisk is used, all cmdlets, including cmdlets
in nested modules, are exported to the PowerShell session.

VariablesToExport Variables to export from the module. These are the variables that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Variables can be named explicitly, or an asterisk (*) can be used to
export all variables. If an asterisk is used, all variables, including
variables in nested modules, are exported to the PowerShell session.

AliasesToExport Aliases to export from the module. These are the aliases that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Aliases can be named explicitly, or an asterisk (*) can be used to
export all aliases. If an asterisk is used, all aliases, including aliases in
nested modules, are exported to the PowerShell session.

ModuleList All modules packaged in this module.

Note: PowerShell will not export the fi les in this list based on this list.
This is purely for tracking purposes.

FileList All fi les packaged in the module. This can be used to keep track of all
fi les included in the module.

Note: PowerShell will not export the fi les in this list based on this list.
This is purely for tracking purposes.

PrivateData Private data to pass to the root module. The data becomes available to
the module through the $args automatic variable.

Although the New-ModuleManifest cmdlet may not prompt for all of these keys,

you can easily add the missing values to the manifest fi le by editing the fi le with a

text editor. Figure E.6 shows the New-ModuleManifest cmdlet in action.

Figure E.7 shows part of the generated manifest fi le opened for editing.

TAB LE E .1 (continued)

bapp05.indd 366bapp05.indd 366 4/21/2011 1:51:01 PM4/21/2011 1:51:01 PM

 C R E A T E A C U S T O M M O D U L E 3 6 7

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

F I G U R E E . 6 New-ModuleManifest

F I G U R E E .7 Editing the manifest fi le

Once you are done editing a manifest, you may want to verify that you entered

everything correctly. Th e Test-ModuleManifest cmdlet can verify that the fi les

listed in the manifest exist in the proper paths. Figure E.8 shows what happens

when Test-ModuleManifest fi nds problems with a manifest fi le.

bapp05.indd 367bapp05.indd 367 4/21/2011 1:51:01 PM4/21/2011 1:51:01 PM

3 6 8 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

F I G U R E E . 8 Problems with manifest fi le

Help File

As stated throughout this book, PowerShell has a great help system. Get-Help is

full of descriptions, details, and examples, providing a wealth of knowledge to the

PowerShell scripter. When you release your custom extensions, it would be helpful

to continue adding to this knowledge base.

Th e help fi les are stored in two formats: XML and UTF-8 formatted text fi les.

Help fi les for cmdlets, providers, functions, and scripts are written in HTML

fi les. Conceptual fi les — for help topics that start with about_ such as about_

Comment_Based_Help — are saved in UTF-8 formatted text fi les. Examples of

these fi les are included in the “Build Your Module” section later in this chapter.

Th e help fi les have a specifi c folder and fi le structure, as shown in Figure E.9.

Th e help fi les are imported to a PowerShell session when Import-Module is run.

As the previous folder structure suggests, help topics can be tailored to language-

specifi c fi les. PowerShell will look for the language of the current user fi rst before

following the language fallback standards of Windows.

Build Your Module
Now that the building blocks have been laid out, here is the approach you want to take:

 1. Identify which type of module to use.

 2. Build the module.

bapp05.indd 368bapp05.indd 368 4/21/2011 1:51:02 PM4/21/2011 1:51:02 PM

 C R E A T E A C U S T O M M O D U L E 3 6 9

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

 3. Determine whether a manifest fi le is needed. If so, create it.

 4. Write the help fi le.

 5. Release for use.

F I G U R E E . 9 Help fi le directory structure

Binary Module Example

In Appendix C, you created a basic provider to work with Windows 7 libraries. In

Appendix D, you created custom cmdlets to work with these Windows 7 libraries.

Since the provider and the custom cmdlets were written in C#, it seems fi tting to

package them in a binary module.

Th e module setup was actually established when you created the new project in

Appendix C. As noted in Figure C.7, the project name was SamplePSProvider,

which means that when you compile the project, you will get an assembly named

SamplePSProvider.dll. Figure E.10 shows the list of all fi les and references in

this project.

bapp05.indd 369bapp05.indd 369 4/21/2011 1:51:02 PM4/21/2011 1:51:02 PM

3 7 0 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

F I G U R E E .10 Solution Explorer for SamplePSProvider.dll

At this point, you can test whether your module will work in PowerShell without

having to complete the package. To test the module in PowerShell from Visual

Studio 2010, follow these steps:

 1. Right-click the project name (SamplePSProvider in this case), and select

Properties.

 2. From the tabs on the left , click the Debug tab.

 3. Update your Start Action setting to Start External Program, and point it to

where PowerShell.exe is installed.

 4. Under Start Options, update the command-line arguments to read as follows:

-noexit -command

“[reflection.assembly]::loadFrom(‘SamplePSProvider.dll’) |

import-module”

 5. Close the Properties screen to save the settings.

Now you can start the debugger and test your module. Figure E.11 shows the debug-

ging PowerShell session.

Notice that the result of Get-Module in Figure E.11 shows the Name as dynamic_

code_module_Sa…. Since debugging is a short-lived process, PowerShell is naming

bapp05.indd 370bapp05.indd 370 4/21/2011 1:51:02 PM4/21/2011 1:51:02 PM

 C R E A T E A C U S T O M M O D U L E 3 7 1

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

it as if it were a dynamic module. However, as noted in the ModuleType column,

this is indeed a binary module.

F I G U R E E .11 Debugging a binary module

Now that you are in the debug session, you can test the functionality, as described

in Appendixes C and D. Once you are done debugging, exit the PowerShell session.

Deploy the module as follows:

 1. In Visual Studio, go to the Build menu, and select Build SamplePSProvider.

 2. Right-click the project name, and select Open Folder in Windows Explorer.

 3. Navigate to bin and then the folder with the most recently modifi ed date.

 4. Copy the SamplePSProvider.dll fi le and all other DLL fi les into the

[USER]\Documents\WindowsPowerShell\Modules\SamplePSProvider

folder. Note: If this fi le structure does not exist, create it.

 5. Start PowerShell.

 6. Run Get-Module -ListAvailable. You should see the

SamplePSProvider module listed, similar to Figure E.12.

You should be able to run Import-Module SamplePSProvider and work with

the provider and cmdlets, as documented in Appendixes C and D. If you get an

error about not being able to load the module because PowerShell can’t fi nd the

dependencies, make sure you copied all the DLL fi les from step 4.

bapp05.indd 371bapp05.indd 371 4/21/2011 1:51:03 PM4/21/2011 1:51:03 PM

3 7 2 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

F I G U R E E .12 Module deployed

A manifest fi le can help track these dependencies, so in this case it would be

advantageous to have one. For this example, you will reuse the manifest fi le cre-

ated earlier in this chapter. To make note of the required assemblies, update

RequiredAssemblies to match this:

RequiredAssemblies = @(i

“Microsoft.WindowsAPICodePack.dll”,i
“Microsoft.WindowsAPICodePack.Shell.dll”)

Th e last thing you need to do is create some help fi les for this module. Since libraries

are a new concept to Windows 7, you may want to create a conceptual help fi le:

 1. Create an en-US folder in [USER]\Documents\WindowsPowerShell\

Modules\SamplePSProvider.

 2. Create a text fi le named about_Windows7_Libraries.help.txt within

this en-US folder.

 3. Add the following text:

TOPIC

 about_Windows7_Libraries

bapp05.indd 372bapp05.indd 372 4/21/2011 1:51:03 PM4/21/2011 1:51:03 PM

 C R E A T E A C U S T O M M O D U L E 3 7 3

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

SHORT DESCRIPTION

 Describes the capabilities of Windows 7i
 Libraries.

LONG DESCRIPTION

 This is a sample help file included with i
the SamplePSProvider example for i
“Automating Windows Server 2008 R2 with i
Windows PowerShell 2.0” book.

 For more information on the Libraries feature i
included in Windows 7, see:

 http://windows.microsoft.com/en-us/windows7/i
products/features/libraries

 4. Save and close the fi le.

 5. If you do not have a PowerShell session already open, start PowerShell.

 6. Run Import-Module SamplePSProvider.

 7. Run Get-Help about_Windows7_Libraries. You should see something

similar to Figure E.13.

F I G U R E E .13 Conceptual help

Th e other type of help fi le for binary modules is an XML-based help fi le. Th e fi le

should be located in the en-US folder (or your native language’s folder) and

bapp05.indd 373bapp05.indd 373 4/21/2011 1:51:03 PM4/21/2011 1:51:03 PM

3 7 4 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

named ModuleName.dll-help.xml. For a detailed explanation of the XML lay-

out for cmdlet help fi les, see the following MSDN article:

http://msdn.microsoft.com/en-us/library/bb525433(VS.85).aspx

Now that the binary module is built, complete with a manifest fi le and help fi les,

you need to package it to give to others. Th e easiest way to do this is as follows:

 1. Navigate to [USER]\Documents\WindowsPowerShell\Modules\ in

Windows Explorer.

 2. Right-click the SamplePSProvider folder, and navigate to Send

To ‚ Compressed (zipped) folder.

 3. Save the fi lename.

 4. Place the ZIP fi le in a location where your targeted audience can access it.

 5. Have them unzip the fi le into one of their folders listed in their

PSModulePath environment variable.

Script Module Example

In Appendix D, you created a function called Get-Function. Since it is

already written in PowerShell, it makes sense to package it in a script module.

Save Get-Function in a script fi le with the following fi le structure: [USER]\

Documents\WindowsPowerShell\Modules\SampleScriptModule\

SampleScriptModule.psm1.

Since you want everything to be exported and do not need to include any depen-

dencies or types or formats, you do not need a manifest fi le in this case.

Script modules can take advantage of comment-based help. Th is means you use

comments within your code to generate the help fi le. I have added the comment-

based help comments toward the end of this function:

Function Get-Function{

 Param(

 # Part or full name of the function

 # Supports wildcards

 [parameter(Mandatory=$true, i
ValueFromPipeline=$true)]

 [String[]]

 $FunctionName

)

bapp05.indd 374bapp05.indd 374 4/21/2011 1:51:03 PM4/21/2011 1:51:03 PM

 C R E A T E A C U S T O M M O D U L E 3 7 5

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

 Get-ChildItem -path function: | i
Where-Object {$_.Name -like $FunctionName}

<#

 .SYNOPSIS

 Lists all functions matching a name or wildcardi
 pattern.

 .DESCRIPTION

 Lists all functions matching a name or wildcardi
 pattern.

 .INPUTS

 System.String. Get-Function takes ini
 a function name or pattern.

 .OUTPUTS

 System.String. Get-Function returnsi
 a string with the extension or file name.

 .EXAMPLE

 C:\PS> Get-Function *

 Lists all functions.

 .EXAMPLE

 C:\PS> Get-Function m*

 Lists all functions whose name starts with “m”.

 .EXAMPLE

 C:\PS> Get-Function *port*

 Lists all functions whose name contains “port”.

 .LINK

 Get-ChildItem

#>

}

Aft er saving this fi le, load PowerShell, and run Import-Module

SampleScriptModule. Once the module is loaded, if you run Get-Help Get-

Function, you will see output similar to Figure E.14.

bapp05.indd 375bapp05.indd 375 4/21/2011 1:51:04 PM4/21/2011 1:51:04 PM

3 7 6 A P P E N D I X E • P A C K A G I N G P O W E R S H E L L E X T E N S I O N S

F I G U R E E .14 Get-Help Get-Function

If you run Get-Help Get-Function -examples, you will see each of the

.EXAMPLE lines from the earlier code, as shown in Figure E.15.

