Matthew Hester
Sarah Dutkiewicz

Automating Microsoft

Windows Server 2008 R2

Administration
with Windows PowerShell 2.0

Automating Microsoft®
Windows Server® 2008
R2 with Windows
PowerShell® 2.0

Automating
Microsoft®
Windows
Server® 2008 R2
with Windows
PowerShell® 2.0

Matthew Hester
Sarah Dutkiewicz

WILEY

|
Wiley Publishing, Inc.

Acquisitions Editor: Agatha Kim
Development Editor: Dick Margulis
Technical Editor: Sarah Dutkiewicz
Production Editor: Liz Britten

Copy Editor: Kim Wimpsett

Editorial Manager: Pete Gaughan
Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Book Designer: Franz Baumhackl
Proofreader: Word One, New York
Indexer: Jack Lewis

Project Coordinator, Cover: Katie Crocker
Cover Designer: Ryan Sneed

Cover Image: © Petrovich9 / iStockPhoto

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis,
Indiana

Published simultaneously in Canada
ISBN: 978-1-118-01386-1 (Cloth)
ISBN: 978-1-118-10306-7 (ebk)

ISBN: 978-1-118-10308-1 (ebk)

ISBN: 978-1-118-10309-8 (ebk)

No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scan-

ning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either
the prior written permission of the Publisher, or authoriza-
tion through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests

to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
oronline at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and
the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The
advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that
the publisher is not engaged in rendering legal, accounting, or
other professional services. If professional assistance is required,
the services of a competent professional person should be
sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web
site is referred to in this work as a citation and/or a potential

source of further information does not mean that the author or
the publisher endorses the information the organization or Web
site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this
work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services or
to obtain technical support, please contact our Customer Care
Department within the U.S. at (877) 762-2974, outside the U.S.
at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats.
Some content that appears in print may not be available in
electronic books.

Library of Congress Cataloging-in-Publication Data is available
from the publisher.

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are
trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Microsoft,
Windows Server, and Windows PowerShell are trademarks

or registered trademarks of Microsoft Corporation. All other
trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

10987654321

http://www.wiley.com/go/permissions

Dear Reader,

Thank you for choosing Automating Windows Server 2008 R2 with Windows
PowerShell 2.0. This book is part of a family of premium-quality Sybex books, all of
which are written by outstanding authors who combine practical experience with a
gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to
producing consistently exceptional books. With each of our titles, we're working
hard to set a new standard for the industry. From the paper we print on, to the
authors we work with, our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I'd be very interested to hear your
comments and get your feedback on how we’re doing. Feel free to let me know what
you think about this or any other Sybex book by sending me an email at nedde@
wiley.com. If you think you've found a technical error in this book, please visit
http://sybex.custhelp.com. Customer feedback is critical to our efforts at
Sybex.

Best regards,

Neil Edde
Vice President and Publisher
Sybex, an Imprint of Wiley

To Deb, my strength and heart, thank you
so much for all of your unwavering love
and support. | would not be who | am today

without you. | love you.

To Nicole, Mitchell, and Caitlin, thank you for
teaching me the meaning of grace. | love you
all very much.

—Matt

To Kevin, my wonderful husband who
survived my talks about PowerShell from a
developer’s perspective while writing, offered
suggestions when | needed another person’s
real-world IT perspective, and has been very
supportive of me through my “wrediting”
process.

—Sarah

ACKNOWLEDGMENTS

eing able to write this book has been a blessing, and I could not have done it without
a lot of top-notch help. First, I would like to thank my fabulous technical editor

and coauthor, Sarah, for going on this journey with me. Sarah, your knowledge and
insight are inspiring. Thank you for making sure this book is rock solid. Second, I
would like to thank Dick Margulis. Dick, you truly are an editor extraordinaire who
I have thoroughly enjoyed working with. I hope I did not drive you to nutty with all
of my “great new features.” Thank you, sir. Lastly, a huge thanks to Agatha Kim not
only for giving me my first opportunity to write a book but also for encouraging me
to write this book. Thank you so much for your guidance and support over the past
few years.

Matt

I would like to thank my IT friends for encouraging me and inspiring me as I
explored many of the topics in this book. Thanks to Jay R. Wren, my tech editor
for the appendixes. As always, Jay made sure I didn’t stray technically and inspired
new changes. Thanks to all of our editors at Sybex, and especially thanks to Dick
Margulis, our development editor, who shepherded us when we got carried away.
Most of all, I would like to thank my awesome coauthor and great friend, Matt
Hester, for the many commas and “great features” that I had to cut out while

tech editing, the laughs throughout the process, and the advice when it came to
writing the appendixes. Matt inspired me to create the term wrediting—writing
and editing, as I had originally been set as a tech editor for Chapters 1-12 and later
was added as a coauthor. It has been a great adventure, and I look forward to more
adventures with Matt!

Sarah

ABOUT THE AUTHORS

Matt Hester is a seasoned Information Technology Professional Evangelist for
Microsoft. Matt has been involved in the IT Pro community for more than 15 years.
Matt is a skilled and experienced evangelist presenting to audiences nationally and
internationally. Prior to joining Microsoft, Matt was a highly successful Microsoft
Certified Trainer for more than eight years. After joining Microsoft, Matt has con-
tinued to be heavily involved in IT Pro community as an IT Pro Evangelist. In his
role at Microsoft, Matt has presented to audiences in excess of 5,000 and as small
as 10. Matt has also written four articles for TechNet magazine, and his first book
was Microsoft Windows Server 2008 R2 Administration Instant Reference. Matt is a
movie buff with a massive DVD collection; he also runs marathons and dreams of
joining the PGA tour. Matt cites his father as his role model: “The older I get, the
smarter he gets.” Funny how that works.

Sarah Dutkiewicz is a seasoned technology professional and has been working in a
variety of technologies for more than eight years. Sarah’s well-rounded background
includes roles in technical support, desktop support, database administrator, system
administrator, and professional developer. Sarah’s true passion comes from devel-
oping and writing code. Currently Sarah develops for a Cleveland, Ohio-based
company, focusing mostly on ASP.NET development and improving processes
using various .NET solutions. Sarah is currently a Microsoft MVP in Visual C#

and is deeply passionate about the technical community. Sarah’s many commu-
nity activities include blogging, running a technical community website, planning
events, and speaking at regional and national conferences.

CONTENTS AT A GLANCE

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

Introduction xv

What Is PowerShell, and Why Do You Need It? 1
Installing and Configuring PowerShell 2.0 19
PowerShell Grammar Lesson 37

Aliases, Functions, and the Pipe, Oh My! 65
Creating Your Own Scripts 97

Remoting with PowerShell 2.0 125

Server Essentials in PowerShell 147

Managing Active Directory with PowerShell 173
Managing Desktops with PowerShell 197
Managing IIS Web Server with PowerShell 223
PowerShell and Deployment Services 243
PowerShell and Virtualization 267

Solutions to Exercises 289

Developing at a Command Prompt 299
Providing for PowerShell 311

Custom Cmdlets and Advanced Functions 339
Packaging PowerShell Extensions 357

Building Your Own GUI with PowerShell 379
Index 399

TABLE

Chapter 1

Chapter 2

Chapter 3

OF CONTENTS

Introduction xvii

What Is PowerShell, and Why Do You Need It? 1

Why PowerShell? e 2
Overview of PowerShell. i e 3
The Power Behind PowerShello s 5
What About the Learning CUrVe?.o u it e 6

What's New in PowerShell 2.07.o e 7
PowerShellin the Enterprise.oonuiiii i i 8
PowerShell witha GUIo i e 10

PowerShell Has Something for Everyone.oviiiiiininininninenannn. 13
What's in It for IT Professionals?.t 14
What's in It for Developers?ouueit e 15

Installing and Configuring PowerShell 2.0 19

Configure PowerShell 2.0 on Windows Server 2008 R2ovvviiiiinninnennannn 20
Install the ISE on Windows Server 2008 R2ovviii i ennns 22
Install PowerShell 2.0 on Windows Server 2008 R2Coreovvvviiininnnennnnn.. 24
Install .NET Framework Support on Windows Server 2008 R2Core 26
Install PowerShell 2.0 on Windows Server 2008 R2Core.......vvvvviivnennennn.. 26
Install PowerShell 2.0 on Other Operating Systemsc.coiiiiiiininnann. 29
Set Up the Prerequisites. .. ovu vt e e e e e 29
Obtain and Install PowerShell 2.0t e 31

PowerShell Grammar Lesson 37

Break Down PowerShell: A LessononCmdlets...........ccoviiiiiiiiiiii ... 38
Learn the Verbs ... e e e 39
Learn the NOUNS.ttt e e e e e e 40
Put Verbs and Nouns Together: Cmdletst 41
USB Paramiters ettt ettt ettt e e e e e 42
Use Wildcards. . ..ot e e e e e 45
Understand Properties.ttt e e e e 46

Help Yourself with PowerShell ... e 48
Learn Howto Help Yourself. e 48
Use Tab AUtOCOMIPIETE . ..ottt e e e e e e aens 53
Leverage Online RESOUICESottt et e 54

Use Even More Commands with Modules ... 55

Use and Understand Modules.ttt e 55

X1l TABLE OF CONTENTS

Get to Know Your Modulest e 58
Create a Custom PowerShell Shell. i e 60

Chapter 4 Aliases, Functions, and the Pipe, Oh My! 65

USE AL, o e vttt ettt e e s 66
Use BUIlt=-in AlIases . .o v et e e e e e 67
Create YoUr OWN Al@Ses ..ottt ettt ettt e i eaaas 69

USE FUNCHIONS . o ottt e e e e et e et et e 77
Understand FUNCHIONS . ..ottt e e et 78
Use EXisting FUNCHIONS . ..ottt e e e e aie e 79
Create YOUur OWn FUNCHION.t i aie e 80

Work with the Pipe Operatorvvutit i i et naens 81
Use the Pipe Operator to Combine PowerShell Cmdletsocvvevint.. 81
Control PowerShell QUutpUL. . ..ottt e e e e aiees 82

Chapter 5 Creating Your Own Scripts 97

Create YoUr OWN SCIIPES. vttt et e e et et et e 98
PowerShell Scripting OVerviewo.ouiiui i 99
Create a PowerShell Script.ot e e 100
RUN YOUr SCriPES. ottt e e e e 106
[T o Yl 13 €3 PP 107

Understand Security and PowerShell Scripts ... 108
Work with Default Execution Policy of Scripts ... 109
Understand the RemoteSigned PowerShell Execution Policy..................... 110
Set the PowerShell Execution Policy. ..o 11
Understand Digital Signing.o.ontii e 16

Work with the GUland the Shell e 16
Understand Whatthe ISEIs. i e 116
Use the ISEWith SCripts . ..ot e et e 119
Display the Call Stack with Scripts Requiring Parameters 123

Chapter 6 Remoting with PowerShell 2.0 125

Configure PowerShell Remotingouvntin i e 126
Learn the ReqUIrEMENTS. . ..ottt e et 126
Enable PowerShell Remotingouveu i i 128
Disable PowerShell Remoting.vvuiii e 133

Run Commands on Remote Systems.v.uinte et neans 138
Use Invoke-Commandt 140
Use PowerShell Remote SesSioNs.ottt e 140
Use Remotinginthe ISE. i 143

Chapter 7 Server Essentials in PowerShell 147

Work with Your Serverin PowerShell i 148

TABLE OF CONTENTS

Work with Server ManagerCmdlets ...t 148
ANAlYZE YOUI SEIVET ettt et e e 150
Add Reliability to YOUr Server. ..o e 156
Install the Backup TOOIS vt e 156
Perform a Backup with PowerShell i 156
Load-Balance Your Networkuuueintie it 159
Use Other PowerShell Utilities forthe Server ..., 163
Use the Registry with PowerShell i 163
Use PowerShell Troubleshooting Packs 166
Schedule PowerShell SCripts.ot e 169

Chapter 8 Managing Active Directory with PowerShell 173

Work with Active DIreCtoryouen it 174
Load the AD PowerShellModule 174
Understand PowerShell Active Directory Basicscccoviiiiiininiinnann, 178
Work with Users, Groups, and OUSoiutitiiii i i enaans 182

Understand Managed Service ACCOUNTS. ..o v v vttt te i i i i eananns 185
Understand Managed Service ACCOUNTS .. .uvvnt it tet i iai e 185
Create Managed Service ACCOUNTS .. .v vttt e e e e nieeeans 186
Install and Use Managed Service ACCOUNTS . .. o.v it tvt v i niai et 188

Work with the Active Directory Recycle Bino 189
Understand How the Recycle Bin Works ..., 190
Enable the AD Recycle Bin. e 191
Usethe AD Recycle Bin. e 193

Chapter 9 Managing Desktops with PowerShell 197

ACCESS GroUP POlICY oottt s 198
Understand Group Policy. 199
Understand How Group Policy Works.couiiii e 200

Manage Group Policy 201
Create Group Policy Objects.o.onti e 204
Use Starter GPOSttt e 206
Work With SEttingso 208
Understand the Difference Between Policies and Preferences................... 209
Work with Domain Password Policies....... ... 210
Understand Order of Precedenceo.oiuiiiiin i 212
Control Group Policy Order of Precedencecovuiiiiiiiiiiiniia... 213
Work With RSOP e 215
Back Up and Restore Group Policy Objects...... ..o, 216

Manage AppLOCKer. ... 217
Understand APPLOCKETttt e e e e e 217
Understand AppLocker Policyo 218

Configure AppLOCKEr . ..o e 219

X1

X1v

TABLE OF CONTENTS

Chapter 10

Chapter 11

Chapter 12

Appendix A

Managing IIS Web Server with PowerShell 223

Use PowerShell and 1So e 224
Work with Configuration Files ... 225
Back Up and Recover IIS Configurationooviuiiiiiiniiiinnnns 229

Deploy Websites, Application Pools, and Virtual Directories with PowerShell 231
Manage Sites with PowerShell i e 231
Work with Web Application Pools. ... 236
Work with Virtual Directorieso e 240

PowerShell and Deployment Services 243

Work with Windows Deployment Serviceso.oiuiiiiiiniiiiiiiaien.. 244
Understand WDSo e 245
INStall WDS . . 246
Work with WDS in PowerShell 247
USE WDSUTIL .ttt ettt et ettt e 248

Work with the Microsoft Deployment Toolkit. 253
Understand the MDT. . ..ot e 253
Deploy with Windows Imaging Format ..., 254
INStall MDD .o e 256
Work with MDT in PowerShell. e 257
Put It All Together e 265

PowerShell and Virtualization 267

Install and Access Hyper-V. o e 268
Install Hyper-V .. e 269
Access Hyper-Vin PowerShell. 270

Work with Hyper-V ..o e 276
Work with Virtual Networks e 276
Configure Virtual Machines.o. oo e 278
Connectto Virtual Machines. i i 283
Work with Snapshots ... 285

Solutions to Exercises 289

Solution T: Inventory Your SCripts ..ottt e e 290
Solution 2: Install PowerShell...... ... 290
Solution 3: Create a PowerShell Profile. ...t 290
Solution 4: Create Your OWNn Aliaso .vein it e 291
Solution 5: Create a Script to Find Startup Programsccoiiiiiiiiininnenn. 292
Solution 6: Set Up a Remote PowerShell Session. ...t 292
Solution 7: Create a Scheduled Backup with PowerShelloiitt. 293
Solution 8: Populate an Active Directory Test Environmentc.oonue.. 293
Solution 9: Turn Off the Display Control Panel in Group Policy with PowerShell 295

Solution 10: Create a Website with PowerShell 296

TABLE OF CONTENTS

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Solution 11: Create a DeploymentShare ..ot 296
Solution 12: Create a Virtual Machine and Take a Snapshot 297

Developing at a Command Prompt 299

Choose Between the ISE and the Command Prompt...........coiiiiiiinnn... 300
Write Code ata Command Promptovniiitii i i 301
Write Scriptsinthe ISE . ..o e e e e 302

Work with Objectsin PowerShell. s 304
Understand Properties.ttt e e e 305
Create Your OWn Custom Object ..o vv vttt it eeas 307

Providing for PowerShell 311

Work with Built-in Providers. ... 312
Understand Provider Basicsuuueintiitii it iii i ianans 313
Use PowerShell-Specific Providers ..ottt 314
Use Other BUilt-in Providersouiiii it ie e 317

Work with Additional Providers. ...t 322

Install and Remove Providersttt e e s 322

Create YoUr OWN Provider.ot e et e 323
Understand Basic Provider ConCeptsovvitiiniii it eans 323
Build @ Custom Provider.o.uitt i e e e 327

Custom Cmdlets and Advanced Functions 339

Choose Between an Advanced FunctionandaCmdletoiia... 340
Parameters and Attributes ... 340
DU DU . e ettt e e e e e e 346
Runtime Life Cycle. ..ot 347

Create an Advanced FUNCHION.ttt e e 348

Create @ Custom CmdIet. . ..o i e 349

Packaging PowerShell Extensions 357

Work with EXisting Snap-insottt et e 358
Create a Custom Module . ..o e e e e 361
Understand Module CoNCePLS . ..ottt e e e e 361
Build Your Module. e e e e 368

Building Your Own GUI with PowerShell 379

Choose Between WinForms and WPF. ittt 380
Create a GUIIn PowerShell o i 381
Create a WinForms Application ...t 385
Create @ WPF Applicationuitii i it 391

Index 399

XV

INTRODUCTION

owerShell is a scripting language built into Windows Server 2008 R2 servers.
PowerShell is designed to help you perform routine and repetitive tasks in a script-
able fashion. PowerShell helps alleviate many of the time-consuming and tedious
tasks administrators have had to do in the past. You may have used various script-
ing technologies over the years to accomplish these tasks; however, in PowerShell
2.0, you have a better tool than you have ever had when working with Microsoft
environments. PowerShell 2.0 was launched with the release of Windows 7 and
Windows Server 2008 R2. You can now leverage tons of new built-in capabilities
to help make administering your server easier. It is quickly growing to become the
scripting tool of choice for Microsoft operating systems and applications. In many
cases, PowerShell has replaced former command prompt tools or has been incor-
porated into new tools. PowerShell provides a common language you can use to
manage any of your Microsoft infrastructure that supports PowerShell scripting.

Who Should Read This Book

This book is for anyone who wants to learn more about PowerShell, from novices to
scripting aficionados. If you are looking to learn PowerShell for the first time or if
you are looking to learn how to manage Windows Server 2008 R2 with PowerShell,
then this book is for you. Whether you are an IT administrator, developer, scripta-
holic, or anyone else with an interest in PowerShell, you will find something in this
book to help you use PowerShell to save you time. This book is designed to allow
you to use PowerShell to meet your everyday business needs.

What You Will Learn

In this book you will learn the foundation behind PowerShell and how to work with
this powerful scripting language. This book covers four main things:

» The foundation of PowerShell from the smallest components to how to create
your own scripts and a lesson in syntax and grammar. The foundation you
build here will enable you to work with PowerShell regardless of the operating
system or application.

XVIIiI

INTRODUCTION

» How to practically apply PowerShell to your Windows Server 2008 R2 servers.
Topics include server essentials tasks such as backup to management of Active
Directory and many other Windows Server 2008 R2 server roles and features.

» The foundation of how to incorporate PowerShell into your application devel-
opment environment and how to take PowerShell to the next level.

» The new capabilities of PowerShell 2.0. Throughout the chapters in this book
you will see many of the new built-in capabilities of PowerShell 2.0, from
new commands in Active Directory management to new functions such as
remoting.

At the end of each chapter, you will get to practice what you have learned and try
PowerShell with exercises designed to reinforce what you saw in the chapter. Most
importantly, this book will jump-start your learning of PowerShell. Once you learn
the essentials provided in the book, you can apply your knowledge to leverage
PowerShell not only in Windows Server 2008 R2 but also in other Windows oper-
ating systems and applications such as Microsoft Exchange Server and Microsoft
SharePoint Server, as well as anywhere else you find PowerShell.

What Is Covered in This Book

Automating Microsoft Windows Server 2008 R2 with Windows PowerShell 2.0 is
organized to provide you with the knowledge to be successful with PowerShell.

Chapter 1: What Is PowerShell, and Why Do You Need It? talks about the
importance of learning PowerShell not only for IT professionals but also for
application developers. You will also see many of the new tools in PowerShell 2.0.

Chapter 2: Installing and Configuring PowerShell 2.0 focuses on installing
and configuring PowerShell 2.0, including other Microsoft operating systems
besides Windows Server 2008 R2 and Windows 7.

Chapter 3: PowerShell Grammar Lesson breaks down the PowerShell language
to its smallest parts. This chapter provides the background to cmdlets and how
you can work with them.

Chapter 4: Aliases, Functions, and the Pipe, Oh My! shows how to create
shortcuts for your commands, called aliases. You will also learn the power of
functions, which give you the ability to create your own custom commands. You
will also see how to tie PowerShell commands together with the pipe (|).

INTRODUCTION XX

Chapter 5: Creating Your Own Scripts focuses on creating and writing your
own scripts by combining your PowerShell commands.

Chapter 6: Remoting with PowerShell 2.0 shows how to use the new PowerShell
2.0 capability of being able to create remoting sessions and run PowerShell com-
mands remotely.

Chapter 7: Server Essentials in PowerShell shows how to use PowerShell to per-
form daily server administrative tasks such as backing up your server as well as
unlocking other data stores directly with PowerShell.

Chapter 8: Managing Active Directory with PowerShell takes a look at the new
built-in commands for working with Active Directory with PowerShell.

Chapter 9: Managing Desktops with PowerShell shows how to manage your
desktops via Group Policy and how to manage Group Policy with PowerShell.

Chapter 10: Managing IIS Web Server with PowerShell discusses how
you can use PowerShell to manage your web servers in Internet Information
Services (IIS).

Chapter 11: PowerShell and Deployment Services shows how to work with
Windows Deployment Services (WDS) and the free Microsoft Deployment
Toolkit (MDT) to deploy operating systems for your organization. The MDT has
native PowerShell support and allows you to build custom deployment images
for your environment.

Chapter 12: PowerShell and Virtualization gives you a brief tour of Hyper-V,
Microsoft’s virtualization platform, and how you can manage it with PowerShell.

Appendix A: Solutions to Exercises gives the answers for the end-of-chapter
exercises.

Appendix B: Developing at a Command Prompt discusses choosing between
the Integrated Scripting Engine (ISE) and the command prompt and establishes
a foundation for working with objects in PowerShell.

Appendix C: Providing for PowerShell discusses the built-in providers and
provides a basic example for creating your own provider in PowerShell.

Appendix D: Custom Cmdlets and Functions discusses how to create your own
cmdlets and functions, allowing you to extend PowerShell to meet your needs.

Appendix E: Packaging PowerShell Extensions discusses how to work with
modules and how to create your own custom module.

XX INTRODUCTION

Appendix F: Building Your Own GUI with PowerShell discusses the options
for creating a graphical user interface (GUI) from scratch in PowerShell and
shows examples for getting started in creating a GUIL.

How to Contact the Author

We welcome feedback from you about this book or about books you’d like to see
from us in the future. You can reach us by writing to Matt at raid78@msn. com
or Sarah at sarah@sadukie.com or by contacting us on our blogs at http://
blogs.technet.com/matthewms or http://codinggeekette.com. You can
also follow Sarah on Twitter as @sadukie.

For more information about our work, please visit our websites at http: //blogs
.technet.com/matthewms and http://codinggeekette. com.

Sybex strives to keep you supplied with the latest tools and information you need for
your work. Please check its website at www . sybex . com, where we’ll post additional
content and updates that supplement this book if the need arises. Enter Automating
Microsoft Windows Server 2008 R2 with Windows PowerShell 2.0 in the Search
box (or type the book’s ISBN—9781118013861), and click Go to get to the book’s
update page.

CHAPTER

What Is PowerShell,
and Why Do You Need It?

HERE ARE THE TOPICS COVERED IN THIS

CHAPTER:

> WHY POWERSHELL? 2
Overview of PowerShell ... 3
The Power Behind PowerShell ...t 5
What About the Learning Curve?covviiiiiininnnnn.ss 6

> WHAT’'S NEW IN POWERSHELL 2.0? 7
PowerShell in the Enterprise...........ccooiiiiiiiiiiiin.... 8
PowerShellwithaGUI...............cooi i 10

> POWERSHELL HAS SOMETHING FOR EVERYONE 13
What's in It for IT Professionals?....................coovnat 14

L 411dVH)

T professionals have been looking for ways to automate and perform tasks in a
consistent manner for years. There have been many techniques and technologies —
from simple batch files to third-party tools — to accomplish the tasks. Some IT
professionals have gone the extra step and learned developer languages, such as
Visual Basic or JavaScript, to give their scripts more power.

A majority of these tools were not integrated into the Microsoft environment. More
importantly, the documentation for these tools to accomplish common administra-
tive tasks was not readily available. As part of its effort over the years to improve the
scripting environment, Microsoft developed PowerShell to overcome the challenges
of previous scripting languages.

PowerShell provides a common language you can use throughout your Microsoft
infrastructure. You will spend less time on manual repetitive tasks by scripting
these tasks with PowerShell. PowerShell is used in a number of scenarios, including
system administration and software development. PowerShell is ideal for remote
management, reporting, automation, and administration.

This book focuses on learning this powerful scripting language with real-world
examples and ways to perform common, everyday tasks. Tasks such as backing up
servers, maintaining web servers, analyzing your environment, and many more can
benefit from PowerShell. Step-by-step instructions in the chapters that follow show
you how you can make PowerShell work for you.

The book is divided into two sections. In the first few chapters, you will build the
foundation of your PowerShell knowledge. You will learn the basics of a building
block known as a cmdlet (pronounced “command-let”) and how to read script. The
second section of the book focuses on administrative tasks you can perform in
Windows Server 2008 R2. Although the book is geared to working on a Windows
Server 2008 R2 setup, the foundational knowledge provided in the book allows you
to leverage PowerShell regardless of the target Windows operating system. The goal
is to demystify PowerShell for you so you can use it in your day-to-day tasks.

This chapter gives an overview of PowerShell and why it is important.

Why PowerShell?

If you have been working in a Microsoft environment for the past few years, you
may have seen or heard about PowerShell. You may even remember its original code
name, Monad. It may have been discounted as “yet another scripting language” and
put aside to look at later. You may have even thought, why reinvent the wheel?

WHY POWERSHELL? 3

In other words, your environment was running smoothly, you were busy, and you
had no time to learn the language. You may have decided to wait to see whether
there would be a version 2 and whether Microsoft was really serious about this
language. Well, here we are with version 2, and PowerShell is getting better than
ever. Microsoft and communities such as http: //powershellcommunity.org/

What Is PowerShell, and
Why Do You Need It?

are creating native PowerShell commands and providers as well as the documenta-
tion for scripts to make your everyday work with PowerShell even easier. So, you are _

n
I
>
]
-
m
=
-

not in this alone. The community is growing and vibrant!

The initial project Monad debuted in June 2005. In April 2006, Microsoft announced
that Monad’s name would be PowerShell, and PowerShell Release Candidate 1 was
released. PowerShell 1.0 was released in November 2006. It was well received in the
community, and with its integration into the Windows environment, this became a
new language for administrators to work with. In 2009, version 2 of PowerShell was
released and built into Windows 7 and Windows Server 2008 R2. PowerShell 2.0 is
also available for free download for systems newer than Windows XP SP3. Chapter 2
discusses how to install the tools on older, supported operating systems.

Overview of PowerShell
What is PowerShell?
» PowerShell is an extensible automation engine from Microsoft.

» PowerShell is a command-line shell and task-based scripting technology that
provides you with enhanced remote management and automation of system
administration tasks.

PowerShell can look like Figure 1.1, and it can look like Figure 1.2.
What can it do?

PowerShell enables you to perform via scripts virtually any task you can do in the
GUI for your local or remote Windows operating systems and your computers. With
PowerShell, you can script and automate your day-to-day administrative tasks.

» Do you need to get a list of all the computers on the network and create a
report on the service pack level for each operating system?

» Do you need to check to make sure that all the users in the domain are
complying with the corporate password policy?

» Do you need to start a service on 500 computers?

» Do you need to add 100 user accounts to your domain?

CHAPTER 1 * WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

» Do you need to collect all the critical and error events from the event logs of
all your servers?

FIGURE 1.1 Thisis PowerShell.

& windows PowerShell ~10] x|

Windous PowerShell
Copyright (C> 288? Microsoft Corporation. All rights reserved.

PS C:-xUserssMatt> _

FIGURE 1.2 Thisis PowerShell too.

ol
Fle Edit View Debug Help
Hé& o ox» B = &=
| Untitled1.ps1 X i
i
PS C:\Users\Matt> 1

=

PowerShell can do that.

Once you learn the language, you should be able to perform these tasks faster than
you have in the past.

By integrating PowerShell scripts into your environment, you can automate many
of the time-consuming, monotonous tasks required of system administrators. If
you look at tasks such as some of the previous examples that gather and parse large
amounts of information, it may take a long time to do them manually. These types
of tasks are perfect candidates for PowerShell scripting.

PowerShell includes numerous system administration utilities, consistent syntax and
naming conventions, and improved navigation for common management data, such

WHY POWERSHELL? 5

as the registry, certificate store, and Windows Management Instrumentation (WMI).
WMI is a core technology for Windows system administration, because it exposes a
wide range of information in a uniform manner. PowerShell includes a cmdlet that
allows you to interface with WMI objects, enhancing your ability to do real work.

But isn’t PowerShell just a command-line tool? Yes, it is a command-line tool, but in
most cases PowerShell can accomplish all the tasks that graphic management tools can. _

What Is PowerShell, and

Why Do You Need It?

n
I
>
]
-
m
=
-

PowerShell is built upon a robust architecture that includes the following:

» A script parser that processes language constructs, such as scripts, predicates,
and conditionals

» A pipeline processor, which manages intercommand communication using
pipes (|)

» A command processor, which manages command execution, registration, and
associated metadata

In addition to those processors, the shell can also manage session state and has an
extended type system, which exposes a common interface for accessing properties
and methods independent of the underlying object type. Lastly, PowerShell includes
a robust error handler for managing error exceptions and error reporting.

The Power Behind PowerShell

PowerShell is built around an object-oriented language that lets you manage your
Windows infrastructure. It provides an interface and programming environment that
allows users and administrators to access and set system properties through NET
objects and single-function command-line tools called cmdlets. Cmdlets are the building
blocks for PowerShell scripts. Chapter 3 explores cmdlets and the core PowerShell syntax.

The scripting language manipulates objects (not text) using the NET Framework and
the .NET common language runtime. PowerShell is built on top of, and is integrated
with, the Microsoft NET Framework. It accepts and returns NET objects, allowing
for robust scripting that interfaces seamlessly with many line-of-business tools.

This is the main reason PowerShell is more than just a console application. It is a
robust scripting environment that supports a full range of logical program control,
including simple conditional statements and complex switch statements using
regular expressions to parse conditions. Scripts can be used independently or in
conjunction with other scripts, with NET Framework or COM objects, or even in
code. PowerShell enables easy access to COM and WMI to provide an environment
for local and remote Windows systems.

CHAPTER 1 * WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

In many cases, a majority of the built-in roles and services (such as IIS or Active
Directory) that you may run on your Windows Server 2008 R2 server have
PowerShell providers and cmdlets to manage them. For example, the PowerShell
Provider for Internet Information Services (IIS) 7.5 allows you to easily automate
routine and complex IIS 7.5 administration tasks, such as creating websites and
managing configuration and runtime data by using PowerShell. Chapter 10 shows
how to work with PowerShell and your websites.

All of the other major applications running on a Windows Server 2008 R2 server,
including Microsoft Exchange Server, Microsoft SQL Server, and Microsoft
SharePoint Server, have built-in support for PowerShell. (Exchange Server was the
first major server application to get full support for PowerShell.) The SQL Server
2008 PowerShell snap-in supports more complex logic than Transact-SQL scripts,
allowing SQL Server administrators to build robust administration scripts not only
for server administration but also to extend the power of SQL databases. PowerShell
in some cases is also replacing existing tools for the command prompt manage-
ment of a server. With SharePoint Server, PowerShell is gradually replacing the
stsadm tool, which has been the main tool for command prompt administration
for SharePoint servers.

What About the Learning Curve?

One of the many benefits of PowerShell is that the learning curve to get started with
it is minimal. If you already know scripting languages, you have a good base for
working with PowerShell. Whether you have a background with command prompt
tools for Microsoft or non-Microsoft operating systems such as UNIX, PowerShell
lets you build on your existing command prompt knowledge. Throughout this
book, you will see many examples of PowerShell that look similar to techniques

you have used in other shells. PowerShell includes single-function tools such as cd,
copy, and dir that you are familiar with from the Windows command interface.
You can also recognize these other PowerShell functions from a UNIX background,
such as 1s or man.

If you have a UNIX administration background, you are familiar with the term
shell. A shell provides a powerful, flexible, and scriptable command-line experience
that allows you to perform any administrative task that you can perform using the
console. The difference between using the shell and the PowerShell console is that
the PowerShell is ideally suited to repetitive tasks. PowerShell is not a text-based
shell but a console. PowerShell has a substantial number of built-in commands that
provide you with a powerful tool set for script-based administration.