 F I G U R E E .15 Get-Help Get-Function -examples

For more information about the diff erent keywords that can appear in comment-

based help, run Get-Help about_Comment_Based_Help.

bapp05.indd 376bapp05.indd 376 4/21/2011 1:51:04 PM4/21/2011 1:51:04 PM

 C R E A T E A C U S T O M M O D U L E 3 7 7

Pa
ck

ag
in
g

Po
w
er
Sh

el
l

Ex
te
ns
io
ns

 APPENDIX E

Now that the script module is built, complete with comment-based help, you need

to package it to give it to others. Th e easiest way to do this is as follows:

 1. Navigate to [USER]\Documents\WindowsPowerShell\Modules\in

Windows Explorer.

 2. Right-click the SampleScriptModule folder, and navigate to Send

To ‚ Compressed (zipped) folder.

 3. Save the fi lename.

 4. Place the ZIP fi le in a location where your targeted audience can access it.

 5. Have them unzip the fi le into one of their folders listed in their

PSModulePath environment variable.

Now that you have seen how to package PowerShell extensions, use these examples

as guides for packaging and sharing your extensions with your colleagues or even

the PowerShell community.

bapp05.indd 377bapp05.indd 377 4/21/2011 1:51:05 PM4/21/2011 1:51:05 PM

bapp05.indd 378bapp05.indd 378 4/21/2011 1:51:05 PM4/21/2011 1:51:05 PM

APPENDIX F

Building Your Own GUI with
PowerShell

IN THIS APPENDIX, YOU WILL LEARN TO:

CHOOSE BETWEEN WINFORMS AND WPF 380

CREATE A GUI IN POWERSHELL 381

Create a WinForms Application . 385

Create a WPF Application. 391

bapp06.indd 379bapp06.indd 379 4/21/2011 1:52:28 PM4/21/2011 1:52:28 PM

APPENDIX F

C

ommand-line scripts are great from an administrative perspective, but the people

who may work with these scripts or their output may not necessarily be comfortable

in a command-line realm. It would help to create a graphical user interface (GUI)

for them to feel a little more comfortable.

Since PowerShell can take advantage of the .NET Framework, GUI develop-

ment options include Windows Forms (WinForms) and Windows Presentation

Foundation (WPF). In this chapter, you will learn the strong points of these tech-

nologies and how to use PowerShell to create GUIs with them.

Th e example GUI gets much of its information from Windows Management

Instrumentation (WMI) Win32 classes. You can fi nd more about WMI’s Win32

classes here:

http://msdn.microsoft.com/en-us/library/aa394084(v=VS.85).aspx

Choose Between WinForms and WPF

In terms of creating GUIs in the .NET Framework, the main technology choices

are WinForms and WPF. Knowing the strengths and weaknesses of both options

makes it easier to decide on the appropriate choice for a particular application.

If your end user is working with legacy applications, there may be a case to write

your application with WinForms. Th is is the older technology compared to WPF,

and the look and feel of WinForms controls is very similar to what you would get

out of applications written in a Microsoft language before the .NET Framework. If

you, as a developer, are more familiar with writing desktop applications in some-

thing such as Visual Basic 6, then WinForms should be easy to work with, because

many controls are still around in some form in WinForms. If the end user’s com-

puter consists of older hardware or running an older operating system such as

Windows XP, WinForms may run a lot better than WPF and therefore would be the

better choice.

If your end user is more familiar with applications that have been written in

.NET or for the newer operating systems such as Windows Vista and Windows 7,

chances are that the end user is familiar with a prettier interface. If that is the case,

then you may consider leaning toward WPF. Rich user interfaces, easier anima-

tions, and better handling of vector graphics are just a few reasons why you would

choose WPF instead of WinForms. If you are one of those people who develop for

multiple platforms, you may fi nd WPF and its use of the Extensible Application

bapp06.indd 380bapp06.indd 380 4/21/2011 1:52:32 PM4/21/2011 1:52:32 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 8 1

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

Markup Language (XAML) more appealing, because XAML is used in both WPF

and Silverlight. With that consideration, by going with WPF, your application is

one step closer to becoming portable to a web application or even a Windows Phone

application.

WHEN TO CHOOSE BOTH WINFORMS AND WPF

You may see that the benefi ts of each technology could work to your advantage if
only you could include both in the same application. There is no “if” about it—you can
include both WinForms and WPF in the same application! For example, you may have
a WinForms app that could benefi t from newer technology. While tossing out the code
and starting from scratch sounds tempting, unless you have time in your work schedule
to rewrite the whole code, tossing out a complete code base is costly to a business. You
might consider replacing small pieces with WPF, if the technology makes sense for the
feature you are updating.

Create a GUI in PowerShell

Once you understand the technologies that are available to you, then you can build

your application. In this section, you will create a dashboard to look at various

 attributes of your current machine. Th is could be useful for monitoring a server’s

confi guration or perhaps be used to obtain information for an inventory database.

Th e application you create will show the following sections:

Basic System Information Including domain, manufacturer, model, and name

Hard Drive Information Including device ID, size, and free space

Memory Information Including physical memory, virtual memory, process

memory, and visible memory

Network Interface Information Including MAC address and description

Installed Applications Including version and name

Although you may be familiar with these commands and their output in the command-

line environment, there may be formatting and other output issues that could

 confuse the end user who is familiar with friendly formatting in a GUI. Here are the

building blocks you will need for building your GUI.

bapp06.indd 381bapp06.indd 381 4/21/2011 1:52:32 PM4/21/2011 1:52:32 PM

3 8 2 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

Use the Win32_ComputerSystem WMI class to get basic system information:

Get-WmiObject win32_computersystem

Th e output should be similar to Figure F.1.

F I G U R E F.1 Basic system information

Use the Win32_LogicalDisk WMI class to get the hard drive information:

Get-WmiObject win32_LogicalDisk

Th e output should be similar to Figure F.2.

F I G U R E F. 2 List of logical drives

bapp06.indd 382bapp06.indd 382 4/21/2011 1:52:33 PM4/21/2011 1:52:33 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 8 3

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

Th e Win32_OperatingSystem WMI class contains a plethora of information

regarding a system’s operating system, including language, architecture, service

pack version, installation date, and memory information. To get the memory infor-

mation, use the following command:

Get-WmiObject win32_OperatingSystem | i
Format-List *Memory*

Th e output should be similar to Figure F.3.

F I G U R E F. 3 Memory information

Use the Win32_NetworkAdapterConfiguration WMI class to get more infor-

mation about a system’s network interfaces. Th e following example shows DHCP,

DNS, and network address essentials.

Get-WmiObject win32_NetworkAdapterConfiguration |i
Format-List *Address, DefaultIPGateway, IPSubnet, i
Description, DHCP*, DNS*

Th e output should be similar to Figure F.4.

Use the Win32_Product WMI class to get more information about installed appli-

cations. Th e following example shows how to list all applications installed on a

machine that did not come from Microsoft :

Get-WmiObject Win32_Product | i
Where-Object {$_.Vendor -ne “Microsoft Corporation” }

bapp06.indd 383bapp06.indd 383 4/21/2011 1:52:34 PM4/21/2011 1:52:34 PM

3 8 4 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

F I G U R E F. 4 Network interface information

Th e output should be similar to Figure F.5.

F I G U R E F. 5 Installed application information

Now that the groundwork is established, let’s look into creating a GUI that will

 display this information for those who are timid in a command-line environment.

Th is GUI will have buttons along the top for each section, with a panel below the

buttons to show all the information for that particular section.

bapp06.indd 384bapp06.indd 384 4/21/2011 1:52:35 PM4/21/2011 1:52:35 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 8 5

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

Create a WinForms Application
As noted, working with WinForms is a good choice when you need to create a GUI

that has a look and feel similar to legacy applications.

Th e fi rst thing you should do when creating a WinForms application in PowerShell

is load the assembly where WinForms comes from — System.Windows.Forms —

with the following command:

Add-Type -AssemblyName System.Windows.Forms

Once you load the assembly, you need to create the canvas to work on. To create a

WinForms form, use the following command:

$form = New-Object Windows.Forms.Form

At this point, you have a generic form. To display the form, use the following command:

$form.ShowDialog()

You should see something similar to Figure F.6.

F I G U R E F. 6 Default Windows form

Now that a form has been created, you can start adding objects and helper func-

tions to it to create your application. Th e code for these objects and helper functions

needs to be placed before $form.ShowDialog().

Because this application will have buttons with similar attributes, you will want to

create a function so that you are not repeating code frequently. For this example,

you are using a function called Create-Button.

bapp06.indd 385bapp06.indd 385 4/21/2011 1:52:36 PM4/21/2011 1:52:36 PM

3 8 6 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

function Create-Button([string]$text,i
[object]$PreviousObject, [int]$height,i
[object]$container){

 $button = New-Object Windows.Forms.Button

 $button.Text = $text

 $button.AutoSize = $true

 $button.Left = $PreviousObject.Left + i
$PreviousObject.Width

 $button.Top = $container.Top

 $button.Anchor = “Left”

 $button.Height = $height

 return $button

}

For debugging purposes, you may want to use a MessageBox to display error

 messages. Use the following function to help prevent writing the same call over

and over:

function Create-MessageBox ($text){

 [Windows.Forms.MessageBox]::Show($text)

}

Th e results will display in a table for each button. Since the table needs to be gener-

ated each time, use a function to generate the output. In the following function, the

$output variable is an array of objects with a Name property and a Value property.

Th e $outputpanel variable is the container object that will hold the table.

function Create-Table($output, $outputpanel){

 $outputpanel.Controls.Clear()

 $btnContainer = New-Object Windows.Forms.Panel

 $btnContainer.Width = $outputpanel.Width - 25

 $btnContainer.Height = $outputpanel.Height - 100

 $TablePanel = New-Object Windows.Forms.i
TableLayoutPanel

 $TablePanel.Dock = “Fill”

 $TablePanel.CellBorderStyle = “Single”

 $TablePanel.ColumnCount = 2

 $TablePanel.ColumnStyles.Addi
((new-object System.Windows.Forms.ColumnStyle(i
[System.Windows.Forms.SizeType]::Percent,50)))

 $TablePanel.ColumnStyles.Addi

bapp06.indd 386bapp06.indd 386 4/21/2011 1:52:36 PM4/21/2011 1:52:36 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 8 7

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

((new-object System.Windows.Forms.ColumnStylei
([System.Windows.Forms.SizeType]::Percent,50)))

 $TablePanel.AutoScroll = $true

 $output | ForEach-Object {

 $label = New-Object Windows.Forms.Label

 $label.Text = $_.Name

 $label.AutoSize = $true

 $TablePanel.Controls.Add($label)

 $label2 = New-Object Windows.Forms.Label

 $label2.Text = $_.Value

 $label2.AutoSize = $true

 $TablePanel.Controls.Add($label2)

 }

 $btnContainer.Controls.Add($TablePanel)

 $outputpanel.Controls.Add($btnContainer)

}

You will want a function to help format each of the results so that they conform to

the Name/Value pairs. Th e following function will loop through the properties for

each object and break them down into Name/Value pairs:

function Create-ExampleObject ($output){

 $cleanedoutput = $output | ForEach-Object {

 $_ | Get-Member -MemberType NotePropertyi
| Select Name, Definition | ForEach-Object {

 New-Object PSObject -Propertyi
@{Name=$_.Name;Value=i
$_.Definition.Substring($_.Definition.IndexOf(‘=’)+1)

 }

 }

 }

 return $cleanedoutput

}

Since memory and hard drive sizes will be displayed, you will want a function to

handle the output formatting. Th e following function will test the value against

known values and append the size abbreviation to the value.

function Format-Size($sizeinbytes){

 $formatted = “”

 if ($sizeinbytes/1gb -gt 0){

bapp06.indd 387bapp06.indd 387 4/21/2011 1:52:36 PM4/21/2011 1:52:36 PM

3 8 8 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

 $formatted = (“{0:N2}” -f ($sizeinbytes/1gb))i
+ “GB”

 } else {

 $formatted = (“{0:N2}” -f ($sizeinbytes/1mb))i
+ “MB”

 }

 return $formatted

}

Now that the helper functions are in place, you can use those while adding the

 controls and other functionality.

First up, set some form defaults, including the form caption, the dimensions, and a

constant value for button height, because the buttons will be the same size:

$form.Text = “WinForms Inventory Example”

$form.Width = 600

$form.Height = 400

$buttonHeight = 30

Next, create the panels that will hold the buttons and the output area and add them

to the form’s controls:

$pnlButtonBar = New-Object Windows.Forms.Panel

$pnlButtonBar.Dock = “Top”

$pnlButtonBar.Width = $form.Height

$pnlButtonBar.Height = $buttonHeight

$form.Controls.add($pnlButtonBar)

$pnlOutput = New-Object Windows.Forms.Panel

$pnlOutput.Width = $form.Height

$pnlOutput.Height = $form.Height - $pnlButtonBar.Height

$pnlOutput.Top = $pnlButtonBar.Top + $pnlButtonBar.Height + 20

$form.Controls.add($pnlOutput)

Once the panels are created, then the objects that belong in those panels can be cre-

ated and placed in their respective placeholders. For the button bar, there will be

a label with the text Show: to give the user an idea that those buttons are there for

some reason.

$lblShow = New-Object Windows.Forms.Label

$lblShow.Text = “Show : “

$lblShow.Width = 50

bapp06.indd 388bapp06.indd 388 4/21/2011 1:52:37 PM4/21/2011 1:52:37 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 8 9

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

$lblShow.Left = $pnlButtonBar.Left

$lblShow.Top = $pnlButtonBar.Top

$lblShow.Anchor = “Left”

$pnlButtonBar.Controls.add($lblShow)

Now that the label is in there to give the user some guidance, you should add the

buttons. Th ese buttons will get created using the Create-Button helper function

mentioned earlier.

$btnSysInfo = Create-Button “System Information” $lblShowi
$buttonHeight $pnlButtonBar

$pnlButtonBar.Controls.Add($btnSysInfo)

$btnDrives = Create-Button “Hard Drives” $btnSysInfoi
$buttonHeight $pnlButtonBar

$pnlButtonBar.Controls.Add($btnDrives)

$btnMemory = Create-Button “Memory” $btnDrivesi
$buttonHeight $pnlButtonBar

$pnlButtonBar.Controls.Add($btnMemory)

$btnNetwork = Create-Button “Network” $btnMemoryi
$buttonHeight $pnlButtonBar

$pnlButtonBar.Controls.Add($btnNetwork)

$btnInstalledApps = Create-Button “Installed Apps”i
$btnNetwork $buttonHeight $pnlButtonBar

$pnlButtonBar.Controls.Add($btnInstalledApps)

Once the button bar is created, add one more label with instructions for the end

user that will appear when the program loads where the command output would

appear:

$lblInstructions = New-Object Windows.Forms.Label

$lblInstructions.Text = “Click a button to see morei
 details.”

$lblInstructions.AutoSize = $true

$lblInstructions.Left = $pnlOutput.Left

$lblInstructions.Top = $pnlOutput.Top

$lblInstructions.Anchor = “Left”

$pnlOutput.Controls.add($lblInstructions)

bapp06.indd 389bapp06.indd 389 4/21/2011 1:52:37 PM4/21/2011 1:52:37 PM

3 9 0 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

Now that the objects are created, you need to assign the event handler to each

 button to handle the Click event. For each button click, you will call out to the

respective WMI class and display an identifi ed group of fi elds. Once the WMI

objects are gathered, then they need to be formatted to fi t the Name/Value pairs

by calling the Create-ExampleObject helper function. Finally, the output gets

 generated by the Create-Table helper function.

For the system information section, show all fi elds:

$btnSysInfo.add_Click({

 $output = Get-WmiObject win32_computersystem |i
Select *

 $output = Create-ExampleObject $output

 Create-Table $output $pnlOutput

})

For the hard drives section, show only the drives that have a specifi c size. With

those drives, show the total space, the free space, and how full the drive is:

$btnDrives.add_Click({

 $output = Get-WmiObject win32_LogicalDisk | Where-Object {$_

.Size -gt 0} | Select Name, FreeSpace, Size | ForEach-Object

{ New-Object PSObject -Property @{Drive=$_.Name;Size=Format-

Size($_.Size); FreeSpace=Format-Size($_.FreeSpace);

PercentageUsed=(“{0:N2}” -f (100-(($_.FreeSpace/$_.Size) *

100))) + “%”} }

 $output = Create-ExampleObject $output

 Create-Table $output $pnlOutput

})

For the memory section, show all fi elds containing the word Memory from the

Win32_OperatingSystem WMI class:

$btnMemory.add_Click({

 $output = Get-WmiObject win32_OperatingSystemi
 | Select *Memory*

 $output = Create-ExampleObject $output

 Create-Table $output $pnlOutput

})

For the network section, suppose you are adding MAC authentication to your

network security. You would only be interested in connections that have a MAC

bapp06.indd 390bapp06.indd 390 4/21/2011 1:52:37 PM4/21/2011 1:52:37 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 9 1

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

address. Fields that may be relevant include the connection name and the MAC

address.

$btnNetwork.add_Click({

 $output = Get-WmiObjecti
 win32_NetworkAdapterConfiguration |i
 Select MACAddress, Description |i
 Where-Object {$_.MACAddress -ne $null }

 $output = Create-ExampleObject $output

 Create-Table $output $pnlOutput

})

Finally, for the installed apps section, suppose you care only about the applica-

tion names and respective versions that are installed on the machine, sorted

alphabetically.

$btnInstalledApps.add_Click({

 $output = Get-WmiObject Win32_Product |i
 Select Name, Version | Sort-Object -property Name |i
 ForEach-Object {

 New-Object PSObjecti
 -Property @{Application=$_.Name + “ “ + $_.Version}

 }

 $output = Create-ExampleObject $output

 Create-Table $output $pnlOutput

})

Once all this code is entered, you now have a basic program to display some infor-

mation about the current machine. Figure F.7 shows the fi nal output.

Th is example shows a miniscule portion of the Win32 libraries in WMI, and it

shows a basic introduction to WinForms in PowerShell. Use this as a guide as you

are getting started with writing WinForms applications in PowerShell.

Create a WPF Application
As mentioned earlier, WPF is a good choice when you are developing GUIs for a

newer operating system such as Windows 7. Th e prettiness that is seen in the oper-

ating system can be carried on easily in a WPF application.

WPF also allows for the GUI layout to be separated easily from the functional-

ity, using XAML for the GUI and the language of choice as the functionality. In

bapp06.indd 391bapp06.indd 391 4/21/2011 1:52:37 PM4/21/2011 1:52:37 PM

3 9 2 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

the examples that follow, the GUI code will be stored in a XAML fi le and read

in PowerShell. Th e functionality for those XAML controls will be written in

PowerShell.

F I G U R E F.7 Final WinForm output

In this section, you will see how to create a WPF application from scratch within

PowerShell.

WRITING WPF IN POWERSHELL

Although the following instructions will have you use the Integrated Scripting Engine
(ISE), you can also use the PowerShell console to do this. However, when you start
a PowerShell console session for WPF development, you need to include the -STA
switch, because WPF needs to be run in single-threaded apartment (STA) mode. The
PowerShell console starts in multithreaded apartment (MTA) mode by default. The
ISE, however, starts in STA mode by default and does not need an extra switch when
starting.

For more on apartments and threads, see http://msdn.microsoft.com/en-us/
library/ms693344(v=VS.85).aspx.

To see whether STA is enabled, check that the following value is set to STA:

$host.Runspace.ApartmentState

bapp06.indd 392bapp06.indd 392 4/21/2011 1:52:37 PM4/21/2011 1:52:37 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 9 3

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

Since there is a separation between the GUI and the functionality, you should

become familiar enough with XAML to know how to work with it. As shown with

WinForms, let’s take a look at the default WPF form. Th e XAML for the WPF form

looks like this:

<Window xmlns=i
“http://schemas.microsoft.com/winfx/2006/xaml/i
presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Title=”Sample WPF Form” Height=”150” Width=”300”>

</Window>

For this example, the XAML is stored in D:\MainWindow.xaml.

WRITING XAML FILES

You can download many tools to help you write XAML, including the following:

 Kaxaml

 Microsoft Expression Blend

 Microsoft Visual Studio

 XamlHack

 XamlPad

Until you get familiar with XAML and its syntax, it would be easiest to use one of these
tools when creating XAML fi les.

Once the XAML fi le is created, you can work on adding functionality to the con-

trols. When writing a WPF application in PowerShell, you need to load the WPF

libraries:

Add-Type -Assembly PresentationFramework

Add-Type -Assembly PresentationCore

Aft er the WPF libraries are loaded, you can load the XAML fi le into a variable with

the help of a XamlReader. Th e code looks like this:

$Form=[Windows.Markup.XamlReader]::Load([IO.File]i
::OpenText(‘D:\MainWindow.xaml’).basestream)

bapp06.indd 393bapp06.indd 393 4/21/2011 1:52:38 PM4/21/2011 1:52:38 PM

3 9 4 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

At this point, you can display a basic WPF form with the following command:

$Form.ShowDialog() | Out-Null

You should see something similar to Figure F.8.

F I G U R E F. 8 Basic WPF form

Now that a window has been created, you can start adding objects to it to create

your application. Using the XAML editor of your choice, update D:\MainWindow

.xaml with the following XAML:

<Window xmlns=”http://schemas.microsoft.com/i
winfx/2006/xaml/presentation”

 xmlns:x=”http://schemas.microsoft.com/i
winfx/2006/xaml”

 Title=”WPF Inventory Example” Height=”600”i
 Width=”600”>

 <Canvas>

 <DockPanel VerticalAlignment=”Top”i
 Grid.Row=”0” Grid.ColumnSpan=”2”>

 <StackPanel Height=”30” i
Orientation=”Horizontal”>

 <Label Content=”Show:”></Label>

 <Button x:Name=”btnShowSysInfo” i
Content=”System Information”></Button>

 <Button x:Name=”btnShowDrives” i
Content=”Hard Drives”></Button>

 <Button x:Name=”btnShowMemory” i
Content=”Memory”></Button>

 <Button x:Name=”btnShowNetwork” i
Content=”Network”></Button>

 <Button x:Name=”btnShowInstalledApps” i
Content=”Installed Apps”></Button>

 </StackPanel>

bapp06.indd 394bapp06.indd 394 4/21/2011 1:52:38 PM4/21/2011 1:52:38 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 9 5

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

 </DockPanel>

 <Grid x:Name=”pnlOutput” Canvas.Top=”40”i
 ShowGridLines=”False” Width=”550” i
HorizontalAlignment=”Left” Height=”500”>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width=”*” >i
</ColumnDefinition>

 <ColumnDefinition Width=”*” >i
</ColumnDefinition>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height=”40”>i
</RowDefinition>

 <RowDefinition Height=”*”>i
</RowDefinition>

 </Grid.RowDefinitions>

 <Label x:Name=”lblInstructions”i
 Grid.Row=”1” Grid.ColumnSpan=”2”>i
Click a button to see more details.</Label>

 </Grid>

 </Canvas>

</Window>

Th e previous XAML creates a layout similar to the WinForms application. Make

note of the x:Name fi elds, because you will need to reference them in PowerShell

when adding the functionality.