WHAT’S NEW IN POWERSHELL 2.0? 7

The formatting for commands that use the NET Framework, COM objects, and WMI
are slightly different from other scripting technologies, but in general those com-
mands are simpler in PowerShell. If you are not familiar with scripting techniques,
the base set of cmdlets is easy to learn, as you’ll see throughout this book. PowerShell
provides an intuitive scripting language specifically designed for day-to-day adminis-
trative of servers.

What Is PowerShell, and
Why Do You Need It?

n
I
>
]
-
m
=
-

Cmdlets really showcase the intuitive nature of PowerShell. Cmdlets have a verb-
noun structure, so they are somewhat self-describing. For example, here is a simple
cmdlet that returns the current system date and time:

Get-Date

Your results will look similar to Figure 1.3.

FIGURE 1.3 Asimplecmdlet

= windows PowerShell

Windows FouwerShell
Copyright <C> 2089 Microsoft Corporation. All rights reserved.

PS C:\UserssMatt> Get-Date
Saturday. Januwary 29, 2811 9:56:21 PM

PS C:i\Users\Matt>

The cmdlets can also get more complex. In this book, you will start with the build-
ing blocks and get more in depth. Cmdlets can be used independently or scripted
together to create a powerful automation application. Lastly, the language also
provides a self-service help system, allowing you to learn the language quickly.
Chapter 3 will show you how to get help by using the Get-Help cmdlet.

What’'s New in PowerShell 2.0?

With the launch of PowerShell 2.0, Microsoft began to take a deeper look into this
language. With PowerShell being built into operating systems, IT administrators
took notice. You may have been asking this question: “How can I leverage PowerShell
in my environment, and where do I start?”

Microsoft wanted to make PowerShell 2.0 more enterprise-friendly so IT adminis-
trators everywhere could run, learn, and share PowerShell easily from within the
GUI. PowerShell also had to be made to run safely and securely.

CHAPTER 1 * WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

One of the new features in PowerShell 2.0 that allows IT administrators
throughout the world to use PowerShell more easily is called internationaliza-
tion. Internationalization enables PowerShell scripts to display messages in the
language specified by the Ul language setting on the user’s computer. Under
the hood, this features queries the operating system of the user to determine
what language is being used. This lets PowerShell display the appropriate
language.

Microsoft added more than 50 cmdlets for the core PowerShell sessions.
Although those new cmdlets are important, Microsoft also addressed many of
the server roles on Windows Server that did not have native PowerShell cmdlets
in PowerShell 1.0. One of the key roles on Windows Server 2008 R2 that got new
cmdlets was Active Directory (AD). Managing AD with PowerShell 1.0 was a
challenge. There were no built-in cmdlets, so you had to know how to work with
LDAP in script. Chapter 8 takes a look at the new PowerShell cmdlets you can use
to manage your AD environment. Chapter 8 will also show you a couple of new
features — Recycle Bin and managed service accounts — you can manage only in
PowerShell.

PowerShell in the Enterprise

PowerShell 2.0 provides several new capabilities to make the tool more enterprise-
friendly. For example, running PowerShell commands on remote computers in
PowerShell 1.0 was not built in. A lot of administrators started remote desktop
sessions to run PowerShell commands. This was one of the challenges that was
addressed in PowerShell 2.0.

Remoting uses the WS-Management protocol and the Windows Remote
Management (WinRM) service that implements WS-Management in Windows.
This protocol is a standard-based, firewall-compatible communications proto-
col. Chapter 6 covers remoting and shows you how to configure and work with
PowerShell remoting.

Key to working with remoting is another new concept in PowerShell 2.0 called
sessions. A session is the environment where you run PowerShell commands. Every
time you start PowerShell, a new session is created. You can even create a new

session in your existing session for a local or remote computer.

The session cmdlet uses a parameter called ComputerName. This allows you to
specify the remote computer you want to start the PowerShell session on. For

WHAT’S NEW IN POWERSHELL 2.0? 9

example, the following cmdlet would create and enter a new PowerShell session
on Server2:

Enter-PSSession -ComputerName Server2

Your results will look similar to Figure 1.4.

FIGURE 1.4 Remote session _

What Is PowerShell, and
Why Do You Need It?

n
I
>
]
-
m
=
-

tor> Enter—PSS on —ComputerMNane Server2
rssadministrator. CONTOB0NDocunents> _

Another key addition to PowerShell 2.0 is the ability to create and run background
jobs. After you start a background job, you are returned almost immediately to
your interactive PowerShell session. This allows you to continue to do work in your
PowerShell session, and at any time you can see the status of your background
jobs. The following command starts a command in the background to get the
existing services:

Start-Job -name Services -scriptblock (Get-Service)

To see the status of background jobs you started in your PowerShell session, you
would run the following command:

Get-Job

Your results will look similar to Figure 1.5.

FIGURE 1.5 Background jobs

2 Administrato
PS C:sUsersSAdm strator> Start—Job —name Process —scripthblock {Get—Process)

HasMoreData Location

Process Running y localhost Get—Process

GC:sUserssAdministrator> Start—Job —name Services —scripthlock {Get—-Servicel
oreData Location Connand

Services Running o localhost Get—Service

G:nUsersvAdministrator> Get—Jobh

Hame Location Command

Process Completed Y localhost Ge O
Services Completed o localhost Get—Service

C:NUserssAdministratord _

10 CHAPTER 1 -

WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

PowerShell with a GUI

FIGURE 1.6

There was no built-in GUT in PowerShell 1.0, so you had only the command console
for your PowerShell session. There were third-party tools you could use, such as
PowerGUI (http://powergui.org/index. jspa).

With PowerShell 2.0, Microsoft added new features to take advantage of the GUL
The following are two of the main ways you can use PowerShell’s GUI features:

» Integrated Scripting Environment (ISE)
» Out-Gridview

The ISE shown in Figure 1.2 is a new GUI front-end application console for
PowerShell. However, the primary benefit of the ISE is to create, edit, and debug
PowerShell scripts. The ISE provides an easy-to-use, syntax-highlighted way to work
with your scripts, as shown in Figure 1.6.

ISE with a script
=] windows PowerShell ISE o =1
Fle Edit View Debug Help
v & pl| | 8| B0mO
= s pamlaaEno,
| required.ps1 %)
i Srg-get-service %args -reguiredservices Format-Table -property displayname, status ;
a2
3 foreach (Sarg in Sargs)
4
5
& Write-Host "For the “Sarg "Service the following services are required:”;
7
8 trq;
8 3}

=

PS C:\Users\Matt> 1)

>

There are debugging tools built in to PowerShell 2.0. Scripts are created in many
different tools, from the ISE to Notepad, and scripters have used a variety of

WHAT’S NEW IN POWERSHELL 2.0?

FIGURE 1.7

debugging tools with PowerShell. The new debugging features allow you set break-

points on the following:
» Lines
» Columns
» Variables

» Commands

If you are using the debugger with your scripts, you can step into, over, and out of

the scripts, and you can even display the call stack, often with a single keystroke.
There are cmdlets to work with the debugger. You can also display the values of

variables and run standard commands in the debugger.

The ISE makes it easy to interact with the debugger. Figure 1.7 shows the Debug

menu.

ISE’'s Debug menu

B windows PowerShell ISE i

File Edit View [Debug Help

. H i Step Over Fi0
L L
- Step Into Fl1
| required.ps1 Step Out Shift+F11
; $ra=ge| Run/Continue F5
1 foreac Stop Debugger Shift+F5
: { Toggle Breakpoint Fa
g Weat Remove All Breakpoints Ctrl+Shift-+F9
8 $ra; Enable All Brezakpoints
3] Disable All Breakpoints
10
List Breakpoints Ctrl+Shift+L
Display Call stack Ctrl+Shift+D

& [@ |[Eo0s

es Format-Table -property displayname, status ;

the following services are reqguired:";

=13l x]

&

PS C:\Users\Matt>

=

@

Ln9 Col2

You can also access the debugger in your PowerShell sessions. You can set break-

points using the Set-PSBreakpoint cmdlet, and you can list your breakpoints

11

What Is PowerShell, and
Why Do You Need It?

n
=
>
)
-
m
=
-

12

CHAPTER 1

WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

with the Get-PSBreakpoint cmdlet for any of your PowerShell scripts. Figure 1.8
shows an example of a debugging session from the PowerShell console.

FIGURE 1.8 Debugging session in PowerShell

-, idows PowerShell
PS C= s<Matt> Set-PSBreakpoint ’C:wUsers-Mattrequired.psl
ID Script Line Command Variable Action

B required.psl
PE C:xUsepssMatt?> Nrequired.psl winem
Entering debug mode. Use h or 7 for help.
Hit Line breakpoint on 'C::\Users:Matt:reqguired.psi:3’

required.psl:3 foreach ($arg in Sargs>
[DHG1: P8 C:\Users“Matt>>> Get—PSBreakpoint

ID Script Line Command Uariable

B required.psi
[DBG1: PS C:\Users\Matt>>> h
steplnto Single step {(step into functions. scripts, etc.)
Step to next statement (step over functions. scripts. etc.)>
8tep out of the current function, script, etc.

continue Gontinue execution
gquit Stop execution and exit the debugger

Get—-PS8CallStack Display call stack

list i urce code for the current screipt.
" to start from the current line, "list <{m>"
to start from line <m>. and "list <m> <n>" to list <n>
lines starting from line <{m>

{enter> Repeat last command if it was steplnto,. steplQuer opr list

¥eo I Displays this help message

For instructions about how to customize your debugger prompt. type "help about_prompt™.

To learn more about the ISE, see Chapter 2 and Chapter 5. Chapter 2 shows you
how to install the ISE, which may not be installed by default. Chapter 5 shows how
to use this tool when working with PowerShell scripts.

Another way PowerShell leverages the Windows GUI is with the output cmdlet
Out-Gridview. This cmdlet allows you to take the output from a PowerShell com-
mand and display it in a Windows Explorer-style window, which not only displays
your data but also allows you some interaction such as sorting and quickly filtering
the data. For example, if you ran the command Get-Process | Out-GridView,
your results would look similar to Figure 1.9.

You can click any of the column headings in the Out-Gridview window, and the
content will be sorted. You can also quickly filter the data by either adding criteria
or typing in the Filter text box. Chapter 4 takes a look at the Out-Gridview cmdlet
as well as other ways to work with data from your PowerShell commands.

POWERSHELL HAS SOMETHING FOR EVERYONE 13

FIGURE 1.9 oOut-Gridview

]
=
<
=%

= 33

[® 2
E =

% Add m‘ben'avl e 2
-1

Handles | MPM(K) | PM(K) | Ws() | vm(m) | CPU(s) | 1d | ProcessName - ‘_=¢'e' :>.

6 Afi2ewce ==

175 11 2,568 B,128 65 1,512 AfiZewcx

154 13 16,832 17,260 58 4,476 audiodg CHAPTER 1

521 54 51,968 14,112 601 427 3,544 CCC

31 4 880 2,560 25 1,228 conhost

36 5 1,204 3,816 49 0.08 2,496 conhost

672 13 1,956 4,084 47 472 csrss

460 23 12,858 15,876 04 552 cors

77 7 1,840 53% 54 075 1,820 dwm

27 13 5984 13,032 89 1,932 EvtEng

308 57 40,524 58,452 315 3145 1,832 explorer

81 3 1,564 5,388 67 0.25 1,876 FlashUtili0l_Activex

0 0 0 24 0 0 Idle

608 51 56,596 55,840 282 916 4,168 iexplore

362 a3 81688 22,19 153 206 4,812 iexplore

163 2 7,856 12,416 79 1,708 InoRpc

174 18 33,65 38,772 106 2,084 InoRT

174 20 34,212 41,424 115 2,120 InoTask

887 25 5424 12,888 48 656 lsass

216 10 2,008 5892 34 864 lsm nj

537 49 56,328 54,760 682 3,404 mmc

363 33 40,472 7,164 576 L6L 2,704 MOM

147 13 3412 7572 61 3,744 msdtc

&0 5 1,390 4,694 77 4,772 msfeedssync

82 8 1,332 4,700 60 D.08 4,532 OfficeliveSignin

545 &5 43,40 B,576 266 2544 1,628 POWERPNT

401 24 65352 61,312 591 379 4,172 powershell

144 25 26,420 18,044 506 4,724 PresentationFont

134 14 3,536 9,020 87 0.6 2,390 Realmon

&7 3 1,796 5172 52 2,840 RegSrvc

286 13 5,830 9,468 43 648 services

30 7 24 700 5 340 smss

244 a7 17,356 32,936 149 437 2,524 Snagit32

424 a1 26,452 70,928 217 3401 3,896 SnagitEditor

68 3 1,152 3,404 49 3,496 SnagPriv

193 14 7292 13464 123 128 3,216 splwow6s

348 22 7,716 13972 84 1,536 spoolsv

171 3 3212 924 42 4424 sppsvc

387 %2 172,.. 26,972 215 2,232 sqlservr =

PowerShell Has Something for Everyone

PowerShell has something for everyone, from IT professionals to developers to the
casual scripter. PowerShell is a tool that can save you time and show you a new way
to automate a task that was previously difficult or impossible. Unlocking PowerShell
to meet your needs always starts with the basics.

Before you can dive into PowerShell to meet your particular interest or business,
you need a solid foundation in PowerShell. You need to know the basics of installing
PowerShell and of reading and writing PowerShell scripts. That way, you can build
your knowledge for many other aspects of PowerShell. Whether your focus is IT
administration or development, you need the basics.

CHAPTER 1 * WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

PowerShell needs to be installed on any system you want to be able to manage

with PowerShell. PowerShell can be installed on many Microsoft operating systems
(including XP mode on Windows 7). There are third-party PowerShell add-ons

for non-Microsoft operating systems. Knowing what systems you want to manage
allows you to determine which is the best path to deploy PowerShell. Chapter 2
focuses on the proper way to enable and install PowerShell. PowerShell has a robust
and easy-to-use built-in help system that provides descriptions of the various
cmdlets, as well as examples in most cases.

After PowerShell has been installed, you can learn to read the language. When you
see a command like the following, you should understand what it does:

Get-ADObject -SearchBase "CN=Deleted Objects, &

DC=your domain name,DC=Com" -Filter {lastKnownParent 3

-eqg "OU=marketing, DC=deploy,dc=com"} -includeDeletedObjectse
| Restore-ADObject

This command restores deleted users from the marketing organizational unit (OU)
in the deploy.com domain.

You can then begin to combine multiple commands into one script. You need to
know how to shorten those commands and unlock many of the other administra-
tive aspects of PowerShell. Working with scripts involves combining the tasks in the
proper order and saving them in one file. There are websites that have PowerShell
script repositories, and you can leverage the work of another PowerShell adminis-
trator. PowerShell also protects you from rogue PowerShell scripts and allows only
those scripts that are safe and secure

In Chapters 3-5, you will learn to master the basics. You will be able to break the
previous command down into its smallest parts so commands like these do not
scare you away from PowerShell. You will see how easy the language can be used to
perform complex tasks.

What's in It for IT Professionals?

With Windows Server 2008 R2, you can install many roles and features to provide
functionality to your infrastructure. From Active Directory to Hyper-V to IIS to
Deployment Services, you can perform day-to-day administration with PowerShell.

After you learn the basics of the language, you need to put PowerShell in practice.
When you install the features on your Windows Server 2008 R2 server, nearly all of

POWERSHELL HAS SOMETHING FOR EVERYONE 15

them have their own set of PowerShell commands and functions to perform a vari-

=]
ety of tasks specific to the particular role or feature. % o

]
Beginning with basic installation of the roles and features on your server, g2

o
PowerShell can be used to perform these functions for your full and core Windows = :3
Server 2008 R2 servers. Performing and scheduling a task such as a backup can be g §
quickly created in a PowerShell script and tied to the Task Scheduler.

PowerShell can provide a consistent approach to the daily maintenance of servers.
In some cases, PowerShell may be the only utility you can use. This is the case with
the Active Directory Recycle Bin and managed service accounts, two features in
Windows Server 2008 R2 Active Directory.

IIS provides another scenario for IT professionals to use PowerShell. With
PowerShell, you can work with the core configuration to manage sites and work
with web applications. This allows you to manage and quickly maintain web farms.

As an IT professional, you want PowerShell to be consistent when you work on
various tasks or when you download third-party tools. This is where you see the
pervasiveness of PowerShell. For example, when you download the Microsoft
Deployment Toolkit (MDT), this free tool has built-in PowerShell cmdlets.