Th e code for these objects and helper functions needs to be placed before $Form

.ShowDialog() | Out-Null.

Using the WinForms example, copy the Create-ExampleObject and Format-

Size helper functions. Since these do not necessarily deal with the GUI directly,

they can be shared.

Th e Create-Table helper function needs to be altered. Since you are working with

WPF, you will want to reference controls in System.Windows.Controls, instead

of System.Windows.Forms. Th e new Create-Table helper function sets up the

WPF Grid control and adds labels to the appropriate grid positions.

function Create-Table($output){

 $pnlOutput = $Form.FindName(‘pnlOutput’)

 $pnlOutput.RowDefinitions.Clear()

bapp06.indd 395bapp06.indd 395 4/21/2011 1:52:38 PM4/21/2011 1:52:38 PM

3 9 6 A P P E N D I X F • B U I L D I N G Y O U R O W N G U I W I T H P O W E R S H E L L

 $pnlOutput.Children.Clear()

 $pnlOutput.ShowGridLines = $true

 $rowcount = 0;

 $output | ForEach-Object {

 $rowDefinition = New-Objecti
 system.windows.controls.rowdefinition

 $rowDefinition.height = “Auto”

 $pnlOutput.RowDefinitions.Add($rowDefinition)

 $label = New-Object Windows.Controls.Label

 $label.Content = $_.Name

 [system.windows.controls.grid]i
::SetColumn($label,0)

 [system.windows.controls.grid]i
::SetRow($label,$rowcount)

 $pnlOutput.Children.Add($label)

 $label2 = New-Object Windows.Controls.Label

 $label2.Content = $_.Value

 [system.windows.controls.grid]i
::SetColumn($label2,1)

 [system.windows.controls.grid]i
::SetRow($label2,$rowcount)

 $pnlOutput.Children.Add($label2)

 $rowcount++;

 }

}

Now that the helper functions are in place, use them while adding functionality to

the UI. Once the XAML is loaded, then you can access the buttons as follows:

$btnSysInfo = $Form.FindName(‘btnShowSysInfo’)

$btnDrives = $Form.FindName(‘btnShowDrives’)

$btnMemory = $Form.FindName(‘btnShowMemory’)

$btnNetwork = $Form.FindName(‘btnShowNetwork’)

$btnInstalledApps = $Form.FindName(‘btnShowInstalledApps’)

Did you remember the x:Name fi elds from the XAML? Th ey are what you need to

use with the FindName function in order to fi nd controls within the XAML.

Aft er the buttons are in place, you can use the same add_Click code that was used

in the WinForms example, because the examples were set up specifi cally with code

reuse in mind. Once the add_Click code is in place, you should have the same

functionality and output in the WPF application that you had in the WinForms

application. Figure F.9 shows the fi nal output for the WPF application.

bapp06.indd 396bapp06.indd 396 4/21/2011 1:52:38 PM4/21/2011 1:52:38 PM

 C R E A T E A G U I I N P O W E R S H E L L 3 9 7

B
ui
ld
in
g
Yo

ur

O
w
n
G
U
I
w
ith

Po

w
er
Sh

el
l

 APPENDIX F

 F I G U R E F. 9 Final WPF application

EASIER WPF IN POWERSHELL

Certain tools can make writing WPF in PowerShell much simpler. Some of these tools
include the following:

 WPK, a module that is part of the PowerShell Pack, is available at: http://
code.msdn.microsoft.com/PowerShellPack.

 PowerBoots, a module, is available at http://powerboots.codeplex.com/.

Now that you have seen how to write GUIs from within PowerShell, use

these examples as guides for creating GUIs for your own end users. Th ose who

are timid at a command prompt will thank you for taking the time to cater to

their preference.

bapp06.indd 397bapp06.indd 397 4/21/2011 1:52:38 PM4/21/2011 1:52:38 PM

bapp06.indd 398bapp06.indd 398 4/21/2011 1:52:39 PM4/21/2011 1:52:39 PM

Symbols
* (asterisk) wildcard, 45

[] (brackets) wildcard, 45

- (hyphen), in parameter syntax, 43

| (pipes operator). see pipes operator (|)

? (question mark) wildcard, 45

A
about_parameters, using with Get-Help command,

52, 52

account lockout policy, 212

AD (Active Directory)

cmdlets supporting, 8

creating managed service accounts, 186–188, 187–188

domains, domain controllers, and forests, 178–180,

178–180

enabling recycle bin, 191–193, 192–193

FSMO roles, 180–182, 181–182

Group Policy. see Group Policy

installing/using managed service accounts, 188–189,

189

loading AD module, 174–177, 176–177

managed service accounts, 185–186

module for, 56, 56

overview of, 174

populating AD test environment, 293–295

recovering multiple users from recycle bin, 195

recovering users with pipe operator, 81

recycle bin, 189–191, 193–195, 194–195

users, groups, and OUs, 182–185, 183

AD CS (Active Directory Certifi cation Services), 152

AD DS (Active Directory Domain Services), 152

Add-ADGroupMember, 184

Add-Computer, 41

Add, description of common verbs, 39

Add-Image switch, WDSUTIL, 250

Add-NLBClusterNode, 161

Add-PSSnapin

adding snap-ins, 359–360

MDT snap-in, 258

Add-Type cmdlet

creating objects, 309–310, 310

creating WinForms application, 385

Add-WBVolume, 158

Add-WebConfiguration, 226

Add-WindowsFeature

cmdlets for working with server features, 149–150

installing backup tools, 156

installing Hyper-V, 269

installing WDS, 246

administration, benefi ts of modules for, 38

administration.config, IIS Manager, 225

Administrative template fi le (ADMX), 199

administrators, running sessions as, 61, 113, 113

ADMX (Administrative template fi le), 199

adprep /domainprep, 186

adprep /forestprep, 186

aliases

built-in, 67–69

creating, 69–71, 291–292

exporting using fi le extensions, 73–77, 73–77

getting help with, 67

making permanent, 72

not loaded error, 72, 72

overview of, 66–67

parameter error, 78, 78

for parameters, 342

provider for, 314–315

AllowEmptyCollection, validation attribute, 344

AllowEmptyString, validation attribute, 344

AllowNull, validation attribute, 344

AllSigned, execution policy, 109

analyzing servers

loading BPA module, 151

overview of, 150

using BPA, 151–155

I N D E X

bindex.indd 399bindex.indd 399 4/18/2011 2:59:32 PM4/18/2011 2:59:32 PM

4 0 0 A P P H O S T S V C C O M P U T E R N A M E P A R A M E T E R

AppHostSvc (Application Host Helper Service), 229–230

application pools, 236–240, 237–238

Application Server role, BPA, 153

applicationhost.config, IIS Manager, 225

AppLocker

confi guring, 219–222, 220–222

overview of, 217–218

policy, 218–219

Apply permissions, Group Policy, 206

$args variable, 101–102, 102

arithmetic operators, using logic in scripts, 103

assignment operators, using logic in scripts, 103

attributes, cmdlet and function, 340–346

B
Background Intelligent Transfer Service (BITS) 4.0, 31

background jobs, 9, 9

Backup-GPO, 216

Backup-WebConfiguration, IIS, 226

backups

GPOs (group policy objects), 216

IIS confi guration, 229–231, 230

installing backup tools, 156, 156

performing, 156–159, 157

recycle bin and, 189

scheduling, 293

Best Practices Analyzer. see BPA (Best Practices Analyzer)

binary modules

DLL fi les and, 360

example of, 369–374, 370–373

types of modules, 361

bindings, IIS websites and, 232–234

BITS (Background Intelligent Transfer Service) 4.0, 31

boot menu, WDS, 246

BPA (Best Practices Analyzer)

analyzing server roles with, 151–155, 152–155

loading module for, 151, 151

overview of, 150

scanning multiples roles, 153

breakpoints

debugging and, 11

setting with ISE, 121–122, 121–123

buttons, adding to WinForms application, 389

C
CA (certifi cate authorities), 116

capabilities, of providers, 313

case sensitivity, in PowerShell, 48

cd, description of common aliases, 68

certifi cate authorities (CA), 116

certifi cates, provider for, 317–319, 317–319

chdir, description of common aliases, 68

classes

compiling with Add-Type, 309

Hyper-V, 270–272, 272

provider functionality and, 323

Win32 classes, 380

Clear-Host, description of built-in functions, 80

Clear-WebConfiguration, IIS, 226

Cmdlet attribute, 340

CmdletBinding attribute, 340

cmdlets

as building blocks of PowerShell, 5

choosing between functions and, 340

combining verbs and nouns in, 41–42, 42

creating custom, 349–355, 352

displaying confi rmation of, 355, 355

list of common, 41

multiple aliases and, 66

nouns in, 40

overview of, 38–39

parameters, 42–45, 43–44, 340–346

pipes operator (|) for combining, 81

properties, 46–47, 47

provider cmdlets, 324–326, 324–326

runtime life cycle, 347–348, 348

simple example, 7, 7

verbs in, 39–40

wildcards, 45–46, 46

writing methods for output, 346–347, 347

cn, containers in LDAP, 176

Code-Signing Certifi cates, 116

code, writing at command prompt, 301

.com fi les, AppLocker policies and, 219

COM objects

PowerShell access to, 5

for WDS, 248

Command, description of common nouns, 40

command processor, architectural features of PowerShell, 5

command prompt

PowerShell similarity to Microsoft , 6

vs. ISE, 300

writing code at, 301

writing scripts with, 302–304, 302–304

commands, categories used with pipes operator (|), 82

comparison operators, 93–94

Computer, description of common nouns, 40

ComputerName parameter

creating multiple remote sessions, 141

bindex.indd 400bindex.indd 400 4/18/2011 2:59:37 PM4/18/2011 2:59:37 PM

 C O N F I G U R A T I O N F I L E S E D I T P E R M I S S I O N S 4 0 1

help system and, 53, 53

remote session support, 8

remoting and, 138–139, 139

confi guration fi les, IIS, 225–229, 227–229

confi guring

AppLocker, 219–222, 220–222

IIS application pools, 189

NLB clusters, 159–160, 160

remoting, 126

virtual machines, 278–279, 279

WDS, 251

confi guring PowerShell

installing ISE on Windows Server 2008 R2, 22, 22–24

overview of, 20–21

ConfirmImpact attribute, 344, 355

connectivity, troubleshooting/resolving network

connectivity issues, 168, 168–169

-contains, defi nition of comparison operators, 94

context sensitive help, ISE, 119

copy, description of common aliases, 68

cp, description of common aliases, 68

cpi, description of common aliases, 68

D
data execution prevention (DEP), 269

dc, domain component in LDAP, 176

DCs (domain controllers), 178–180

creating service accounts and, 186

overview of, 178–180

prerequisites for Group Policy module, 201

viewing, 178–179, 179

debuggers/debugging

binary modules, 371, 371

built into ISE, 120

ISE debug menu, 11

new feature in 2.0 release, 11–12

setting breakpoints in ISE, 121–122, 121–122

DefaultParameterSetName attribute, 344

DEP (data execution prevention), 269

deployment server, WDS, 245

deployment services

Microsoft Deployment Toolkit. see MDT (Microsoft

Deployment Toolkit)

overview of, 244

Windows Deployment Services. see WDS (Windows

Deployment Services)

deployment shares

creating, 260–262, 260–263, 296–297

overview of, 265–266, 266

deployment workbench, in MDT, 256

desktop management

AppLocker for. see AppLocker

Group Policy in. see Group Policy

overview of, 198

-detailed switch, 50

developers, PowerShell features benefi tting, 15–17

DHCP, BPA roles and, 153

diagnostics, troubleshooter for, 167, 167

diff erencing VHDs, 280

digitally signing scripts, 116

dir

example of alias, 66–67, 67

using with Active Directory, 177

viewing domain you are working in, 183, 183

directory service-specifi c entries (DSEs), 178

Disable-PSRemoting, 133, 133–134

DLL fi les

AppLocker policies, 219

binary modules and, 360

DNS role, BPA, 152

Do-While statement, 104

domain controllers. see DCs (domain controllers)