What makes PowerShell a unique tool set is the strong community following the
language. In some cases, Microsoft did not provide cmdlets for a Windows Server
2008 R2 server role. Yet you can find third-party ones with an Internet search. This
is the case with Hyper-V. With PowerShell 2.0, there are no built-in cmdlets to sup-
port working with Hyper-V, and you may have to use WMI to work directly with
Hyper-V via PowerShell. However, the PowerShell community has created a dedi-
cated provider for managing Hyper-V in PowerShell, making it easier than having
to use WMI to accomplish the same tasks.

Chapters 7-12 focus on many of the daily workloads you may encounter when you
manage a Windows Server 2008 R2 server with PowerShell. These chapters will
show how to install server components; how to manage IIS, Hyper-V, and Active
Directory; and how to use many other roles and features you will find in Windows
Server 2008 R2.

What's in It for Developers?

Although this book does focus on some of the IT professional and administrative
tasks performed on Windows Server 2008 R2 servers, there is a side of PowerShell

CHAPTER 1 * WHAT IS POWERSHELL, AND WHY DO YOU NEED IT?

that developers can work with, making it that much more powerful and beneficial
in your workplace. PowerShell is another development platform you can use to
automate many tasks via code. After you have the foundational knowledge pre-
sented throughout this book, looking at the programmatic side of PowerShell will
allow you to take PowerShell to another level.

PowerShell provides you with a lightweight (when compared to Visual Studio or
other developer tools) programmatic interface. Many of the applications utilizing
PowerShell have a core set of APIs accessible with PowerShell. There are features that
were designed in PowerShell 2.0, such as transactions, geared to be used in code.

For those who are new to development and unfamiliar with the basic concepts
of objects and properties, Appendix B explores objects and properties from a
PowerShell perspective.

It may seem odd to develop on the command prompt. PowerShell has many tools
to be able to extend the language into your developers’ code. The ISE allows you to
create full and robust scripts using PowerShell, with some familiar keyboard com-
mands from Visual Studio. Not only does PowerShell have the tools, but it also has
been designed to write your own advanced functions and cmdlets using program-
matic logic and constructs at the command prompt. Appendix D covers working
with advanced functions and cmdlets.

Being able to program with PowerShell allows you to create and work with your
own providers. There are many providers built into your systems, but you may
have a particular scenario where there is a gap and PowerShell does not have a
tool set to help you. You can create your own custom providers, like the develop-
ers did for Hyper-V. These providers allow you to access data stored inside data
stores such as the registry environment variables and certificate stores easier than
former methods with a command line. Appendix C provides a guide for creating
custom providers. PowerShell also provides the necessary tools and framework to
be able to deploy the custom tools you create in your infrastructure. In PowerShell
v1.0, these were called snap-ins; in PowerShell 2.0, modules make this even easier
to do. Appendix E explains how to work with existing snap-ins and how to create
your own.

Lastly, you can create GUIs in PowerShell. Whether you want to take advantage of
Windows Presentation Foundation (WPF), with the separation of design and code,
or continue the look of legacy applications with Windows Forms (WinForms),
PowerShell allows you to work with both of these technologies. Although it is

POWERSHELL HAS SOMETHING FOR EVERYONE 17

relatively easy to work with GUI technologies in PowerShell, there are also some
tools to make this easy process even easier. Appendix F explores creating GUIs
in PowerShell.

EXERCISE 1: INVENTORY YOUR SCRIPTS

What Is PowerShell, and
Why Do You Need It?

n
I
>
]
-
m
=
-

Take an inventory of the tasks you are currently using scripts to perform. By the end
of the book you should be able to take the script or scripts you are currently using and
convert them to PowerShell.

CHAPTER

Installing and Configuring
PowerShell 2.0

IN THIS CHAPTER, YOU WILL LEARN TO:
> CONFIGURE POWERSHELL 2.0 ON WINDOWS SERVER
2008 R2 20

Install the ISE on Windows Server 2008R2.................... 22

> INSTALL POWERSHELL 2.0 ON WINDOWS SERVER

2008 R2 CORE 24
Install .NET Framework Support on Windows Server

2008 R2 C0ME .ttt ettt e 26
Install PowerShell 2.0 on Windows Server 2008 R2 Core....... 26

> INSTALL POWERSHELL 2.0 ON OTHER OPERATING
SYSTEMS 29

Set Up the Prerequisites.covvvviniiniiniiiiniinennns, 29
Obtain and Install PowerShell 2.0cccoovieen..t. 31

¢ 411dVH)

s you will learn throughout this book, PowerShell is a great tool, and the new
version, PowerShell 2.0, has some exciting features to offer. In fact, many Microsoft
roles and servers, such as Microsoft Exchange and Microsoft SharePoint, require
PowerShell to be installed on the server.

Knowing how to install PowerShell 2.0 is an important skill and is sometimes
necessary to enable many key functions you may need to use in your infrastruc-
ture. For example, you can access the Active Directory recycle bin easily only via
PowerShell. (You will learn more about the recycle bin in Chapter 8.)

Installing PowerShell 2.0 is straightforward, and you can install it on several
different operating systems. You can even install PowerShell in XP mode on your
Windows 7 client systems. One of the key aspects of installing PowerShell correctly
is the systems you install it on. You will need to install PowerShell 2.0 on administra-
tive consoles, the systems from where you manage and monitor your infrastructure.
In addition to those systems, you will also need to install PowerShell on the system
that you want to manage with PowerShell.

PowerShell 2.0 has one key prerequisite, and that is the .NET Framework. Since
PowerShell is based on the .NET Framework, you need to make sure you have the
framework installed. Specifically, to enable the core functionality of PowerShell,
you need the Microsoft NET Framework 2.0 with Service Pack 1. Depending

on what new features of PowerShell 2.0 you are leveraging, you may also need to
install the Microsoft NET Framework 3.51. For example, the Integrated Scripting
Environment is an enhancement that provides a graphical user interface for
PowerShell 2.0, but it requires the Microsoft .NET Framework 3.51 server feature to
be installed in order for it to function.

This chapter describes how to install PowerShell 2.0, the prerequisites, and
some additional features you may need to make PowerShell 2.0 hum in your
environment.

Configure PowerShell 2.0 on Windows Server 2008 R2

PowerShell 2.0 is already built in on newer Microsoft systems. Specifically,
Windows 7 and Windows Server 2008 R2 (except the Server Core installations)
already have PowerShell 2.0 installed and ready to use. In those cases, you can start
using the tool right away.

CONFIGURE POWERSHELL 2.0 ON WINDOWS SERVER 2008 R2

FIGURE 2.1

Even though you do not need to install PowerShell 2.0 on Windows 7 and Windows
Server 2008 R2, you need to do some configuration to unlock the full power of
PowerShell 2.0 on both operating systems. On a Windows 7 system, all of the tools
for PowerShell 2.0 are located in the Accessories folder in the Start menu. Select
Start > All Programs > Accessories > Windows PowerShell to find them, as

shown in Figure 2.1.

Windows 7 PowerShell

=1 Getting Started
&4 Math Input Panel
j MNotepad
&1 Paint
% Remote Desktop Connection
i3] Run
C% Snipping Tool
L Sound Recorder
Sticky Motes
@ Sync Center
o Windows Explorer
E WordPad
\. Ease of Access
. System Tools
| Tablet PC
. Windows PowerShell
E5 Windows PowerShell (x36)
4 Windows PowerShell ISE (x86)
24 Windows PowerShell ISE
£ Windows PowerShell

4 Back

| |Sear\:h programs and files 2 |

m

Documents

matt

Pictures

Music

Games

Computer

Control Panel
Devices and Printers
Default Programs

Help and Support

On Windows Server 2008 R2, you may want to install the Integrated Scripting
Environment (ISE). The ISE provides a graphical user interface (GUI) for interacting
with PowerShell 2.0. The GUI provides you with an easy-to-use interface for creat-
ing, troubleshooting, and working with PowerShell 2.0 scripts. (In Chapter 5, you

will learn more about the ISE.)

PowerShell 2.0 (and the ISE, once it’s enabled) on Windows Server 2008 R2 is
located in the same location as on Windows 7. You can find the PowerShell 2.0 tools
by selecting Start > All Programs > Accessories > Windows PowerShell.

In the next section, you will learn how to install the ISE on your Windows Server

2008 R2 servers.

21

owerShell 2.0

Installing and
onfiguring

C
[

n
=
=
)
-
m
=
N

22 CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

Install the ISE on Windows Server 2008 R2

To install the ISE on Windows Server 2008 R2, you need to add this feature via
Server Manager:

1. On the Windows Server 2008 R2 server where you want to install the ISE,
open Server Manager.

2. In the tree on the left, click Features.

3. In the Features Summary pane, click Add Features.
The Add Features Wizard appears.

4. Scroll down the list to find Windows PowerShell Integrated Scripting
Environment (ISE), as shown in Figure 2.2.

FIGURE 2.2 Adding Windows PowerShell ISE

[reares wears————— S £
=
il% Select Features

Select one or more features to install on this server.

Confirmation Features: Description:

Progress Windows Powershell Intearated
e SEW_Er ;l Seripting Environment (ISE) enables

Results SNMP Services you to run interactive commands, and
Storage Manager for SANs edit and debug scripts in 2 graphical
Subsystem for UNIX-based Applications environment. The main features
Telnet Client include color-coded syntax, selective

execution, graphical debugging,

Telnet S_EWEr Unicode support, and context-

TETP Client sensitive Help. Windows PowerShell
Windows Biometric Framework ISE also includes the Out-GridView
Windows Internal Database cmdlet, which sends the output of a

hell Integrated Scripting Environment (ISE) command ta an interactive table in a
= = separate window.

Windows Process Activation Service
Windows Server Badwp Features
Windows Server Migration Tools
Windows System Resource Manager
Windows TIFF IFiter

WinRM IIS Extension

WINS Server

Wireless LAN Service

XPS Viewer

Bl o o o o

L3

More about features

| Cancel I

5. Select Windows PowerShell Integrated Scripting Environment (ISE). If this is
the first time you are working with your Windows Server 2008 R2 server, you
also need to install the Microsoft NET Framework 3.51 feature, as shown in
Figure 2.3.

CONFIGURE POWERSHELL 2.0 ON WINDOWS SERVER 2008 R2

FIGURE 2.3 .NETFramework 3.51 features

|
_-r=: ‘,, Add features required for Windows PowerShell Integrated Scripting
Y= Environment (ISE)?
You cannot ingtall Windows PowerShell Integrated Scripting Environment (ISE) unless the required features are
also installed.
Features: Description:
= .NET Framework 3.5.1 Features Microsoft NET Framework 3.5.1 combines
NET Framework 3.5.1 the power of the .NET Framework 2.0 APls
. - with new technologies for building
at offer user
interfaces, protect your customers’ personal
identity information, enzble seamless and 5.
Add Required Features Carcel |
) Why are these features required?
(i are these features requi 4

6. If you see the message shown in Figure 2.3, then click Add Required Features.

You are returned to the Add Features Wizard.

7. Click Next, and confirm your installation selections. Your screen should look

like Figure 2.4. Click Install.

FIGURE 2.4 Feature confirmation

Add Features Wizard

_C—EE Confirm Installation Selections

Features

Confirmation

Progress

Results

To install the following roles, role services, or features, dick Install.

Ci‘ 1informational message below

'rD This server might need to be restarted after the installation completes,
A| NET Framework 3.5.1 Features
-NET Framework 3.5.1

Windows Powershell Integrated Scripting Environment (ISE)

Print, e-mail, or save this information

< Previous MNext > | Instal Cancel

23

Installing and

Configuring
PowerShell 2.0

n
=
=
)
-
m
=
N

24 CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

8. Review the installation results, and click Close.
After you have installed the ISE, you can find it by selecting Start > All Programs
> Accessories > Windows PowerShell, as shown in Figure 2.5.
FIGURE 2.5 ISEonthe Start menu
e Internet Explorer (64-bit)

& Internet Explorer | £
E1 Windows Update e
Acc es e

=}

|»

N—

|J Calculator

B8 Command Prompt Adriristrator

B c t to @ Projecto

B Connect to a Projector Srarres

| Notepad

(&3 Paint a .
omputer

B Remote Desktop Connection H

'__).r Run MNetwork

A Windows Explorer

= w

= Wordpad Control Panel

| Ease of Access

. System Tools Devices and Printers
. Windows PowersShell
B windows PowerShell (x86) Administrative Tools v
“% Windows PowerShell ISE (x85)
3 Windows PowerShell ISE “=| Help and Suppart
BN windows PowerShell
, Administrative Tools j Run...
4 Back

Search programs and files lg.l Log off >|

Install PowerShell 2.0 on Windows Server
2008 R2 Core

One of the exciting additions to the Server Core installations of Windows Server
2008 R2 is the support for the NET Framework. This enables all kinds of capa-
bilities on a Server Core installation that in previous versions were not possible.
One of the best scenarios is that you can now run PowerShell 2.0 on Server Core
installations.

Unlike the full installations of Windows Server 2008 R2, the Server Core instal-
lations do not have PowerShell 2.0 already installed. So, you need to install
PowerShell 2.0, as well as the .NET Framework, on the Server Core installations by
hand. Note that Server Core installations do not support the ISE, because Server
Core installations lack a GUI.

INSTALL POWERSHELL 2.0 ON WINDOWS SERVER 2008 R2 CORE

In this section, you will learn how to install PowerShell 2.0 on a Server Core instal-
lation. You will use the Deployment Image Servicing and Management (DISM) tool
commands to install the necessary components to enable PowerShell 2.0. DISM is
the common tool used to install any of the features or roles on any Windows Server
2008 R2 Server Core installation. Whether you want to install Hyper-V or IIS, you
will use DISM.

Before you begin to install any features on your Windows Server 2008 R2 servers,
though, you should check to see what features are currently enabled on the server.
To see what features are installed, run the following command from the server’s
command console:

DISM /Online /Get-Features

You will see results similar to Figure 2.6.

FIGURE 2.6 Featureson Windows Server 2008 R2 Server Core

Windows\system32\cmd.exe
Feature MName :
State : Disabled

Name : MNetFx2-ServerCore
: Disabled

Feature Hame : NetFx2—ServerCore—WOW64
State : Disabled

Feature Mame : NetFx3-ServerCore
State : Disabled

Feature Mame : WCF-HITP-Activation
State : Disabled

Hame : WCF—NonHTTP-Activation
: Disabled

Name : MetFx3-ServerCore-UOU64
: Disabled

Name : MicrosoftWindowsPowerShell
: Disabled

Hame : MicrosoftWindowsPowerShell-WOW64
: Disabled

Hame : ServerManager—PSH-Cmdlets
: Disable

Mame : BestPractices—PSH-Cmdlets
: Disabled

Hame : PeerDist
: Disabled

Hame : Microsoft—-Hyper-U
: Disabled

Mame : UmHostAgent
: Disabled

Hame : CertificateServices
: Disabled

Name : SMBHashGeneration
: Disabled

Feature Mame : ServerMigration
State : Disabled

Feature Name : ServerCore-WOW64
State : Enabled

25

Installing and

Configuring
PowerShell 2.0

CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

Install .NET Framework Support on Windows
Server 2008 R2 Core

The feature you are specifically looking for in order to support PowerShell 2.0 is
NetFx2-ServerCore. If NetFx2-ServerCore is not shown as enabled when you look
at the installed features, run the following command to enable it:

DISM /Online /Enable-Feature &

/FeatureName:NetFx2-ServerCore

Depending on the types of commands or scripts you need to run on your
server, you may need to support 32-bit; if you do, you will also need to run this
command:

DISM /Online /Enable-Feature 3
/FeatureName :NetFx2-ServerCore-WOW64

Install PowerShell 2.0 on Windows Server 2008
R2 Core

After you have installed the NetFx2-ServerCore feature, you then can install
PowerShell 2.0 on your Server Core installation. To install PowerShell 2.0 on
your Windows Server 2008 R2 Server Core installation, run the following
command:

DISM /Online /Enable-Feature 3

/FeatureName:MicrosoftWindowsPowerShell

If you run the command on your Windows Server 2008 R2 Server Core installation
and you get an error message with error code 50, as shown in Figure 2.7, it means
either you did not install the NET Framework or it did not install correctly. Repeat
the installation of the .NET Framework in the previous section to complete the
installation of PowerShell 2.0.

INSTALL POWERSHELL 2.0 ON WINDOWS SERVER 2008 R2 CORE

FIGURE 2.7 PowerShell 2.0 error 50

\Windows\system32\cmd.exe

C:sUsersSdministrator>DISH ~Online ~Enable—Feature /FeatureName:MicrosoftWindow,
sPowerShell

Deployment Image Servicing and Management tool
Uersion: 6.1.768@8.16385

Image Uersion: 6.1.7688.16385

Error: 58

The operation completed but MicrosoftWindowsPowerShell feature was not enabled.
Enzure that the following parent feature(s? are enabled first. If they are alrea
dy enabled. refer to the log file for further diagnostics.

MetFx2-8erverCore

The DISH log file can be found at C:\Windows\LogssDISM~dism.log

C:sUszserssAdministrator>

Just like with the .NET Framework, you may need to support 32-bit PowerShell on
your server. If so, run the following command:

DISM /Online /Enable-Feature &
/FeatureName:MicrosoftWindowsPowerShell-WOW64

Once PowerShell 2.0 has been successfully installed on your server, you should see a
screen similar to Figure 2.8.

FIGURE 2.8 PowerShell 2.0 installed on a Server Core installation

strator: C:\Windows\system32\cmd.exe

C:\Users“Administrator>DISM ~#Online ~Enable-Feature ~FeatureName:MicrosoftWindow,
sPowerShell

Deployment Image Servicing and Management tool
Version: 6.1.7688.16385

Image Version: 6.1.76808.16385

Enabhling featurecs>
[== B

=188.8:
The operation completed successfully.

C:sUserssAdministrator>

Installing and

Configuring
PowerShell 2.0

CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

Once you have installed PowerShell 2.0 on your server, you may be wondering
where it is located. PowerShell 2.0 is installed into the $windir%\system32
directory.

To test PowerShell on your Server Core installation, you can start PowerShell and
verify it has been installed correctly. To start Windows PowerShell, run the following
command:

C:\windows\system32\windowspowershell\vl.0\PowerShell.exe

POWERSHELL DIRECTORY V1.0

When you work with PowerShell on your systems, you will probably wonder why you
are running PowerShell out of the v1.0 directory. There is no need to worry; you are
actually getting PowerShell v2.0, not v1.0. To verify you are running PowerShell v2.0,
you can run this simple command in a PowerShell session:

$Host .Version

After you run the command, you will see the major version listed as 2, which verifies
you are running PowerShell 2.0.

Figure 2.9 shows the result of running the command. Notice the PS before the
command prompt.

FIGURE 2.9 PowerShell on Windows Server 2008 R2 Server Core

istrator: C:\Windows\system32\cmd.exe - CG\windows\system32\windowspowershell\v1.0\Po... [H[=]

C:sUzerssAdministrator>C:swindowsssystem32swindowspovershe11nvl .B°\Fowerfhell.exe

Windows PowerShell
Copyright (C> 288? Microsoft Corporation. All rights reserved.

PS8 C:xUsers“Administrator>

Once you have started a PowerShell session, you can run a quick test to make sure
PowerShell is running correctly. Run the following command, which displays basic
system information about your Windows Server 2008 R2 Server Core installation:

Get-WMIObject Win32_ComputerSystem

Once you are finished with your PowerShell session and you want to return the
command shell of the Server Core installation, type exit at the PowerShell session,
and your PowerShell session will end.

INSTALL POWERSHELL 2.0 ON OTHER OPERATING SYSTEMS 29

If you will be using PowerShell frequently on your Windows Server 2008 R2 Server
Core system, you may want to add the PowerShell directory to the path statement of
the server. To do that, run the following command on your Server Core installation
at the command prompt of the server. This modifies the local path, and you will no
longer need to navigate to the PowerShell directory to run PowerShell.

path=%path%;C:\windows\system32\windowspowershell\v1l.0\

Install PowerShell 2.0 on Other Operating Systems

When you look at your entire infrastructure, most likely you will find an assort-

Installing and
onfiguring
owerShell 2.0

C
[

ment of server and client operating systems. You may be wondering whether you
can install PowerShell 2.0 on these systems. Chances are the answer is yes, because | CHAPTER2 _
PowerShell 2.0 is supported on the following operating systems:

[a}
I
=
)
-
m
=
N

Windows Server 2008 with Service Pack 1
Windows Server 2008 with Service Pack 2
Windows Server 2003 with Service Pack 2
Windows Vista with Service Pack 2
Windows Vista with Service Pack 1
Windows XP with Service Pack 3
Windows Embedded POSReady 2009

Windows Embedded for Point of Service 1.1

The ability to run PowerShell 2.0 on legacy operating systems and platforms in your
infrastructure means you can leverage PowerShell 2.0 to manage your environment.
However, unlike with Windows 7 or Windows Server 2008 R2, PowerShell 2.0 is not
built into these legacy operating system, so you will need to install it. In this section,
you will learn how to set up the prerequisites for PowerShell 2.0 and how to install it
on other operating systems, including Windows XP mode on Windows 7.

Set Up the Prerequisites

Windows PowerShell 2.0 requires the Microsoft NET Framework 2.0 with Service
Pack 1. If you try to install the Windows Management Framework — the package
that contains PowerShell — and you receive the message shown in Figure 2.10, then
you need to install the .NET Framework 2.0 Service Pack 1.

30 CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

FIGURE 2.10 .NETFramework error

B Windows Management Framework Core Setup Error

updated wersion of the .MET Framework 2.0 SP1. Please install .MET Framewark 2.0 SP1
From http:figo.microsaft. comyFwlink/?linkid=153680 and rerun Windows Management
Framework Core Setup

@ Cannot installfuninstal Windows Management Framework Core because it requires an

You can do a quick Internet search for the framework, or you can find the version
for your operating system (x86 or x64) at the following locations.
You can download the x86 framework here:

www.microsoft.com/downloads/en/details.aspx?FamilyID=79bc3b77-
e02c-4ad3-aacf-a7633f706ba5&displaylang=en

You can download the x64 version of the framework here:

www.microsoft.com/downloads/en/details.aspx?FamilyId=029196ED-
04EB-471E-8A99-3C61D19A4C5A&displaylang=en

After downloading the package, double-click the file to run the setup process to
install the NET Framework 2.0. After you double-click the file, you will see a screen
similar to Figure 2.11. When the screen appears, click Install and wait for the instal-
lation to complete. The installation may take a few minutes.

FIGURE 2.11 Installing the Microsoft .NET Framework 2.0 with Service Pack 1

B Microsoft .NET Framework 2.0 SP1 Setup

Micresolt

welcome to Setup .n_et Fra mework

Be sure to carefully read and understand all the rights and restrictions described in the
license terms. You must accept the license terms before you can install the software.,

MICROSOFT SOFTWARE SUPPLEMENTAL LICENSE TERMS S
MICROSOFT .NET FRAMEWORK 2.0 =

Microsoft Corporation (or based on where you live, one of its affiliates) 3

Press the Page Down key to see more text,

(331 have read and ACCEPT the kerms of the License Agreement
()1 DO MOT ACCEPT the terms of the License Agreement

[send information about my setup experiences ko Microsoft Corporation,
Deetails regarding the data collection policy

INSTALL POWERSHELL 2.0 ON OTHER OPERATING SYSTEMS 31

ISE REQUIREMENTS ON POWERSHELL SYSTEMS

If you want to have the ISE installed on your other PowerShell systems, you will need
to install the .NET Framework 3.5 Service Pack 1. (You will learn more about the ISE in
Chapter 5.) You can download the required component here:

www.microsoft.com/downloads/en/details.aspx?familyid=AB99342F-
5D1A-413D-8319-81DA479AB0D7&displaylang=en

Obtain and Install PowerShell 2.0

After you have the Microsoft .NET Framework 2.0 with Service Pack 1 installed, _
you can install PowerShell 2.0.

Installing and
nfiguring
owerShell 2.0

n
=
== Col
=i P
=
N

The Windows Management Framework contains three components, listed in
Table 2.1. You can download the Windows Management Framework files here:

http://support.microsoft.com/kb/968929/en-us

TABLE 2.1 Windows Management Framework components

Windows Remote This is the Microsoft version of the WS-Management Protocol. WinRM

Management (WinRM) 2.0 2.0 allows for interoperability between different hardware and operating
systems. It is designed to be secure and easy to work with on firewalls. It
allows PowerShell remoting.

Windows PowerShell 2.0 This is the scripting language that this book is about.

Background Intelligent This is a file transfer service that allows background file transfers (usually

Transfer Service (BITS) 4.0 updates or other client-side packages are examples of how BITS is used)
to occur quickly and securely to client-side systems. The transfers are
typically done in the background. For our discussion on PowerShell, it is
not necessary to download this component.

Windows Management Framework is available for download at http: //support.microsoft.com/kb/968929/
en-us.

The main component you need is PowerShell 2.0, of course, and since the WinRM
component provides support for PowerShell 2.0 remoting, you’ll want to down-
load it too. (You will learn more about remoting in Chapter 6.) The Windows
Management Framework is broken down into two downloads:

» Windows Management Framework Core, which includes WinRM 2.0 and
Windows PowerShell 2.0

» Windows Management Framework BITS, which includes BITS 4.0

32

CHAPTER 2 * INSTALLING AND CONFIGURING POWERSHELL 2.0

You need to download and install only the Windows Management Framework
Core. On the download page, select the appropriate package for the operating
system on which you are installing PowerShell 2.0. The packages you will find on
the Windows Management Framework website are similar to Figure 2.12.

FIGURE 2.12 Download

Download information

To download Windows Management Framework, select the installation package for the specific
components that you want to download.

The following files are available for download from the Microsoft Download Center:

Windows Management Framework Core (WinRM 2.0 and Windows PowerShell 2.0)

é Download the Windows Management Framework Core for Windows Server 2008 package
now.

é Download the Windows Management Framework Core for Windows Server 2008 x64
Edition package now.

é Download the Windows Management Framework Core for Windows Server 2003 package
now.

é Download the Windows Management Framework Core for Windows Server 2003 x64
Edition package now.

é Download the Windows Management Framework Core for Windows Vista package now.

é Download the Windows Management Framework Core for Windows Vista x64-based
systems package now.

é Download the Windows Management Framework Core for Windows XP and Windows
Embedded package now.

After you have downloaded the appropriate file to your system, you are ready to
begin the installation.

1. Double-click the Windows Management Framework file you downloaded,
and you will see a screen similar to Figure 2.13. Review the welcome screen,
and click Next.

2. Read the license agreement, click I Agree, and then click Next.
3. Review the summary screen, and then click Finish.
Once PowerShell 2.0 is installed, you will find it in the same place as on other operating

systems, at Start > All Programs > Accessories > Windows PowerShell. Figure 2.14
shows an example of PowerShell installed on an x86 version of Windows XP with SP 3.

INSTALL POWERSHELL 2.0 ON OTHER OPERATING SYSTEMS 33

FIGURE 2.13 Windows Management Framework installation

Software Update Installation Wizard rz|
Uze thiz wizard to install the following software update:

Windows Management
Framework Core

Before vou install thiz update, we iecommend that you: k-] 2

S o—

- Back up vour system g £

- Cloze all open programs c ==- .J:’

= o=

*r'ou might need to restart your computer after you complete c e 2

thiz update. Ta continue, click Mest. ‘.;.' g §
o

-V a

n
=
=
)
-
m
=
N

| Nest » | Cancel

FIGURE 2.14 Windows XP and PowerShell

e
£ Internet L) My Documents
I Internet Explorer
5 W et Program Access and Defaults »
=] E-mail
Cutlook Express B Windows Catalog

@ Accessibility

@ Camrunications

"“ ‘windows Update

\1 MSH

|a Entertainment
® Windows Media Flay @ Games I@ Syskem Tools
lﬁ Startup |

13 Windaws Messenger |l @& Internet Explorer

‘ Microsoft Security Essentisls
% twindows Update

» mMsn

| 5 windows Powershell
Address Book “3 WWindows PowerShell ISE
Calculator

Zommand Prompk

2 %3 ©Outlook Express
_@ Tour Windaws P Q P Motepad
. Remaote Assistance Eaie
cialh) Files and Setkings Tr. i i
Wizard ? e Windigiis Media Piyes Program Compatibility Wizard

Fe<=wHw Y

q - Winidows Messenor Remote Desktop Connection
@ Wiindows Movie Maker t‘g Synchronize
&) Tour Windows <P
L3 windows Explorer
wordrad

34

CHAPTER 2

INSTALLING AND CONFIGURING POWERSHELL 2.0

A QUICK NOTE ON WINDOWS XP MODE AND POWERSHELL

One of the great application compatibility additions to Windows 7 is Windows XP mode.
Windows XP mode is a free download for Windows 7 and provides a fully functional
32-bit version of Windows XP. The version installed in Windows XP is Service Pack 3,
so the operating system is ready to install PowerShell.

You might think since this is XP mode, you will have to perform the special installa-
tion steps to get PowerShell 2.0 installed and configured on the Windows XP mode
virtual system. In truth, you do not; you can perform the installation the same way
you did in this section. You will need to install the Microsoft .NET Framework 2.0 with
Service Pack 1 and install the Windows Management Framework Core package. Here
you can see the beginning of the Windows Management Framework Core installation
on Windows XP mode:

71 Windows XP Made - Windows Virtual PC []

Action » USB = Tools = Ctrl+Alt+Del (7 R4

Ein

Software Update Installation Wizard
Usze thiz wizard to install the following software update:

Windows Manhagement
Framework Core

Before pou install this update, we recommend that you:

- Back up your system
- Cloze all open programs

*t'ou might need to restart your computer after you complete
thiz update. Tao continue, click Mext.

I Mest > | Cancel I

re Update Inst. ..

If you're using Windows Vista, you may not need to download the files from the
Microsoft website; chances are, you already have the PowerShell tools available to
you via Windows Update. Figure 2.15 shows the Windows Update dialog box on a
Windows Vista system.

INSTALL POWERSHELL 2.0 ON OTHER OPERATING SYSTEMS 35

FIGURE 2.15 Windows Vista PowerShell

Select the updates you want to install

7] Name Size Windows PowerShell 2.0 and
. g WinRM 2.0 for Windows Vista
Important (15) Windows Vista (3) A (KBOG8930)
e [F] Marvell - Network - Marvell Yukon 88E8040 PCI-E Fast Ethernet Contr... 194 KB i
Onticaal i) Update for Windows Vists - English (KB937286) apng [pslendosNagaament

Framework Core package includes
7] Windows PowerShell 2.0 and WinRM 2.0 for Windows Vista (KB968930) 324 MB Windows PowerShell 2.0 and
Windows Remote Management
(WinRM]) 2.0. For more information
Windows Live Essentials 11 MB on the Windows Management

Windows Live (1) A

Framework, see
http://support.microsoft.com/kb/96

Published: 6/22/2010

= You may need to restart your
'0.' computer after installing this
=" update.

Installing and

Configuring
PowerShell 2.0

= Update is ready for

downloading
More infermation _

Support information

[a}
=
=
)
-
m
=
N

Total selected: 14 important updates Cancel

Notice that the listing for KB968930, for Windows PowerShell 2.0 and WinRM 2.0
for Windows Vista, is available as an optional update. To install the update, select
the option, and click OK.

There will be some special configurations you will have to do to get remoting to
work properly, but they will be discussed in Chapter 6.

EXERCISE 2: INSTALLING POWERSHELL

In this exercise, you will need a test system or a system you are willing to install
PowerShell on. Install PowerShell in Windows XP mode on a Windows 7 system.

CHAPTER

PowerShell Grammar Lesson

IN THIS CHAPTER, YOU WILL LEARN TO:

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS 38
LearntheVerbs.o 39
Learnthe NoUNSviunieit e 40
Put Verbs and Nouns Together: Cmdlets....................... 41
Use Parameters.oouienieii e 42
UseWildcardsooouniinii e 45
Understand Properties..........coviviiiiiiiiiiiiinnnnannns 46
HELP YOURSELF WITH POWERSHELL 48
Learn How to Help Yourself............cooiviiiiiiiniins, 48
Use Tab Autocompleteooviiiiiii i 53
Leverage Online ReSOUrCesoviviviiiii i 54
USE EVEN MORE COMMANDS WITH MODULES 55
Use and Understand Modulescooviiiiiii.. 55
Get to Know YourModulesooiiiiiiiiiiinae.. 58

Create a Custom PowerShellShell............................ 60

¢ 411dVH)

owerShell 2.0 is a powerful language, having immense capabilities for you and your
environment. Almost anything you can do in the interface of your Windows oper-
ating systems, you can do with PowerShell 2.0. When you look at the vast array of
things you can accomplish with PowerShell 2.0, learning the language may seem
daunting, maybe even impossible. I am here to tell you that anyone can learn to
read, write, and — if they really want to — speak this great language. However,
speaking PowerShell 2.0 in your local supermarket may garner some odd looks or
stares, especially if you say something like this:

new-alias -name w -value get-wmiobject -description &

"quickwmi alias" -option ReadOnly

This line does not have anything to do with spies or getting a new identity. You
should look at the example as a puzzle you can learn from. Like any language you
may have learned in the past, you have to break PowerShell down into the individual
components in order to understand it. You have to start with the easiest parts first
and then build from there. Once you learn to break the language into its smallest
components it will be easier to work with and understand.