Domain Naming Master, working with FSMO roles, 180–181

domains

functional modes, 191

order of precedence for policies, 213

password policies, 210–212, 211

scope in Group Policy management, 200

working with in AD, 178–180, 178–180

DOSKey tools, 53

drives

information sections of GUI application, 381–382, 382

provider for, 313–314

viewing available, 164, 164

viewing persistent, 261, 261

DSEs (directory service-specifi c entries), 178

dynamic modules, 361–362

dynamic parameters

Alias provider, 315

FileSystem provider, 319–320

providers and, 314, 314

Registry provider, 320

WSMan provider, 321–322

dynamic variables, in PowerShell, 101

dynamically expanding VHDs, 279

E
EC (Enterprise Client), starter GPOs for, 206

Edit permissions, Group Policy, 206

bindex.indd 401bindex.indd 401 4/18/2011 2:59:37 PM4/18/2011 2:59:37 PM

4 0 2 E N A B L E P S R E M O T I N G G E T A P P L O C K E R P O L I C Y

Enable-PSRemoting

overview of, 128–129, 129

tasks performed by, 131–133

XP mode and, 130, 130–131

ending phase, of runtime lifecycle, 347

Enter-PSSession cmdlet, 140

Enterprise Client (EC), starter GPOs for, 206

enterprise environment, using PowerShell in, 8–9, 9

environment variables

for module storage locations, 362–363

provider for, 319

-eq, defi nition of comparison operators, 93

event handlers, adding to WinForms application, 390

-example switch, 50

Excel, working with aliases in, 73–75

.exe fi les, AppLocker policies for, 219

execution policies

overview of, 109–110, 110

RemoteSigned execution policy, 110–111, 111

setting, 111–115, 112–115

Exit-PSSession cmdlet, 141

exporting aliases, 72–76

Extensible Application Markup Language (XAML)

choosing between WinForms and WPF, 380–381

writing XAML fi les, 393–396

extensions. see snap-ins

external virtual networks, 277

F
fi le extensions, exporting aliases and, 73–77, 73–77

File Services role, BPA, 153

fi le system, provider for, 319–320

fi lenames, for profi les, 61

fi ltering output

commands used with pipe operator, 82

overview of, 93–95, 94

fi rewalls

creating exception for WS-Management traffi c,

132, 132

disabling fi rewall exception for WinRM, 136, 136

fi xed size VHDs, 279

fl exible single master operation (FSMO) roles, 180–182,

181–182

For statement, common logic statements, 104

force switches

controlling FSMO roles and, 181

having commands bypass roadblocks, 50

manually updating Group Policy settings, 201

using with Enable-PSRemoting, 129

ForEach statement

common logic statements, 104

script example, 104–105, 105

forests

overview of, 178–180, 178–180

viewing/changing forest mode, 182, 182

Format-Custom cmdlet, 86

Format-List cmdlet

uses of formatting cmdlets, 86

using with Get-Service command, 82–83, 82–83

using with properties, 87

Format-Table cmdlet

uses of formatting cmdlets, 86

using with properties, 88

Format-Wide cmdlet, 86

formatting output

commands used with pipe operator, 82

example, 82–83

overview of, 85–88, 86–88

using with redirection cmdlets, 89

FQDN (fully qualifi ed domain name), 138

FSMO (fl exible single master operation) roles, 180–182,

181–182

-full switch, 50

fully qualifi ed domain name (FQDN), 138

functionality, of providers, 323, 323

functions

adding helper functions to WinForms application,

385–388

built-in, 79, 79–80

choosing between cmdlets and, 340

creating advanced, 348–349, 349

creating own, 80–81

overview of, 77–79

parameters and attributes and, 340–346

provider for, 316

runtime life cycle, 347–348, 348

syntax of, 80

G
gcm, description of common aliases, 68

GCs (global catalog servers), 179–180, 180

-ge, defi nition of comparison operators, 94

Get-ADDefaultDomainPasswordPolicy, 211

Get-ADDomainController, 178–179, 179

Get-ADForest, 182

Get-ADobject, 183

Get-ADRootDSE, 178, 178

Get-Alias, 67–69, 68

Get-AppLockerFileInformation, 220–221, 221

Get-AppLockerPolicy, 220

bindex.indd 402bindex.indd 402 4/18/2011 2:59:37 PM4/18/2011 2:59:37 PM

 G E T B P A M O D E L G U I S 4 0 3

Get-WBJob, 158

Get-WBPolicy, 158

Get-WebBinding, 233, 233

Get-WebConfigFile, 226–227

Get-WebConfigurationBackup, 226–227

Get-WebConfigurationProperty, 226–227

Get-WebSite, 235

Get-WebVirtualDirectory, 240–241

Get-WindowsFeature, 149, 149–150

Get-WmiObject, 271

global catalog servers (GCs), 179–180, 180

GPMC (Group Policy Management Console), 199, 201

GPO Administrator permissions, 206

GPOs (Group Policy Objects)

backing up and restoring, 216

creating, 204–206, 205–206

description of, 199

settings for, 208–209, 209

in SYSVOL, 204

templates for, 206–208, 207

viewing, 202

gpudate, manually updating Group Policy settings, 201

Group Policy

backing up and restoring GPOs, 216

controlling order of precedence, 213–214, 213–215

creating GPOs, 204–206, 205–206

default order of precedence, 212–213

domain password policies, 210–212, 211

how it works, 200–201

managing, 201–204, 202–204

overview of, 198–199

policies vs. preferences, 209–210

refresh intervals, 201

RSOP report, 215, 215–216

settings for GPOs, 208–209, 209

templates for GPOs, 206–208, 207

turning off display control panel, 295–296

XP mode settings, 131, 131

Group Policy link

description of, 199

setting link order, 214, 214

Group Policy Management Console (GPMC), 199, 201

groups, working with in AD, 182–185, 183

-gt, defi nition of comparison operators, 93

GUIs (graphical user interfaces)

ISE as. see ISE (Integrated Scripting Environment)

options for working with PowerShell, 10–13, 10–13

GUIs (graphical user interfaces), creating custom

choosing between WinForms and WPF, 380–381

creating WinForms application, 385, 385–391

creating WPF application, 391–397, 392, 394, 397

sections of application, 381–384, 382–384

Get-BPAModel, 151–152, 152

Get-BPAResult, 151, 153–154, 154

Get-Children -path function, 79

Get-Command

description of common cmdlets, 41

in help system, 49, 49

for snap-ins, 360

writing code at command prompt, 300

Get, description of common verbs, 39

Get-ExecutionPolicy, 111–112, 112

Get-Function, 348–349, 374–376

Get-GPO, 202–203

Get-GPPermissions, 205, 205

Get-GPPrefRegistryValue, 208

Get-GPRegistryValue, 208

Get-GPResultantSetofPolicy, 215

Get-GPStarterGPO, 207

Get-Help

about_parameters, 52, 52

getting help with aliases, 67

help fi le formats, 368

in help system, 49–53, 51–53

writing code at command prompt, 301

Get-ItemProperty, 165, 165–166

Get-MDTPersistentDrive, 261, 261

Get-Member

description of common cmdlets, 41, 42

for WDS, 248, 248

working with objects, 305–307, 308

Get-Module

confi rming AD loaded, 175

displaying currently loaded modules, 59, 59

Get-NLBCluster, 161

Get-NLBClusterNode, 162

Get-NLBClusterVip, 162

Get-PSDrive, 164, 164

Get-PSProvider, 312

Get-PSSession, 142, 142

Get-PSSnapin

verifying backup tools have loaded, 157

viewing loaded snap-ins, 358–359, 359

viewing snap-in, 258, 258

Get-Server switch, WDSUTIL, 250

Get-Service

with -name parameter, 43

overview of, 41, 42

Get-Verb

with all command that go with Format verb, 85

description of built-in functions, 80

Get-VMSnapshot, 286

Get-VMSnapshotTree, 286

Get-VMState, 284

bindex.indd 403bindex.indd 403 4/18/2011 2:59:37 PM4/18/2011 2:59:37 PM

4 0 4 H A R D D R I V E S I N S T A L L I N G P O W E R S H E L L

If Elseif Else statement, common logic statements, 104

If statement, common logic statements, 104

IIS Confi guration History, 229–230

IIS (Internet Information Services)

application pools, 236–240, 237–238

backing up and restoring confi guration, 229–231, 230

BPA roles and, 153

confi guration fi les, 225–229, 227–229

confi guring IIS application pools in managed service

accounts, 189

creating websites, 296

loading WebAdministration module, 224–225,

224–225

managing websites, 231–232, 232

overview of, 224

virtual directories, 240, 240–241

working with IIS provider, 234–235, 234–236

working with web bindings, 232–234, 233

imaging tools. see also MDT (Microsoft Deployment

Toolkit), 254–255

import, advantages of modules vs. snap-ins, 361

Import-GPO, 216

Import-Module

Active Directory, 175

AppLocker, 219

grouppolicy, 201

installing backup tools, 156

ServerManager, 148–149, 247

TroubleshootingPack, 167

importing aliases, 72–76, 73–77

ImportSystemModules, 58

Infrastructure Master role, FSMO, 180–181

Initialize-Server switch, WDSUTIL, 250

Install-ADServiceAccount, 188

installing

backup tools, 156, 156

Hyper-V, 269–270, 269–270

managed service accounts, 188–189, 189

MDT, 256–257, 257

providers, 322

snap-ins, 358

WDS, 246–247, 247

installing PowerShell, on other operating systems

list of systems supporting PowerShell, 29

obtaining and installing Windows Management

Framework components, 31, 31–35, 33–35

prerequisites for, 29–31, 30

installing PowerShell, on Windows Server 2008 R2

adding PowerShell to Server Core installation, 26–29,

27–28

installing .NET Framework support, 26, 27

overview of, 24–25

H
hard drives

information sections of GUI application, 381–382, 382

overview of, 279–281

understanding virtual, 279–281, 280–281

hardware requirements, for Hyper-V, 269

help fi le

directory structure, 368

modules and, 368, 369

Help, provider for, 326

help system

Get-Command cmdlet, 49, 49

Get-Help cmdlet, 49–53, 51–53

overview of, 48

tab autocomplete and DOSKey tools, 53

HelpMessage, keywords used with Parameter attribute, 341

HelpMessageBaseName, keywords used with Parameter

attribute, 341

HelpMessageResourceID, keywords used with Parameter

attribute, 341

Hey, Scripting Guy! Blog, 54

high-touch deployment, MDT, 253

HKCU (HKEY_CURRENT_USER)