In this chapter, you will learn how to break down the syntax for PowerShell 2.0. This
will give you the necessary building blocks to begin leveraging this powerful script-

ing tool, and by the end of this chapter, you will be able to start reading and writing

your own commands. In this chapter, you will also learn how to fish for the answers
in PowerShell 2.0 by using the built-in help system.

This chapter also covers how to get even more commands in PowerShell 2.0 by
working with the modules you have installed on your server. Modules can be
extremely useful for the different workloads you may have installed on your server;
for example, there are modules for Active Directory, IIS, and many other roles.
Learning how to work with PowerShell 2.0 and the modules for these roles gives you
the administrative flexibility to manage your environment.

Break Down PowerShell: A Lesson on Cmdlets

Cmdlets (pronounced “command-lets”) are the building blocks for all your
PowerShell 2.0 scripts. Building and writing cmdlets will allow you to start learning
this language.

Hundreds of cmdlets are built into PowerShell 2.0, and as you install more roles on
your Windows Server 2008 R2 server, you will get even more cmdlets to leverage.

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS

In this section, you will look closely at the basics of PowerShell 2.0 cmdlets and
command syntax.

A basic cmdlet looks like this:
Get-Service

Like all cmdlets, Get-Service is constructed from a verb and a noun and may
have some parameters. The verb (Get) and noun (Service) are separated by a
hyphen, and it doesn’t contain any spaces.

Learn the Verbs

TABLE 3.1

Learning some of the basic verbs of PowerShell 2.0 will help you see the possibili-
ties of what you can accomplish in PowerShell 2.0. As in any language, verbs convey
action or doing something. In PowerShell, this is no different, and most of the verbs
of the cmdlets are straightforward to understand and use. Table 3.1 describes some
of the more common verbs you will likely be using in PowerShell 2.0.

Common verbs in PowerShell 2.0

s Jomrpion

Get The Get verb is useful when you want information about something on your system, such
as a service, a variable, or permissions. Get is also combined with other cmdlets, usually
via the pipe (|) symbol (which you will learn more about in Chapter 4), so you can per-
form more actions on the items that are returned with the Get command.

Set The Set command lets you define the value for something on your system. You can set
permissions, locations, or the values of variables. Set is useful when you are working
with functions. (You will learn more about functions in Chapter 4.)

Out Out is the verb that lets you output data from PowerShell 2.0 into a variety of resources.
Typically you use the Out verb to take the data you received from PowerShell 2.0 and use
it in another form for analysis. For example, you might want to create a comma-delimited
file to use in Excel. (You will learn more about the Out verb in Chapter 4, where you will
look at using PowerShell to output to various forms of data.)

Start Start is a straightforward verb that allows you to start services currently not running.
You will use Start when you are working with services, process, websites, and so forth.

Stop Stop is another common verb allowing you to stop services, process, websites, and so forth.

Restart TheRestart verbis for when you want to do a simple recycle of services or other
transactions.

Add Add s useful in a lot of areas in PowerShell 2.0, such as adding a user to Active Directory,
joining a domain, or doing other functions. (You will see some great examples of the
Add verb in action in Chapter 8, where you will see how you will use PowerShell 2.0 with
Active Directory.)

39

PowerShell Grammar

n
X
=
o
—
m
=
w

40

CHAPTER 3 -

POWERSHELL GRAMMAR LESSON

Table 3.1 lists just a few of the verbs you will use as you learn PowerShell 2.0. I am
sure throughout your adventures in PowerShell 2.0 that you will use plenty more.
Note that when you learn the core purpose of a verb, it has that same function
across the various nouns in PowerShell 2.0.

Learn the Nouns

TABLE 3.2

Nouns (or objects, as you might sometimes see them referred to) are the things

you are looking to find out more about, do something to, or just learn from inside
PowerShell. When you look at the nouns by themselves, they really do not do much.
Nouns are also typically unique to a role or aspect of the system. There are some
common nouns, but as you become familiar with PowerShell, you may also find
plenty of other nouns that you use on a daily basis.

In PowerShell 2.0, the nouns are, with a few exceptions, always singular. Even when

you want to look at multiple objects, the noun you use is still singular. For example,

if you are looking to learn about all the services running on your server, you run the
following cmdlet:

Get-Service
and not the following, which is incorrect:
Get-Services

Table 3.2 describes some of the nouns you may encounter when working with
PowerShell 2.0.

Common nouns

o Joeepon

Command This is quite possibly the most useful noun you will encounter in PowerShell.
Command, when combined with the Get verb, allows you to list all of the commands
in your particular PowerShell session. This lets you learn PowerShell quickly. (See the
“Help Yourself with PowerShell” section in this chapter to see the Command noun in
action.)

Computer You can use Computer to add computer accounts to domains, modify access control
lists, or even specify a computer you want to have PowerShell affect.

PS... PowerShell 2.0 also has some great self-servicing administrative tools you can
leverage to work with PowerShell. A noun that begins with PS normally lets you
work with the PowerShell engine and gives you control over your PowerShell
environment.

Service This is the noun you use to interact with the services on your system, including when
you start, stop, or restart any service.

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS 41

A LONG UNIQUE NOUN

One of my favorite nouns is ADDomainControllerPasswordReplicationPolicy,
because it is one of the longest nouns! In my opinion, it is the PowerShell equivalent
of supercalifragilisticexpialidocious. This particular noun allows you to work with a
read-only domain controller’s (RODC's) password replication policy.

Put Verbs and Nouns Together: Cmdlets

Now that you have taken a look at the two big building blocks — verbs and

nouns — it is time to see what happens when they’re combined to form a cmdlet.
Cmdlets are the result of adding a hyphen (-) between a noun and a verb. This little
hyphen makes all the difference in PowerShell and allows you to begin to learn the
syntax. In this section, you learn some of the common cmdlets that are built into
PowerShell. (If you want to learn how to create your own cmdlets, check Appendix D.)

PowerShell Grammar

Lesson

Although learning the verbs and nouns is very useful, you have probably realized
that on their own they really do not do much of anything. It is combining the two | cHAPTER3
that allows you to begin to unlock the magic and power of PowerShell. Table 3.3

N
I
>
)
-
m
=
w

describes some common cmdlets and explains how they can help you.

TABLE 3.3 Common cmdlets

(maer—Jospion

Get-Command This cmdlet lists all the commands at your disposal in your current session. Along
with Get-Help (which you will learn in this chapter), Get -Command is a great
way to see what is possible in your PowerShell session.

Get-Service This cmdlet shows you all the services on your current system and can help you
find out how to work with your services on your systems. Related to this cmdlet,
you can use Start-Service, Stop-Service, and Restart-Service to
manipulate the services running on your servers.

Add-Computer You can use this cmdlet if you need to be able to join a computer to a workgroup
or a domain. Use this command instead of going through the GUI when you want
to join a domain.

Get-Member This command is a must-have to take PowerShell to the next level. Developers can
use it to learn more about the programming side of PowerShell. In PowerShell you
are not dealing with text; rather, you are dealing with .NET objects. Get -Member
helps you learn about these objects by listing the type, properties, and methods
of the objects you are dealing with. This is helpful when coming to grips with how
to use a particular object.

42

CHAPTER 3 * POWERSHELL GRAMMAR LESSON

Figure 3.1 shows how you can use Get-Member to list the Get-Service

resultant object’s properties. The returned object is of the NET type System

.ServiceProcess.ServiceController. Note here that the pipe (|) opera-

tor is used to bring in the results of a command to the Get-Member cmdlet.

This is an example of PowerShell pipelining, which you will learn more about in

Chapter 4.

FIGURE 3.1 Get-Service | Get-Member

& windows PowerShell

P8 C:islUserssMatt? Get—Service | Get—Member

TypeName: System.ServiceProcess._ServiceController

RequiredServices
Disposed

Glose

Gontinue

achineMame
ServiceHandle
ServiceName
SelulcedDependedOn

HembeeT ype

sProperty
AliasProperty
Event
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

Deflnltlun
ServiceMame
RequiredServices = ServicesDependedOn

System.EventHandler Disposed(System.Object, System.BEv...

System.Uoid Close<>
System.Uoid Continue<{)

System.Runtime .Remoting.0hjRef CreateOhjRef<{type regu...

System.Uoid Dispose()
bhool Equals<System.Qhject ohj>
System.Uoid ExecuteCommand{int command>
int GetHashGCode(>
Syﬂtem Object GetLifetimeService()
GetType<>
emn.Object InitializeLifetimeService<d
en.Uoid Pause

efresh(}
Start()>, System.Uoid Start{stringl] args)
Stup()

g
System.Uoid WaitForStatus(System.ServiceProcess.Servi...

System.Boolean CanPausefAndContinue {get;
System.Boolean CanShutdown {get;>
Sustem.Boolean CanStop {get;>
System.ComponentModel.IContainer Container {get;>
System.ServiceProcess.ServiceControllerl] DBpendentSe...
Syatem String DisplayName {get;sets>
em.String MachineMame {get;set:;}

em.Runtime.InteropServices.5afeHandle ServiceHand...

em.String ServiceMame {getiset;}

emn.ServiceProce ServiceController[] ServicesDep...

en.ServiceProc ervicelype Servicelype {get;}
en.ComponentModel.I8ite Site {getzset;>

ystem._ServiceProcess.ServiceControllerStatus Status ...

Use Parameters

Parameters give you control over cmdlets when they are run. When you execute

cmdlets, you get a set of results, and these results contain the properties and their

values from the nouns of your cmdlets. Parameters allow you to control what prop-
erties are returned in the resulting table for your command. In a sense, they extend

the power of your cmdlets, giving you even more flexibility in how you work with

PowerShell and the results it gives you.

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS

FIGURE 3.2

Parameters allow you to be more specific in how your cmdlets run and what you see
as a result. You can sort, remove, or even output specific properties and their values
by modifying the parameters. You will learn more about how to work with output-
ting data in Chapter 4. Parameters are unique to the nouns in your cmdlets, and

to see what parameters are available for a particular cmdlet, you can just run the
cmdlet. The default results normally show you some of the parameters available but
not all. You can ask the built-in help to see all the parameters available (see “Help
Yourself with PowerShell” in this chapter). Figure 3.2 shows how to use the -name
parameter to find just the names of services with NET in their names. The cmdlet
used for the figure is Get-Service -name "*NET*".

Get-Service with the -name parameter

& windows PowerShell

PS C:\Users“\Matt> Get—Service —name "sNET="

DisplayName

aspnet_state ASP.HET State Service
Netlogon Netlogon

Netman Network Connections
NetMsmgActivator Net.Msmg Listener Adapter

HetPipeActivator Net _Pipe

netprofmn Network List Service
HetTcpActivator NHet .Tcp Listener Adapter
NetTcpPortSharing Met.Tcp Port Sharing Service

PS C:\UsersSsMatt)>

When you work with parameters, you usually use a hyphen (-) to precede the
parameter in your cmdlet. In Figure 3.2, the -name parameter was explicitly speci-
fied in the cmdlet. You do not always need to include the actual parameter name in
your cmdlet. Some parameters are positional, which means if you know the order of
the parameters, you do not have to use them explicitly by name. You could have run
the previous Get-Service example without the -name parameter, Get-Service
"*NET* ", and it would have yielded the same results because the name parameter
can be used in position for this command.

Keep two important things you in mind with positional parameters. First, with
positional parameters you have to know the exact position they need to be in when
you write your command to use them. Second, not all parameters are positional;
some are named parameters instead. This means you have to specify them explicitly
to use them. Figure 3.3 shows both types.

43

PowerShell Grammar

N
=
>
)
-
m
=
w

44 CHAPTER 3 * POWERSHELL GRAMMAR LESSON

FIGURE 3.3 Named and positional parameters

—Hame <{stringll>
Specifies the service names of services to be retrieved. Wildcards
all of the services on the computer.

Required? false

Position?

Default value

Accept pipeline input? true {(Bylalue, ByPropertyNamel
Accept wildcard characters? true

—RequiredServices [{SwitchParameter>]
Gets only the services that this service requires.

This parameter gets the value of the ServicesDependedOn property off
11 services.

Required? false
Position? named
Default value False
Accept pipeline input? false
fAccept wildcard characters? false

As you can see, the Name parameter has to be in position 1, and
RequiredServices is a named parameter.

To see the requirements for your parameters, you leverage the built-in help system
with the -full parameter. Figure 3.3 was the result of this command:
Get-Help Get-Service -full

Positional parameters help cut down on typing and sometimes can help with read-
ing the cmdlets. For example, look at this cmdlet:

Get-Service -name RemoteAccess -RequiredServices

The output of this cmdlet will show you the required services for the RemoteAccess
service. This cmdlet could have also been written as follows:

Get-Service RemoteAccess -RequiredServices

Figure 3.4 shows the results of this cmdlet.

FIGURE 3.4 Positional parameter

Name

Bfe Bazse Filtering Engine
Remote Access Connection Manager

Http
Remote Procedure Call (RPCD

PS C:\UserssMatt>

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS 45

When you are first learning to use PowerShell, I caution against using the positional
nature of parameters. You will be able to troubleshoot and read your cmdlets much
easier if you specify all the parameters by name.

As your knowledge grows with PowerShell, positional parameters can provide a
quicker way to work with PowerShell.

Use Wildcards

To further work with parameters, PowerShell supports the use of wildcards. If you
have worked with any command prompt environment in the past, you will find the
wildcards to be similar to other languages. If you are new to command prompts
and PowerShell, wildcards provide a quick and easy way to find things you are
looking for if you are not quite sure of the exact name or spelling. Also, you can

use wildcards to save on typing. Table 3.4 describes the wildcard characters and E
their uses. E
S
E
TABLE 3.4 PowerShell wildcards < S
23
Wildeard [Usage

* Matches any character starting where you placed the *. For example, if you typed
h*, you would find anything that started with the letter h.

? Matches a single character in the position of the 2. For example, m?tt could return
matt, mitt, or any other character in the position of the ?.

[] Allows you find a range of or a certain character. For example, [k-s]arah could
return karah, marah, or sarah. Or you could be more specific with [osu] rocks,
which could result in orocks, srocks, or urocks.

Figure 3.5 shows the Get-Command s* cmdlet. As you can see, this returns just the
commands beginning with the letter s.

Notice, however, what happens when you use the Get-Command *s. It shows all
the services that have the letter s in the name. In Figure 3.6, you can see this in
action.

46

CHAPTER 3

POWERSHELL GRAMMAR LESSON

FIGURE 3.5 Wildcard after letter

Name

SacSvr

Sam8s
SCardSur
Schedule
SCPolicySvc
sec logon
SENS
SessionEnv
SharedAccess
ShellHWDetection
SNMPTRAP

Spooler
sppsvc
sppuinotify
$QLAgentMAPS
SQLBrowser
SQLYriter
SSDPSRU
Sstpluc
stisve

SUprY

PS8 C:\UserssMatt>

FIGURE 3.6 Wildcard before letter

= windows PowerShell

Disp

Special Administration Console Helper
Security Accounts Manager

Smart Card

Task Scheduler

Smart Card Removal Policy

Secondary Logon

System Event Motification Service
Remote Desktop Configuration

Internet Connection Sharing (ICS>
Shell Hardware Detection

SNMP Trap

Print Spooler

Software Protection

SPP Motification Serwvice

5QL Server Agent C(MAFPS)

SQL Server Browser

SQL Server USS UWriter

SS5DP Discovery

Secure Socket Tunneling Protocol Se...
Windows Image Acgquisition <WIA>
Microsoft Software Shadow Copy Prouv. ..

PS C:sUsers“Matt» get—service s

Hame

Imhosts
MMCSS
HMSSQLSMAPS
Remotefccess
RpcSs

ros

SamSs

SENS
SharedAccess
$QLAgentSMAPS
THS

Themes
TrkWks
UxSms
vds

PS C:slserssMatt>

Understand Properties

DisplayName

Background Intelligent Transfer Ser...

Diagnostic Policy Service
Encrypting File System (EFS)>
TCP-IP HetBIOS Helper

Multimedia Class Scheduler

SGL Server <MAPS)>

Routing and Remote Access

Remote Procedure Call (RFC>
Remote Access Quarantine Agent
Security Accounts Manager

System Event MWotification Service
Internet Connection Sharing (ICS>
£QL Server Agent C(MAPS>

TPM Base Services

Themes

Distributed Link Tracking Client

Desktop Window Manager Session Manager

Uirtual Disk

Hyper-U Uirtual Machine Management
Uolume Shadow Copy

Windows Process Activation Service

There are two parts to properties in PowerShell: property names and property
values. Names are the column headings in your output data, and property values
are the values. For example, in Figure 3.7, you see the Get-Service cmdlet. The

BREAK DOWN POWERSHELL: A LESSON ON CMDLETS

property names for this example are Status, Name, and DisplayName. The prop-
erty values are the listing of the results under the names.

FIGURE 3.7 Properties

Property names Property values

% windows PowerShell
PS C:sUsers“\Matt> Get—Service

feLookupSuc et e irnce
ALG Application Laver Gateway Service
AppHostSuc Application Host Helper Service
AppIDSuc Application ldentity

fAppinfo Application Information

AppMgmt Application Management

aspnet_state ASP.NET State Service

Ati External Ev... Ati External Event Utility
ATTReAppSuc T RcAppSvc

AudioEndpointBu. .. Wi Audio Endpoint Builder
AudioSru Wi Audio

BFE Base Filtering Engine

BITS Background Intelligent Transfer Ser...
Browser Computer Browser

CAATT AT&T Con App Sue

CertPropSuc Cextlfu:ate Propagation
clr_optimizatio... t .MET Framework NGEN

1r - H -NET Framework NGEN

pp

nyptSuc nyptogxap]n.c Services
CscBervice 0ffline Fil
DcomLaunch DCOM Server Process Launcher
defragsvc Disk Defragmenter
Dhcp DHCP Client
Dnscache DNS Glient
dot3svc Wired AutoConfig

s D1agnn.,t1c Policy Service
EapHost Ext ble Authentication Protocol
EFS Encl nn g File System (EFS>
event log Windows Euent Log
FuentSystem GOM+ Fuent System
EvtEng Intelr PROSet Wireless Event Log
FCRegSvuc Microsoft Fibre Channel Platform Re.
fdPHost Function Discovery P ider Host
FDResPub Function Discovery Resource Publica...
FontCache Hindows Font Gache Service

Although you cannot directly use properties in your PowerShell commands, you
can manipulate what properties are displayed in the output of your PowerShell
cmdlets by working with the parameters for a particular command. For example,
when you run the command Get-Service, you get some of the properties dis-
played. If you want to control what is displayed, you may need to take advantage
of the other parameter names to control what results you see, as you can see in
this example:

Get-Service RemoteAccess -RequiredServices

Even though you do not see RequiredServices in the property names, the prop-
erty values are filtered, showing only the required services. You will see in Chapter 4
how you can further control the results and how the properties are used to give you
the results you want. In Appendix B, you will learn how to do even more with prop-
erties and create your own custom objects and properties.

47

PowerShell Grammar

N
=
>
)
-
m
=
w

48

CHAPTER 3

POWERSHELL GRAMMAR LESSON

A WORD ON CASE FOR POWERSHELL

Although PowerShell 2.0 is a sensitive language in terms of spelling and syntax, it is
mostly case insensitive. When you are looking at help files or other forms of online
documentation, you see a mixed-case pattern, with the beginning of every word in
the cmdlet being capitalized. In the documentation, you will see the Get-Service
cmdlet written like this:

Get-Service
However, the following three versions of this cmdlet will do the same thing:

get-service
GEt-sErVIce
GET-SERVICE

You can type the cmdlet in all lowercase, or you can write your cmdlets in mixed case.
They will all do the same thing. Although | do not recommend all uppercase: while
it does make the PowerShell cmdlets stand out, it makes it harder to troubleshoot.

Although PowerShell is not case sensitive, PowerShell is still very much spelling and
syntax sensitive. There is no IntelliSense to help with spelling, but tab completion can
be very helpful if you struggle with spelling.

Help Yourself with PowerShell

To start building your PowerShell knowledge, you need to learn some commands.
Maybe you think you will discover what you need to know by pressing F1 for help.
But in a command prompt, pressing the F1 key does not get you much. So, how do
you ask for help in PowerShell? You use a cmdlet, of course! The cmdlets and param-
eters in the section show you how to leverage the powerful built-in help system.

Learn How to Help Yourself

To be successful with Windows PowerShell, you need to learn how to help yourself.
Fortunately, PowerShell provides tools to help you do that. You can use two commands
to find more information about commands and, more importantly, how to use them.
The following two cmdlets will allow you to access PowerShell’s built-in help system:

Get-Command
Get-Help

HELP YOURSELF WITH POWERSHELL

FIGURE 3.8

When you run the Get-Command cmdlet, you see a list of the currently loaded cmd-
lets and functions on your Windows system. You can also run the Get -Command
cmdlet to learn which commands work with certain objects.

Suppose you want to use PowerShell to work with the services on a particular server
or system but you are not sure of the available cmdlets for doing this. To find out,
use the following command:

Get-Command *-service

This displays all the commands you can run against the services running on your
system, as shown in Figure 3.8.

Get-Command *-service

& Windows PowerShell

PS C:NlUserssMatt> Get—Command * service

Get—Service puice [[—Namel <String[l>] [-C...
Heu—Service Hew—8eruvice [-Namel <{String> [-Bina
Restart—Seruice Restart—Service [-Namel <{Steing[l> L.
Resum Y 1 Resume—Service [-Namel <{Steingll> [

Set—% Set—8ervice [-Namel <{String> [—Conm
Start i Start—Service [-Hamel {Stringll> [-]
Stop-Service Stop—Service [-Mamel <Stringll> [-Fo.
Suspend-Service Suspend—Service [-Namel <Stringll> [.

PS G:nlUserssMatt>

So, now that you know what commands you can use against the service object,
what is the proper syntax for those commands? This is where the Get-Help cmdlet
comes in. By itself, the Get -Help cmdlet, by default, gives you a generic help listing
on how to use Get-Help. In other words, it gives you help on help.

However, the true benefit of the Get -Help cmdlet is when you run it in context.
When you use the Get -Command and Get-Help cmdlets in conjunction, you can
unlock any information you need to learn PowerShell, including the proper syntax
and usage needed to work with PowerShell cmdlets.

Looking back to the previous example for services, let’s say you want to learn how
to properly stop a service. When you run the following cmdlet, you can learn more
about the proper process for stopping a service:

Get-Help Stop-Service

49

PowerShell Grammar

N
=
>
)
-
m
=
w

50

CHAPTER 3

POWERSHELL GRAMMAR LESSON

This cmdlet gives you the general information about what the Stop-Service
cmdlet does, how to use it, and any possible parameters that can be used with the
cmdlet. You may need more information on the command or even examples of
the cmdlet in action. No need to go search the Internet just yet. The PowerShell
help system can provide you with even more information with the three follow-
ing switches you can apply to your cmdlets. Switches in PowerShell are much
like the switches used in DOS commands. They are different than parameters
because they do not accept any arguments. Much like a light switch, the switch
is either on (included in the command) or off (omitted from the command). An
example of a switch in PowerShell is the Force switch, which tells a command to
bypass roadblocks and just run. In the case with help you can use the switches
to display difterent forms of the help system:

-example If you learn by viewing examples, you would run the following cmdlet
to see a list of examples of the cmdlet in action:

Get-Help Stop-Service -examples

I find the -examples switch extremely useful, if not the most useful. When you
use it, as you can see in Figure 3.9, you get real examples to be able to learn a cmdlet
from. This helps slim down the learning curve for PowerShell. Ideally, you have that
little reverse engineer inside of you that can take a script and retrofit it for your par-
ticular environment. The -examples switch was key to unlocking PowerShell for
me when I first started using the tool.

-detailed To see even more detailed information about the cmdlet you are look-
ing at using, run this cmdlet:

Get-Help Stop-Service -detailed

-full To see more technical information about the cmdlet you are running, run

the following cmdlet. This cmdlet also shows you all the additional parameters and
how they are used with the cmdlet. The -full switch provides an exhaustive expla-
nation of the cmdlet.

Get-Help Stop-Service -full

You can use the -example, -detailed, and -full switches with virtually all the
cmdlets in PowerShell. This provides a consistent approach to how you can learn to

HELP YOURSELF WITH POWERSHELL 51

use PowerShell. However, depending the command, sometimes the results for the
-detailedand -example switches will be identical.

FIGURE 3.9 PowerShell examples

4 idows PowerShell I

s\Matt> Get-Help Stop—Service —examples

Stop—Service

SYNOPSIS
Stops one or more running services.

EXAMPLE 1

C:~PS>stop—service sysmonlog

:\PS>get—service —displayname telnet | stop—seruvice

a
<
command stops the Telnet service on the local computer. The command uses the Get—Service <1
epresenting the Telnet sevvice. The pipeline operator (i) pipes the object to the StopSer| 's
ops the service. =
v
=

2 =

s 3

EXAMPLE 3 z 4

S w

O -

C:NPS>get—service iisadmin ! format—list —property name. dependentservices
C:PS>stop—service iisadmin —force —confirm _

Description

N
=
>
)
-
m
=
w

PowerShell provides other ways to get even more information about how to run com-
mands. You can get help on a keyword that is used in the commands. For example,
you could use the following cmdlet to learn more about the service keyword:

Get-Help service

Although the results for this cmdlet may look the same as the Get -Command
*-service cmdlet you ran earlier, this cmdlet actually provides other areas that
you can investigate with the help system. Additionally, the help system lets you
query based on the topic you are interested in. Inside PowerShell are several help
files built into the PowerShell interface. These are traditional-style help files you can
quickly access. To get a full listing of the available topics, you can run this cmdlet:

Get-Help about

52

CHAPTER 3 -

POWERSHELL GRAMMAR LESSON

FIGURE 3.10

To explore one of the about topics, it is a matter of just asking PowerShell. For
example, what if you wanted to learn more about parameters and how they are used
in PowerShell? You would run this cmdlet:

Get-Help about_parameters

This last cmdlet offers a great example of working with the help system in
PowerShell. Normally when you start looking at the information contained in the
about help files, there will be several screens of information generated when you
access the file. This will require you to scroll back up through the window to see all
the information. Fortunately, the help system has an alternative to viewing multiple
pages. If you want to have a break at each page so you read the information before
you move to the next page, you use the help command instead of the Get-Help
command. When you use the help command, you have to press a key to move to
the next page of information. For example, notice the difference in the scrolling
behavior between the running the previous cmdlet for looking at parameters vs.
running the following cmdlet, which is shown in Figure 3.10:

Help about_parameters

Help about_parameters

& windows PowerShell I
PS C:S\Users“Matt> Help about_parameters
TOPIG

about_Parameters

SHORI DESCRIPTION
Describes how to work with cmdlet parameters in Windows PowerShell.

LONG DESCRIPTION
Most Windows PowerShell cmdlets and functions rely on ameters to allow
o select options or provide input. The paramete: 0llow the cndlet
ction name and typically have the following Form:

—{parameter_name> {parameter_value>

The name of the parameter is preceded by a hyphen (->, which signals to
Windows PowerShell that the word following the hyphen is a parameter and
not a value being passed to the cmdlet or function. Hot all parameters
require a value, and not all parameter names must be specified. In some
cases, the parameter name is implied and does not need to be included in
the command.

The type of parameters and the requirements for those parameters vary by
cndlet and by function from cmdlet to cmdlet. To find information about the
parameters of a cmdlet, use the Get-Help cmdlet. For example, to find
information about the parameters of the Get—Childltem cmdlet. type:

get—help get—childitem

To find information about the parameters of a function. review the
parameter definitions. Parameters are defined either after the function
name or ide the body of the nction, using the Param keyword. For more
information, see about_Functions.

Some functions also contain comment—based Help about parameters. Use the
Get—Help cmdlet with these functions. For more information. see the hel

HELP YOURSELF WITH POWERSHELL

FIGURE 3.11

You can also get help with various levels of detail about cmdlets and parameters you
are interested in. For example, if you run the following cmdlet, you will learn more
about the ComputerName parameter used in the Get-Service cmdlet, as shown
in Figure 3.11:

Get-Help Get-Service -Parameter ComputerName

ComputerName Parameter help

& windows PowerShell I

PS C:xUserssMatt> Get-Help Get—Service —Parameter ComputerMame

—ComputerMame <stringll>
Gets the services running on the specified computers. The default iz the local computer.

Type the NetBIOS name. an IP address. or a fully quali domain name of a remote computer. T|
omputer, type the computer name. a dot <.»>. or "localhost".

This parameter does not rely on Windows PowerShell remoting. You can use the ComputerMame paral
even if your computer is not configured to run remote commands.

Required? false
Position? named
Default value Localhost

Accept pipeline input? true {ByPropertyName)
Accept wildecard characters? false

PS C:sUsers-Matt>

Use Tab Autocomplete

PowerShell is spelling sensitive, and commands sometimes can have really long
names. Look at the noun ADDomainControllerPasswordReplicationPolicy.
Trust me: No one really wants to type in that name. So, what do you do? You cheat a
little, by using a great built-in tool.

The tool you can use to save you misspellings and cramped fingers is called tab
autocomplete. To use tab autocomplete, you just need to know a portion of the noun
you want to use in your cmdlet. Suppose you remember that a command started
with Get-Web but can’t remember which cmdlet you were working with. You could
start typing Get-Web and then use the Tab key to cycle through all commands that
start with Get-Web.

Another built-in tool that saves you typing and repeating previous commands is
a tool you may be familiar with if you have previously used DOS. You can use the
DOSKey behavior of recalling commands by pressing the up arrow to cycle you
through previous commands you have typed in.

53

PowerShell Grammar

N
=
>
)
-
m
=
w

54

CHAPTER 3

POWERSHELL GRAMMAR LESSON

Leverage Online Resources

The PowerShell community has built several great online resources for help. The
following are the online locations where I go when I am looking for assistance in
PowerShell:

Scripting with Windows PowerShell Chances are this site has a script for a task
similar to what you are trying to do, which makes it a great resource for you to put
your reverse-engineering skills to use. It also has sample scripts for the many dif-
ferent areas PowerShell can manage, including scripts for Exchange, SharePoint,
Windows, and many other areas in the script repository. Scripting with Windows
PowerShell takes the Get-Help -Examples cmdlet to the nextlevel. See http://
technet.microsoft.com/en-us/scriptcenter/powershell.aspx.

The PowerShell Guy What I like about this blog is that Marc (aka the
PowerShell guy) always seems to have great insights into PowerShell. See http://
thepowershellguy.com/blogs/posh/default.aspx.

PowerTab This is for the mini-developer in you. PowerTab takes the tab autocom-
plete feature to an entirely different level of usage. This gives even clearer insight
into PowerShell commands when you hit the Tab key to help create your scripts. See
http://powertab.codeplex.com.

Hey, Scripting Guy! Blog The Microsoft scripting guys have answered all sorts
of scripting questions for various scripting languages, including PowerShell. The
PowerShell answers range from how to build custom functions to how to work with
WMI and Active Directory. Developers and IT pros should be able to follow their
answers easily. See http://blogs. technet.com/b/heyscriptingguy.

PowerShellCommunity.org Is a solid community website where you can find
more examples and custom PowerShell tools that are built by the PowerShell com-
munity. They also have a fun feature called the random cmdlets, where they show a
random cmdlet with a definition.

See http://powershellcommunity.org.

Of course, you can always use a search engine to help find what you need.

USE EVEN MORE COMMANDS WITH MODULES 55

Use Even More Commands with Modules

This section gives you even more cmdlets to learn and use. By default when you
open your PowerShell window and run the Get-Command cmdlet, you see only
the commands available to you at the time. Typically these are the core functions
of PowerShell, and depending on your system or what roles are installed on
your Windows Server 2008 R2 server, you may have only a few cmdlets to take
advantage of.

The additional commands are stored in role-specific features called modules, and
almost every Windows Server 2008 R2 server role has a set of dedicated cmdlets

for that specific role. This section tells you how you can find out which modules are
available to you on your server, how to bring them into your PowerShell session, and
how to begin using them.

Use and Understand Modules

A module is an installable package for your system that contains several different

PowerShell Grammar

n
X
>
o
—
m
=
w

cmdlets, functions, aliases, and various other capabilities that extend PowerShell’s _
capabilities. Even though you can create your own custom modules (discussed in

Appendix E), typically from an IT administration standpoint PowerShell modules

are installed onto your server as you install roles or other pieces of software onto

your Windows Server 2008 R2 servers. You can think of modules as mini-toolboxes

providing you with specific tools to use PowerShell to administer roles on your

system.

As I've said, modules are specific to the installed role or software; in other
words, they are designed for that role. In the case of Microsoft Windows Server
2008 R2 server roles, the Microsoft product groups create modules specific to
roles you can install on the servers. In Windows Server 2008 R2 and PowerShell
2.0, this is relatively new. Although you could maintain and work with most
roles on a server, in PowerShell 1.0 it was not intuitive or easy. With PowerShell
2.0, these new modules, which make working with roles such as Active

CHAPTER 3 * POWERSHELL GRAMMAR LESSON

Directory easier, are typically installed onto your system when you install the
role on the server.