Get-PSDrive and, 164–165

provider drives, 313

HKLM (HKEY_LOCAL_MACHINE)

Get-PSDrive and, 164

provider drives, 313

HTML, GPO report in, 208–209

Hyper-V

BPA roles and, 153

confi guring virtual machines, 278–279, 279

connecting to virtual machines, 283–284, 284

Get-BPAResult for, 153–155, 154–155

Hyper-V module for working with, 272–276, 273–276

installing, 269–270, 269–270

provider for managing, 15

snapshots, 285–287, 285–287

understanding virtual hard drives, 279–281, 280–281

virtual machine settings, 281–283, 282–283

as virtualization technology, 268

WMI for working with, 270–272, 271–272

working with virtual networks, 276–278, 277–278

hyphen (-), in parameter syntax, 43

I
IDE (integrated development environment), 300

If Else statement, common logic statements, 104

bindex.indd 404bindex.indd 404 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

 I N S T A L L U T I L . E X E M O D U L E S 4 0 5

Lightweight Directory Access Protocol (LDAP)

navigation terminology, 176

working with AD and, 174

-like, defi nition of comparison operators, 94

-ListAvailable parameter, using with Get-Module

command, 59, 59–60

listeners

creating for remoting, 132

deleting WinRM listener, 134

load balancing. see NLB (network load balancing)

local policies, order of precedence, 213

LocalAccountTokenFilterPolicy, 137, 137–138

logic, in scripts, 102–104

logon attempts, password policies and, 212

ls, example of alias, 66–67

-lt, defi nition of comparison operators, 94

M
man, description of common aliases, 68

managed service accounts

creating, 186–188, 187–188

installing/using, 188–189, 189

overview of, 185–186

Mandatory, keywords used with Parameter attribute, 341

manifest fi le (or defi nition fi le)

keys, 364–366

modules, 363–368, 364, 367–368

manifest modules, 361–362

-match, defi nition of comparison operators, 94

MDT (Microsoft Deployment Toolkit)

built-in cmdlets in, 15

creating deployment shares, 296–297

deployment shares, 260–262, 260–263, 265–266, 266

installing, 256–257, 257

overview of, 244, 253–254

task sequences, 263–265, 265

WIM (Windows Imaging Format) and, 254–256, 255

Windows Deployment Wizard, 254

working with, 257–260, 258–259

member support, advantages of modules vs. snap-ins, 361

memory, information sections of GUI application, 381

menus, managing Hyper-V, 282–283

Microsoft applications, PowerShell supported, 6

modules

AD module, 174–177, 176–177

benefi ts of, 38

binary module, 369–374, 370–373

creating custom, 361, 368–369

creating custom shell, 60–64, 63–64

prerequisites for, 20

XP mode and, 290

InstallUtil.exe, installing and registering

snap-ins, 358

integrated development environment (IDE), 300

internal virtual networks, creating, 277

internationalization, new feature in 2.0 release, 8

Internet Information Services. see IIS (Internet Information

Services)

Invoke-BPAModel, 151, 153

Invoke-Command

for running cmdlets on remote server, 140

using with remote sessions, 142–143, 143

IP addresses, 138

ISE (Integrated Scripting Environment)

breakpoints in, 121–122, 121–123

context sensitive help, 119

debug menu, 11

displaying scripts requiring parameters, 123–124,

123–124

features of, 21

GUI for working with scripts, 10, 10

installing on Windows Server 2008 R2, 22, 22–24

interface for, 117

locating on PowerShell start menu, 24, 24

multiple sessions in, 118, 118

.NET Framework 3.51 and, 31

overview of, 116–117

remoting in, 143–145, 144

using it with scripts, 119–120, 120

view panes, 117, 117–118

vs. command prompt, 300

writing scripts with, 302

IT professionals, features benefi tting, 14–15

K
keyboard shortcuts, developers and, 303

kill, description of common aliases, 68

L
LDAP (Lightweight Directory Access Protocol)

navigation terminology, 176

working with AD and, 174

-le, defi nition of comparison operators, 94

learning curve, for starting with PowerShell, 6–7

light-touch deployment, MDT, 253

bindex.indd 405bindex.indd 405 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

4 0 6 M U L T I C A S T O P T I O N S P A R A M E T E R

New-GPLink, 203

New-GPO, 203

New-GPStarterGPO, 207

New-NLBCluster

creating load-balancing clusters, 159–160

parameters, 160

New-Object, 307–309, 308

New-PSSession, 141

New-VMSnapshot, 285

New-Website, 231–232, 232

NICs (network interface cards)

adding virtual NIC, 278, 278

information sections of GUI application, 381, 384

NLB (network load balancing)

cmdlets for managing port rules, 162–163

common cmdlets, 161–162

confi guring NLB cluster, 159–160, 160

overview of, 159–163, 160–161

parameters used with New-NLBCluster, 160

None permissions, Group Policy, 206

-notcontains, defi nition of comparison operators, 94

Notepad

creating scripts in, 100

GUI as alternative for creating scripts, 116

working with aliases in, 73, 73

-notlike, defi nition of comparison operators, 94

-notmatch, defi nition of comparison operators, 94

NounName attribute, 344

nouns

combining verbs and nouns, 41–42, 42

list of common, 40

O
ObjectGUID, fi nding with Out-GridView, 193–194, 194

objects

Add-Type cmdlet for creating, 309–310, 310

adding to WinForms application, 385

New-Object cmdlet for creating, 307–309, 308

options for creating, 307

overview of, 304

properties of, 305–306, 305–307

restoring AD object from recycle bin, 193–195

online resources

help system and, 54

script repository, 107–108

OO (object orientation), in .Net Framework, 5

operating systems (OSs), supporting PowerShell, 29

operators, using logic in scripts, 102–103

Options parameter, Alias provider, 315

modules (continued)
custom providers and, 16

getting familiar with, 58–59, 58–60

Group Policy module, 201–202, 202

help fi le, 368, 369

Hyper-V module, 272–276, 273–276

loading all modules into existing session, 58

manifest fi le (or defi nition fi le), 363–368, 364, 367–368

methods for loading providers, 322

overview of, 55

script module, 374–377, 376

Server Manager module, 148–149

storage locations for, 362, 362–363

TroubleshootingPack module, 166–169

types of, 361–362

using PowerShell in, 55–58, 56–57

viewing list of available, 149

WebAdministration module, 224–225, 224–225

.msi fi les, AppLocker policies, 219

.msp fi les, AppLocker policies, 219

multicast

vs. unicast, 245

WDS transport server supporting, 246

N
named parameters, 43–44, 44

names, parameter, 342

namespaces, WMI and, 270–271, 271

-ne, defi nition of comparison operators, 93

.NET Framework

installing, 26, 27

installing .NET Framework 3.51, 22–23, 23, 31

as prerequisite for installing PowerShell, 20

requirements for enabling remoting, 127

use of .NET objects in PowerShell, 5

NetBIOS names, 138

NetFx2-ServerCore, 26

Network Policy and Access Service role, BPA, 153

networks

remoting and network location, 127–128, 128

troubleshooting/resolving connectivity issues, 168,

168–169

working with virtual, 276–278, 277–278

New-ADgroup, 184

New-ADorganizationalunit, 184

New-ADServiceAccount, 186

New-ADuser, 184

New-Alias, 69–70

New-AppLockerPolicy, 220

bindex.indd 406bindex.indd 406 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

 O R D E R O F P R E C E D E N C E P R O P E R T I E S 4 0 7

formatting example, 82–83

formatting PowerShell output, 85–88

listing all commands for use with specifi c verb, 85

output path example, 83–84

overview of, 81

redirection example, 83

sorting example, 83–84

sorting PowerShell output, 89

policies. see also Group Policy

AppLocker, 218–219

vs. preferences, 209–210

portability, advantages of modules vs. snap-ins, 361

Position, keywords used with Parameter attribute, 341

positional parameters, 43–45, 44

PowerBoots, writing WPF with, 397

Th e PowerShell Guy, 54

PowerShell, introduction to

benefi ts to diff erent types of users, 13–14

cmdlet example, 7

features benefi tting developers, 15–17

features benefi tting IT professionals, 14–15

GUI features, 10–13, 10–13

integration with other Microsoft applications, 6

learning curve of, 6–7

new feature in 2.0 release, 7–8

reasons for using, 2–3

use in enterprise environment, 8–9, 9

use of .NET objects in, 5

what it can do, 3–5

what it is, 3, 4

PowerShell Management Library, for Hyper-V,

274–276, 276

PowerShellCommunity.org, 54

powershell.exe, 169–170

Preboot Execution Environment (PXE), 244–245

preferences, vs. policies, 209–210

private virtual networks, 277

processing phase, of runtime lifecycle, 347

profi les

creating, 63–64, 63–64, 290–291

defi ned, 61

fi lenames, 61

locations for, 61–62

modifying to make aliases permanent, 76–77

modifying to make functions permanent, 80

setting up remote session and, 292–293

types of, 62

/progress switch, viewing progress on WDS, 252

properties

cmdlets, 46–47, 47

objects, 305–306, 305–307

Registry provider, 320

order of precedence, for policies

controlling, 213–214, 213–215

default, 212–213

organizational units. see OUs (organizational units)

OSs (operating systems), supporting PowerShell, 29

OUs (organizational units)

LDAP and, 176

order of precedence for policies, 213

populating AD test environment, 293–295

scope in Group Policy management, 200

working with in AD, 182–185, 183

out cmdlets. see redirecting output

Out-Default, 89

Out, description of common verbs, 39

Out-File, 89–90, 90

Out-GridView

description of redirect output cmdlets, 89–90

fi nding ObjectGUID with, 193–194, 194

GUI option in PowerShell, 12–13, 13

overview of, 91–92

Out-Host, 89

Out-Null, 89

Out-Printer, 89, 93

Out-String, 89

output, cmdlet writing methods for, 346–347, 347

output path example, pipes operator (|), 83–84

P
panels, adding to WinForms application, 388

Parameter attribute, 340–341

parameters

cmdlets, 42–45, 43–44, 340–346

functions, 78, 78, 340–346

names, 342

SwitchParameter, 343

ParameterSetName, keywords used with Parameter

attribute, 341

passwords

creating service accounts and, 187

domain policy, 210–212, 211

paths, providers, 324, 324

PDC Emulator role, FSMO, 180–181

permissions, Group Policy, 206

pipeline processor, architectural features of PowerShell, 5

pipelining, 81

pipes operator (|)

categories of commands used with, 82

combining cmdlets with, 81

fi ltering output, 93–95

bindex.indd 407bindex.indd 407 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

4 0 8 P R O V I D E R S R I D M A S T E R R O L E

registering snap-ins, 358

registry

computer and user policies, 210

execution policy in, 115, 115

provider for, 320–321, 320–321

server administration and, 163–166, 164–165

Remote Desktop Connection, compared with remoting in

PowerShell, 126

Remote Desktop Services (RDS), 152

Remote Installation Services (RIS), 245

Remote Procedure Call (RPC), 127

Remote Server Administration Tools (RSAT), 175, 201

RemoteSigned, 109–111, 111

remoting

confi guring, 126

Enable-PSRemoting, 131–133

enabling, 128–129, 128–129

Invoke-Command, 140

in ISE, 143–145, 144

network location and, 127–128, 128

overview of, 126

requirements for enabling, 126–128

running commands, 138–140, 139

setting up remote sessions, 292–293

support for remote sessions, 8–9, 9

using remote sessions, 140–143, 140–143

WinRM fi rewall port for, 132, 132

WMF component for, 31

XP mode and, 130–131, 130–131

remoting, disabling

deleting WinRM listener, 134, 134

Disable-PSRemoting, 133, 133–134

disabling fi rewall exception for WinRM, 136, 136

restoring value of LocalAccountTokenFilterPolicy to 0,

137, 137–138

stopping/disabling WinRM service, 135, 135–136

Remove-ADServiceAccount, 187–188, 188

Remove-ADuser, 184

Remove All Breakpoints, keyboard shortcut for, 303

Remove-Module, 322

Remove-NLBClusterNode, 161

Remove-WebConfigurationProperty, 226

Remove-WindowsFeature, 149–150

repository, for scripts, 108, 108

Restart, description of common verbs, 39

Restore-GPO, 216

Restore-VMSnapshot, 286–287, 287

Restore-WebConfiguration, 231

Restricted, execution policy, 109

Resultant Set of Policies. see RSOP (Resultant Set of Policies)

Resume-NLBCluster, 162

RID Master role, FSMO, 180–181

providers

Alias provider, 314–315

built-in, 312–313

built in roles and services, 6

capabilities of, 313

Certificate provider, 317–319, 317–319

cmdlet help, 326

cmdlets, 324–326, 324–326

custom, 327–337, 328–329, 336

drives, 313–314

dynamic parameters, 314, 314

Environment provider, 319

FileSystem provider, 319–320

Function provider, 316

functionality of, 323, 323

IIS, 234–235, 234–236

installing/removing, 322

overview of, 312

paths, 324, 324

registry and, 163

Registry provider, 320–321, 320–321

Variable provider, 316

working with built-in, 312

WSMan provider, 321, 321–322

PS., description of common nouns, 40

.psd1 fi les, 362

PSModulePath, environment variable for module storage

locations, 362, 362–363

public parameters, 342

PXE (Preboot Execution Environment), 244–245

R
RDS (Remote Desktop Services), 152

Read permissions, Group Policy, 206

recovery

Restore-GPO, 216

Restore-VMSnapshot, 286–287, 287

Restore-WebConfiguration, 229–231, 230

recycle bin, AD

accessing, 20

enabling, 191–193, 192–193

overview of, 189–191

recovering multiple users from, 195

using, 193–195, 194–195

redirecting output

commands used with pipe operator, 82

example, 83

overview of, 89–93, 90–92

redirection.config, IIS Manager, 225

bindex.indd 408bindex.indd 408 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

 R I S S E T V M C P U C O U N T 4 0 9

variables in, 101–102, 102

security

digitally signing scripts, 116

execution policies, 109–110, 110

RemoteSigned execution policy, 110–111, 111

scripts and, 108, 108

setting execution policy, 111–115, 112–115

Select-VMSnapshot, 286

server administration

analyzing server, 150

Get-WindowsFeature, 149, 149

installing backup tools, 156, 156

load balancing, 159–163, 160–161

loading BPA module, 151, 151

overview of, 148

performing backups, 156–159, 157

registry and, 163–166, 164–165

scheduling scripts, 169–172

Server Manager cmdlets, 148–150

troubleshooting packs for, 166–169, 167–168

using BPA, 151–155, 152–155

viewing available drives, 164

Server Manager

importing Server Manager module, 148–149, 148–150

installing ISE on Windows Server 2008 R2, 22

service accounts

managed. see managed service accounts

overview of, 185

Service, description of common nouns, 40

services, displaying commands running against, 49, 49

sessions

defi ned, 8

loading all modules into existing session, 58

multiple sessions in ISE, 118, 118

remote session support, 8–9, 9

running sessions as administrator, 61

setting up remote session, 292–293

using remote sessions, 140–143, 140–143

Set-ADaccountpassword, 184

Set-ADDefaultDomainPasswordPolicy, 211

Set-ADForestMode, 182

Set-Alias cmdlet, 69–71, 70–71

Set-AppLockerPolicy, 220

Set-BPAResult, 151

Set, description of common verbs, 39

Set-ExecutionPolicy, 111–115

Set-GPPermissions, 205

Set-GPPrefRegistryValue, 203

Set-GPRegistryValue, 203

Set-NLBClusterVip, 162

Set-Server switch, WDSUTIL, 250

Set-VMCPUCount, 281

RIS (Remote Installation Services), 245

role IDs, BPA tool and, 152–153

RPC (Remote Procedure Call), 127

RSAT (Remote Server Administration Tools), 175, 201

RSOP (Resultant Set of Policies)

description of, 199

overview of, 212

working with, 215, 215–216

Run/Continue, keyboard shortcut for, 303

runtime life cycle

cmdlets, 347–348, 348

functions, 347–348, 348

S
Save-VM, 284

scheduling

backups, 293

scripts, 169–172

Schema Master role, FSMO, 180–181

script modules

example of, 374–377, 376

types of modules, 361–362

script pane, position shortcuts, 304

script parser, architectural features of PowerShell, 5

scripting languages, need for PowerShell and, 2–3

Scripting with Windows PowerShell, online resources, 54

scripts

AppLocker policies, 219

backup schedule, 293

with command prompt, 302–304, 302–304

creating, 100

digitally signing, 116

displaying scripts requiring parameters, 123–124,

123–124

example of, 105–106, 106

execution policies, 109–110, 110

for fi nding startup programs, 292

ForEach loop example, 104–105, 105

inventorying, 290

ISE used with, 119–120, 120

logic in, 102–104

overview of, 98–100

RemoteSigned execution policy, 110–111, 111

repository for, 108, 108

resources for, 107

running, 106–107, 107

scheduling, 169–172

security and, 108, 108

setting execution policy for, 111–115, 112–115

bindex.indd 409bindex.indd 409 4/18/2011 2:59:38 PM4/18/2011 2:59:38 PM

4 1 0 S E T V M M E M O R Y U T F 8

stopping phase, of runtime lifecycle, 347

storage locations, for modules, 362, 362–363

SupportsShouldProcess attribute, 344

SupportsTransactions attribute, 344

Suspend-NLBCluster, 161

switches

force switch. see force switches

WDSUTIL, 250

SwitchParameter, 343

system information, information sections of GUI

application, 381–382, 382

Systems Management Server (SMS), 255

SYSVOL, GPOs in, 204

T
tab autocomplete

overview of, 53

writing code at command prompt, 300

TabExpansion function, 80

Task Scheduler, 170–171

task sequences, for deploying custom image,

263–265, 265

templates

ADMX (Administrative template fi le), 199

for GPOs, 206–208, 207

for task sequences, 264

Terminal Services, 126

Test-AppLockerPolicy, 220, 222

Test-ModuleManifest, 367–368, 368

Toggle Breakpoint, keyboard shortcut for, 303

tombstoneLifetime attribute, 190

transport server, WDS, 245

troubleshooting packs, for server administration, 166–169,

167–168

U
unary operators, 103

unicast, 245

UNIX shells, 6

Unrestricted execution policy, 109–110, 110

UpdateServerfiles switch, WDSUTIL, 250

users

recovering multiple users from recycle bin, 195

working with in AD, 182–185, 183

UTF-8, 368

Set-VMMemory, 281

Set-WBPolicy, 158

Set-WBSchedule, 158

Set-WebConfigurationProperty, 226–227

shells

creating custom, 60–64, 63–64

PowerShell similarity to UNIX shells, 6

Show-HyperVMenu, 282

Show-VHDMenu, 283

Show-VMDiskMenu, 283

Show-VMMenu, 282, 283

ShutDown-VM, 284

sites

order of precedence for policies, 213

scope in Group Policy management, 200

sl, description of common aliases, 68

SMS (Systems Management Server), 255

snap-ins

advantages of modules vs., 361

custom providers and, 16

installing and registering, 358

loading MDT snap-in, 258, 258

methods for loading providers, 322

verifying backup tools have loaded, 157

working with existing, 358–360, 359–360

snapshots

taking, 297–298

of virtual machines, 285–287, 285–287

soft ware restriction policies. see also AppLocker, 217

Sort-Object cmdlet, 83–84, 84, 89

sorting output

commands used with pipe operator, 82

example, 83–84

overview of, 89

Specialized Security Limited Functionality (SSLF), 206

spps, description of common aliases, 68

SSLF (Specialized Security Limited Functionality), 206

Start, description of common verbs, 39

start menu, locating PowerShell on, 24, 24

Start-NLBClusterNode, 162

Start-VM, 284

Start-WBBackup, 158

starting phase, of runtime lifecycle, 347

static variables, in PowerShell, 101

Step Into, keyboard shortcut for, 303

Step Out, keyboard shortcut for, 303

Step Over, keyboard shortcut for, 303

Stop Debugging, keyboard shortcut for, 303

Stop, description of common verbs, 39

Stop-NLBClusterNode, 162

Stop-VM, 284

bindex.indd 410bindex.indd 410 4/18/2011 2:59:39 PM4/18/2011 2:59:39 PM

 V A L I D A T E C O U N T W I N D O W S S E R V E R 2 0 0 8 R 2 S E R V E R 4 1 1

working with, 247–248, 248

WDSUTIL

switches, 250

working with WDS, 248–251, 249

web bindings, IIS websites and, 232–234, 233

WebAdministration module, 224–225, 224–225

websites

creating, 296

managing IIS, 231–232, 232

working with web bindings, 232–234

Where-Object, 93

While statement, common logic statements, 104

wildcards, 45–46, 46

WIM (Windows Imaging Format). see also MDT (Microsoft

Deployment Toolkit), 254–256, 255

Windows 7

accessing PowerShell tools, 21, 21

AppLocker. see AppLocker

choosing between WinForms and WPF, 380

creating custom cmdlets for, 350–355

managing AD on Windows 7 clients, 175

PowerShell built into, 20

XP mode and, 34

Windows Automated Installation Kit (WAIK),

256–257, 257

Windows Deployment Services. see WDS (Windows

Deployment Services)

Windows Deployment Wizard, 254

Windows Embedded, PowerShell support for, 29

Windows Forms. see WinForms (Windows Forms)

Windows Imaging Format (WIM). see also MDT (Microsoft

Deployment Toolkit), 254–256, 255

Windows Management Framework (WMF), 31, 31–35,

33–35

Windows Management Instrumentation. see WMI

(Windows Management Instrumentation)

Windows Presentation Foundation. see WPF (Windows

Presentation Foundation)

Windows Remote Management service. see WinRM

(Windows Remote Management) service

Windows Server 2003 SP2, PowerShell support for, 29

Windows Server 2008 R2 server

accessing PowerShell tools on, 21

administration of. see server administration

AppLocker. see AppLocker

installing ISE on, 22–24

installing .NET Framework 3.51 on, 22–23, 23

installing PowerShell on. see installing PowerShell, on

Windows Server 2008 R2

PowerShell built into, 6, 20

PowerShell features for IT professionals, 15

V
ValidateCount, validation attributes, 345

ValidateLength, validation attributes, 345

ValidateNotNull, validation attributes, 344

ValidateNotNullOrEmpty, validation attributes, 344

ValidatePattern, validation attributes, 345

ValidateRange, validation attributes, 345

ValidateScript, validation attributes, 345

ValidateSet, validation attributes, 345

validation attributes, 344–345

ValueFromPipeline, keywords used with Parameter

attribute, 341, 343

ValueFromRemainingArguments, keywords used with

Parameter attribute, 341

variables

environment variables, 319

provider for, 316

in scripts, 101–102, 102

VBScript, converting to PowerShell, 99

VerbName attribute, 344

/verbose switch, WDS, 252

verbs

combining verbs and nouns, 41–42, 42

list of common, 39–40

pipes operator for listing all commands for use with

specifi c verb, 85

VHDs (virtual hard drives), 279–281, 280–281

virtual directories, 240, 240–241

virtual hard drives (VHDs), 279–281, 280–281

virtual machines

confi guring, 278–279, 279

connecting to, 283–284, 284

creating, 297–298

settings, 281–283, 282–283

snapshots of, 285–287, 285–287

virtual networks, 276–278, 277–278

virtualization technology. see Hyper-V

W
WAIK (Windows Automated Installation Kit), 256–257, 257

WDS (Windows Deployment Services)

boot menu, 246

confi guration, 251

installing, 246–247, 247

overview of, 244, 244–246

verbose and progress switches, 252

WDSUTIL, 248–251, 249

bindex.indd 411bindex.indd 411 4/18/2011 2:59:39 PM4/18/2011 2:59:39 PM

4 1 2 W I N D O W S S E R V E R 2 0 0 8 R 2 Z O N E I D E N T I F I E R S

choosing between WinForms and, 380–381

creating WPF application, 391–397, 392, 394, 397

PowerShell integration with, 16

tools for writing, 397

writing in PowerShell, 392

WriteCommandDetail, 345

WriteDebug, 345

WriteError, 345

WriteObject, 345

WriteProgress, 345

WriteVerbose, 345

WriteWarning, 345

WS-Management protocol

provider for, 321, 321–322

remote session support, 8

WinRM service and, 127

X
X.509 certifi cates, 317

XAML (Extensible Application Markup Language)

choosing between WinForms and WPF, 380–381

writing XAML fi les, 393–396

XML, help fi le formats, 368

XP mode

installing PowerShell and, 290

remoting and, 130–131, 130–131

Z
zero-touch deployment, MDT, 253–254

zone identifi ers, for scripts, 110–111

Windows Server 2008 R2, Server Core installation

adding PowerShell to, 26–29

installing .NET Framework support, 26

overview of, 24–25

viewing PowerShell features on, 25, 25

Windows Server 2008 SP1, PowerShell support for, 29

Windows Server 2008 SP2, PowerShell support for, 29

Windows Soft ware Update Services role, BPA, 153

Windows Vista

choosing between WinForms and WPF, 380

PowerShell on, 34–35, 35

Windows Vista SP1, PowerShell support, 29

Windows XP

choosing between WinForms and WPF, 380

PowerShell on, 33, 34

PowerShell support for SP 3, 29

WinForms (Windows Forms)

choosing between WPF and, 380–381

creating WinForms application, 385, 385–391

PowerShell integration with, 16

WinRM (Windows Remote Management) service

deleting WinRM listener, 134, 134

disabling fi rewall exception for, 136, 136

fi rewall port for, 132, 132

remote session support, 8

requirements for enabling remoting, 127

starting, 131

stopping/disabling, 135, 135–136

WMF components, 31

WMF (Windows Management Framework), 31, 31–35,

33–35

WMI (Windows Management Instrumentation)

PowerShell cmdlet for interfacing with WMI objects, 5

Win32 classes, 380

working with Hyper-V, 270–272, 271–272

WPF (Windows Presentation Foundation)

bindex.indd 412bindex.indd 412 4/18/2011 2:59:39 PM4/18/2011 2:59:39 PM

	Automating Microsoft® Windows Server® 2008 R2 with Windows PowerShell® 2.0
	TABLE OF CONTENTS
	Introduction
	Chapter 1 What Is PowerShell, and Why Do You Need It?
	Why PowerShell?
	Overview of PowerShell
	The Power Behind PowerShell
	What About the Learning Curve?

	What’s New in PowerShell 2.0?
	PowerShell in the Enterprise
	PowerShell with a GUI

	PowerShell Has Something for Everyone
	What’s in It for IT Professionals?
	What’s in It for Developers?

	Chapter 2 Installing and Configuring PowerShell 2.0
	Configure PowerShell 2.0 on Windows Server 2008 R2
	Install the ISE on Windows Server 2008 R2

	Install PowerShell 2.0 on Windows Server 2008 R2 Core
	Install .NET Framework Support on Windows Server 2008 R2 Core
	Install PowerShell 2.0 on Windows Server 2008 R2 Core

	Install PowerShell 2.0 on Other Operating Systems
	Set Up the Prerequisites
	Obtain and Install PowerShell 2.0

	Chapter 3 PowerShell Grammar Lesson
	Break Down PowerShell: A Lesson on Cmdlets
	Learn the Verbs
	Learn the Nouns
	Put Verbs and Nouns Together: Cmdlets
	Use Parameters
	Use Wildcards
	Understand Properties

	Help Yourself with PowerShell
	Learn How to Help Yourself
	Use Tab Autocomplete
	Leverage Online Resources

	Use Even More Commands with Modules
	Use and Understand Modules
	Get to Know Your Modules
	Create a Custom PowerShell Shell

	Chapter 4 Aliases, Functions, and the Pipe, Oh My!
	Use Aliases
	Use Built-in Aliases
	Create Your Own Aliases

	Use Functions
	Understand Functions
	Use Existing Functions
	Create Your Own Function

	Work with the Pipe Operator
	Use the Pipe Operator to Combine PowerShell Cmdlets
	Control PowerShell Output

	Chapter 5 Creating Your Own Scripts
	Create Your Own Scripts
	PowerShell Scripting Overview
	Create a PowerShell Script
	Run Your Scripts
	Find Scripts

	Understand Security and PowerShell Scripts
	Work with Default Execution Policy of Scripts
	Understand the RemoteSigned PowerShell Execution Policy
	Set the PowerShell Execution Policy
	Understand Digital Signing

	Work with the GUI and the Shell
	Understand What the ISE Is
	Use the ISE with Scripts
	Display the Call Stack with Scripts Requiring Parameters

	Chapter 6 Remoting with PowerShell 2.0
	Configure PowerShell Remoting
	Learn the Requirements
	Enable PowerShell Remoting
	Disable PowerShell Remoting

	Run Commands on Remote Systems
	Use Invoke-Command
	Use PowerShell Remote Sessions
	Use Remoting in the ISE

	Chapter 7 Server Essentials in PowerShell
	Work with Your Server in PowerShell
	Work with Server Manager Cmdlets
	Analyze Your Server

	Add Reliability to Your Server
	Install the Backup Tools
	Perform a Backup with PowerShell
	Load-Balance Your Network

	Use Other PowerShell Utilities for the Server
	Use the Registry with PowerShell
	Use PowerShell Troubleshooting Packs
	Schedule PowerShell Scripts

	Chapter 8 Managing Active Directory with PowerShell
	Work with Active Directory
	Load the AD PowerShell Module
	Understand PowerShell Active Directory Basics
	Work with Users, Groups, and OUs

	Understand Managed Service Accounts
	Understand Managed Service Accounts
	Create Managed Service Accounts
	Install and Use Managed Service Accounts

	Work with the Active Directory Recycle Bin
	Understand How the Recycle Bin Works
	Enable the AD Recycle Bin
	Use the AD Recycle Bin

	Chapter 9 Managing Desktops with PowerShell
	Access Group Policy
	Understand Group Policy
	Understand How Group Policy Works

	Manage Group Policy
	Create Group Policy Objects
	Use Starter GPOs
	Work with Settings
	Understand the Difference Between Policies and Preferences
	Work with Domain Password Policies
	Understand Order of Precedence
	Control Group Policy Order of Precedence
	Work with RSOP
	Back Up and Restore Group Policy Objects

	Manage AppLocker
	Understand AppLocker
	Understand AppLocker Policy
	Configure AppLocker

	Chapter 10 Managing IIS Web Server with PowerShell
	Use PowerShell and IIS
	Work with Configuration Files
	Back Up and Recover IIS Configuration

	Deploy Websites, Application Pools, and Virtual Directories with PowerShell
	Manage Sites with PowerShell
	Work with Web Application Pools
	Work with Virtual Directories

	Chapter 11 PowerShell and Deployment Services
	Work with Windows Deployment Services
	Understand WDS
	Install WDS
	Work with WDS in PowerShell
	Use WDSUTIL

	Work with the Microsoft Deployment Toolkit
	Understand the MDT
	Deploy with Windows Imaging Format
	Install MDT
	Work with MDT in PowerShell
	Put It All Together

	Chapter 12 PowerShell and Virtualization
	Install and Access Hyper-V
	Install Hyper-V
	Access Hyper-V in PowerShell

	Work with Hyper-V
	Work with Virtual Networks
	Configure Virtual Machines
	Connect to Virtual Machines
	Work with Snapshots

	Appendix A Solutions to Exercises
	Solution 1: Inventory Your Scripts
	Solution 2: Install PowerShell
	Solution 3: Create a PowerShell Profile
	Solution 4: Create Your Own Alias
	Solution 5: Create a Script to Find Startup Programs
	Solution 6: Set Up a Remote PowerShell Session
	Solution 7: Create a Scheduled Backup with PowerShell
	Solution 8: Populate an Active Directory Test Environment
	Solution 9: Turn Off the Display Control Panel in Group Policy with PowerShell
	Solution 10: Create a Website with PowerShell
	Solution 11: Create a Deployment Share
	Solution 12: Create a Virtual Machine and Take a Snapshot

	Appendix B Developing at a Command Prompt
	Choose Between the ISE and the Command Prompt
	Write Code at a Command Prompt
	Write Scripts in the ISE

	Work with Objects in PowerShell
	Understand Properties
	Create Your Own Custom Object

	Appendix C Providing for PowerShell
	Work with Built-in Providers
	Understand Provider Basics
	Use PowerShell-Specific Providers
	Use Other Built-in Providers

	Work with Additional Providers
	Install and Remove Providers
	Create Your Own Provider
	Understand Basic Provider Concepts
	Build a Custom Provider

	Appendix D Custom Cmdlets and Advanced Functions
	Choose Between an Advanced Function and a Cmdlet
	Parameters and Attributes
	Output
	Runtime Life Cycle

	Create an Advanced Function
	Create a Custom Cmdlet

	Appendix E Packaging PowerShell Extensions
	Work with Existing Snap-ins
	Create a Custom Module
	Understand Module Concepts
	Build Your Module

	Appendix F Building Your Own GUI with PowerShell
	Choose Between WinForms and WPF
	Create a GUI in PowerShell
	Create a WinForms Application
	Create a WPF Application

	Index