There are usually a couple of ways to access these modules. One common way is
to load the shortcut for the PowerShell module for the role you want to admin-
ister. These are PowerShell shortcuts and are typically stored in administrative
tools. In Figure 3.12, you can see the shortcut for the Active Directory module for

PowerShell.

FIGURE 3.12 Active Directory module for Windows PowerShell

&

=)

administrator

Documents

Computer

Network

B 5 o b B) e 41 (0 D B BRI L

Control Panel

Devices and Printers

Administra

Help and Support

Run...

BB B i B B 1 @

L

©

. Remote Desktop Services

Active Directory Administrative Center
Active Directory Domains and Trusts

Active Directory Sites and Services
Active Directory Users and Computers
ADSI Edit

Certification Authority

Component Services

Computer Management

Data Sources {ODBC)

DF5 Management

DirectAccess Management

DNS

Event Viewer

File Server Resource Manager
Group Policy Management
Internet Information Services (I15) Manager
iSCSI Initiator

Local Security Policy

Metwork Policy Server
Performance Monitor

Routing and Remote Access
Security Configuration Wizard
Server Manager

Services

Share and Storage Management
Storage Explorer

System Configuration

Task Scheduler

When you load these specialized shortcuts, you automatically load the module
for that specific role or software. So, you will have access to those specific cmd-
lets, but you will not have access to other modules, because they are not currently
loaded.

USE EVEN MORE COMMANDS WITH MODULES

If you want to launch PowerShell with all the available modules loaded for you so all
the cmdlets that you can use on your system are available and ready to be used, you

can load the Windows PowerShell modules shortcut, which you also will find in the

Administrative Tools group, as shown in Figure 3.13.

FIGURE 3.13 Windows PowerShell modules

Active Directory Users and Computers
ADSI Edit
L Certification Authority

*. Component Services

A4 Computer Management

V7]
. Internet Explorer 3 e 5 Data Sources (ODBC)
- = DFS Management
Internet Information Services (I15) E?_' X
_ Manager =5 DirectAccess Management
*
Oy administrator & DNS
Command Prompt @ Event Viewer
7 Remote Desktop Session Host Documents = File Server Resource Manager
Configuration _— _;g Group Policy Management
g . Computer Qj Internet Information Services ([15) Manager
/| Motey
‘*""J P &, isCSI Initiator
Metwork = X .
Local Security Poli
a, Windows PowerShell Modules » 2 ST
' @ Metwork Policy Server
Control Panel

() Performance Monitor

Devices and Printers = Routing and Remote Access
5!_:_.I Security Configuration Wizard

:"ﬁ‘ Group Policy Management

%—Sﬂ DirectAccess Management

_é Server Manager

E ;Ea:;;r[]emp comesten Help and Support e
'3z Share and Storage Management
% Remote Desktop Gateway Manager RuM... \# Storage Explorer
System Configuration
3 All Programs @ Task Scheduler
I Search programs and fles [QJ Log off ’l & W?ndows Firewall Ni.ﬂﬂ Adv?nced Security
@ Windows Memory Diagnostic

B windows ell Modules
w Windows Server Backup

Using this shortcut is a quick and easy way to have all your modules loaded when
you start a PowerShell session. It essentially loads all the available and installed
modules on your server with one click of a mouse button. Another way to load the
modules in one fell swoop is to load just the contents of the module for that specific
role or software.

You can learn more about the basics of modules by running this cmdlet:

Get-Help about_modules

57

PowerShell Grammar

n
X
=
o
—
m
=
w

58 CHAPTER 3 * POWERSHELL GRAMMAR LESSON

In the next section, you will see how to import and work with the modules on your
system.

Get to Know Your Modules

Picture this: you have opened your PowerShell session on a Windows Server 2008 R2
server you just inherited as part of your administrative workload, and you wonder
what is available to you to work with in PowerShell. You know you may have more
than what Get -Command shows you. So, how do you find out which modules are
loaded and which modules you can load? The answer to that starts with this cmdlet:

Get-Module

LOADING ALL MODULES INTO AN EXISTING POWERSHELL SESSION

You may already be in an existing PowerShell session and want to load all the installed
modules on your server at once. You can do that easily. In your running PowerShell
session, run the following built-in function, and it will load all the available modules
for you:

ImportSystemModules

When you run this command, you will see the modules loading in your PowerShell
session.

% Administrator: Windows PowerShell

Hindows PowerShell
opyright <C> 2BB? Microsoft Corporation. All rights reserved.

Importing modules ...
WebAdministration
[000

This loads the modules only temporarily, and when you exit the session, the modules
will not be automatically loaded for the next session.

USE EVEN MORE COMMANDS WITH MODULES

When you run Get -Module by itself, it displays all the modules currently loaded
into the PowerShell session. Your results will look something like Figure 3.14.

FIGURE 3.14 Get-Module

FIGURE 3.15

ndows PowerShell Modules

#s PowerShell
opyright (C> 280? Microsoft Corporation. All rights reserved.

PS C:sUWindows“system32> Get—Module
ModuleType Name ExportedCommands

ADRME {lin all-ADRME, Update—ADRMS. Install—-ADRMS}

AppLlocker {Get—fippLockerPolicy, Get—ApplockerFileInformation, Test...
{Get—BpaModel, Set—BpaResult, Inuoke—BpaModel, Get—EpaRe
{Start-BitsT er, Remove—BitsTransfer, Resume-BitsTwr

PEDiagnos -3 Enable-WSManTrace, Start-Trace, Disable.

ServerManager {Remove-WindowsFeature, Get—WindowsFeature, Add—-WindowsF...

TroubleshootingPack {Get—TroubleshootingPack. Invoke-TroubleshootingPack?

Webfdministration {Restart—UHebAppPool, Remove—WebhConfigurationLock. Add—VWe...

P8 C:sWindows“system32>

If you run the Get-Module cmdlet and you get blank results, that means you do
not have any modules currently loaded into your session. To see what modules
you have available to be loaded into your current PowerShell session, add the
-ListAvailable parameter to the Get-Module cmdlet. Figure 3.15 shows an
example of Get-Module -ListAvailable.

Get-Module -ListAvailable

idows Powershell

PS UserssMatt?> Get-Module —Listfvailable
ModuleType Hame ExportedCommands

ADRHS
AppLocker
BestPractices
BitsTransfer

P&Diagnostics
ServerManager
Troubleshoot ingPack
WebAdmin ration

PS C:\Users-Matt>

59

PowerShell Grammar

n
=
>
)
-
m
=
w

60

CHAPTER 3

POWERSHELL GRAMMAR LESSON

When you see the list of modules available to you after you run the Get-Module
-ListAvailable cmdlet, take note of the spelling and the names of the modules
you can import, because the names of the modules are not supported by tab auto-
complete. Knowing the names of the modules available gives you a sense of what
roles are installed on your system, as well as giving you enough information to load
those cmdlets for your use.

Once you know what module or modules you want to load and use in your
PowerShell session, use the Import-Module cmdlet to bring the new module and
cmdlets into your PowerShell session. For example, if you wanted to use the cmdlets
for the Windows Server 2008 R2 Best Practices Analyzer (BPA) system utility, run
this cmdlet:

Import-Module -Name BestPractices

If you want to see what new cmdlets are now available after that, run the following
cmdlet:

Get-Command -Module BestPractices

When you are done using the modules and you are finished with your PowerShell
session, close the PowerShell console. If you are not done with your PowerShell ses-
sion and just want to remove the module, you can use the Remove-Module cmdlet
to perform the reverse of the import command and remove PowerShell modules
from your current session.

Create a Custom PowerShell Shell

As you work with modules, you may come to a point where you want to have only
certain modules loaded or have PowerShell look and feel a certain way every time
you start a PowerShell session. You can accomplish this in two ways. The first way
to load only the module for your PowerShell shell is to create a shortcut that loads a
PowerShell session and add a command to the shortcut target that loads the module
you want to have automatically loaded. For example, to load the System modules,
use this shortcut target path:

%$SystemRoot%\system32\WindowsPowerShell\vl.0\powershell.exe
-NoExit -ImportSystemModules

USE EVEN MORE COMMANDS WITH MODULES

SECURITY ACCESS AND SCRIPTS EXECUTION |

Some modules may require you to run your PowerShell session as an administrator. If
that’s the case, follow these steps:

1. Right-click the PowerShell icon on your taskbar or in your Start menu.
2. Select Run As Administrator.
3. If you are prompted by User Account Control, click Yes to continue.

Some scripts and modules do not load into PowerShell by default; in these cases, you'll
receive an error saying the execution of scripts is disabled on the system. To get by this
error, you can run the following cmdlet from an administrative PowerShell session:

Set-ExecutionPolicy RemoteSigned

Chapter 5 explains more about the security protecting your PowerShell environment.

Although the first method is quick and dirty, it does not offer the greatest degree
of usability and flexibility. The second way uses a concept in PowerShell called a

profile.

Profiles offer a great deal of flexibility and customization to your PowerShell sessions.

You can think of a profile as a customizable startup script for PowerShell. A profile
can affect multiple users and multiple shells. Essentially the contents of all profiles
are the same. However, the name of the profile and location where the profile file
is stored and created determine the impact a profile you create has on your system.
There are only two filenames to use for profiles:

profile.psl This file affects all shells.

Microsoft.PowerShell profile.psl This file affects only the PowerShell
shell, the base command prompt.

Likewise, you can store the profiles in one of two locations:

%windir%\system32\WindowsPowerShell\v1l.0\ This location affects all
users.

61

PowerShell Grammar

n
X
=
o
—
m
=
w

62 CHAPTER 3 * POWERSHELL GRAMMAR LESSON

%UserProfile%\My Documents\WindowsPowerShell\ This location affects
only the current user.

Table 3.5 summarizes the four types of profiles you can have.

TABLE 3.5 PowerShell profiles

Scope of profile Profile filename m

All users and all shells profile.psl gwindir$\system32\
WindowsPowerShell\
v1.0\

All users, but only to the Microsoft Microsoft.PowerShell_ %windir%\system32\

.PowerShell shell profile.psl WindowsPowerShell\
v1.0\

Only current user and affects all shells profile.psl %UserProfile%\

My Documents\
WindowsPowerShell\

Only current user and the Microsoft.PowerShell %UserProfile%\

Microsoft.PowerShell shell profile.psl My Documents)\
WindowsPowerShell\

When you first start using PowerShell on your system, there are no profiles on the
system. First you need to create the profiles; then you will be able to edit them.
Creating profiles is a straightforward process, but you need to know the location
and filename that is currently configured on your system. To see what the current
profile path is on your system, you can use a default variable; to see the value, type
the following command in a PowerShell session:

Sprofile

This variable returns the current directory and current file location for your profile.
By default when you first load PowerShell, there is no profile created. You need to
create the file to store the commands for your profile. To create your profile, run this
cmdlet:

New-Item -Path $profile -ItemType File -force

After the command is run, you will see results similar to Figure 3.16.

USE EVEN MORE COMMANDS WITH MODULES

FIGURE 3.16

Creating a profile

2 Windows PowerShell E

PS C:sUsers“Matt> New—Item —Path Sprofile —ItemType file —Force

Directory: C:\lUsers Matt Documents WindowsPowerShell

LastlWriteline Length Hame

PS C:\Users~Matt>

The -force value on the end creates the necessary directories and files if they do
not currently exist. By default this creates a script file called Microsoft
.PowerShell_profile.psl in the $UserProfile%\My Documents\
WindowsPowersShell directory. So, this profile affects only the current user for the
current shell.

If you want to change the scope of the profile on your system, copy the file to one
of the two locations, and rename it to meet your needs. You could also include the
path and name of the file in the New-Item cmdlet to create the file in the location
you want to have. For example, this command would create a profile affecting only
the current user but for all the shells:

New-Item -path "S$Senv:UserProfile\My Documents 3
\WindowsPowerShell\profile.psl" -itemtype file -force

When you create the profile, it will be a blank profile. It is up to you to determine
what modules you want to put in the profile. You just need to edit the profile and
add the modules or commands you want to preload. You can use Notepad, or any
other favorite PowerShell editor you prefer, to edit the profile. You can either open
Notepad in your PowerShell session or open the file directly via Windows Explorer
and modify the file. In this example, you can see how to use PowerShell to begin
editing the profile. Run the following command:

notepad Sprofile

Once Notepad opens, you can put in the commands that you want to preload into
your PowerShell session. In this section, you saw how to use the Import-Module
command to bring modules into PowerShell. You can see an example of a profile in
Notepad in Figure 3.17.

63

PowerShell Grammar

n
X
>
o
—
m
=
w

64 CHAPTER 3 * POWERSHELL GRAMMAR LESSON

FIGURE 3.17 Sample profile

;‘ HMicrosoft.Powershell_profile.ps1 - Notepad IR o |EI|5|
File Edit Format View Help
Import-Module GroupPolicy =

Import-Module RemoteDesktopServices|

=

K| v

If you run the command and you see an error, like the one displayed in Figure 3.18,
then you need to make sure your file has been created and is in the proper location.

FIGURE 3.18 Notepad error

= -1of x|
File Edit Formabt View Help
x|

Cannot find the
' 4, C:\Users\Matt\Documents \WindowsPowerShell\Microsoft.PowerSh
— ell_profie.ps1 file.

Do you want to create a new file?

Mo Cancel |

=

] 4

What makes profiles so flexible is that you can put any PowerShell command in the
profile you want to preload into your environment, allowing PowerShell to open
with the location you set, or modules loaded, or anything else you would like to
specify about the default behavior of PowerShell. This allows you to have the values
you want to have every time you load PowerShell.

EXERCISE 3: CREATE A POWERSHELL PROFILE

In this exercise, you get to work with profiles, modules, and a basic command. Create a pro-
file that will load the Active Directory and 1IS modules automatically on your system. Then
run a command to verify the IIS and Active Directory modules have been properly loaded.

CHAPTER [,

Aliases, Functions, and
the Pipe, Oh My!

IN THIS CHAPTER, YOU WILL LEARN TO:

> Use Aliases

Use Built-in Aliases.

Create Your Own Aliases.vuiniiiii e

> Use Functions
Understand Functions
Use Existing Functions

Create Your Own Function.

> Work with the Pipe Operator

Use the Pipe Operator to Combine PowerShell Cmdlets

Control PowerShell Output

66
67
69

77
78
79
80

81

¥ 411dVH)

his chapter covers three important tools to add your own style to PowerShell:
aliases, functions, and the pipe (|) operator.

Aliases provide a way to shorten long cmdlets, saving you typing. More impor-
tantly, aliases allow you to use your former command prompt knowledge and put it
to use inside a PowerShell session.

Functions let you take PowerShell to an entirely new level. They extend the concept
of aliases and can take advantage of the power of the .NET Framework.

The pipe symbol allows you to tie multiple cmdlets together into one line of script.
You will learn the basics of using the pipe symbol and how combining cmdlets
with the pipe symbol lets you quickly control and format the output from your
PowerShell commands.

Use Aliases

Aliases are shortcuts that let you shorten commands in PowerShell. The following
command is an example of an alias:

dir
You are most likely thinking that this is the directory command from your com-
mand shell in Windows or from your DOS background. However, PowerShell does
not have a cmdlet called dir; it does have the alias dir, which accomplishes the

same task as a directory list. When you type the alias in PowerShell, you get a listing
of the directory, as shown in Figure 4.1.

If you come from a Unix or open source background, you may be familiar with the
1s command. Just as with dir, PowerShell does not have a native cmdlet for 1s, but
it has an alias for it.

There are two main reasons why PowerShell uses aliases. First, aliases allow you

to leverage existing command prompt knowledge. By providing aliases like dir
and 1s, PowerShell allows you to use commands you might already know and get
through some of the basics very quickly and easily. The dir and 1s aliases also
illustrate another important concept of aliases. A cmdlet can have more than one
alias associated with it. For example, the dir and 1s aliases are for the cmdlet
Get-ChildItem. Just for good measure, there is another alias for Get -
ChildItem, which is gci. This is not as common as dir and 1s, but all three
perform the same command. And if you wanted another alias for Get-ChildItem,
you could create one.

USE ALIASES

FIGURE 4.1

dir

& select Windows PowersShell

PS C:sUserssMattd> die

Directory: G:slUsers:Matt

9,18-26818
16-22/2018
2,28/2
9/18-2618
9/18.-2810
2,18./2818
9-/18-2818
9/18.-2810
11-8-2018
8262009
18-28-2818
2-18-2818
9/18-2818
2,10.-2818
8-,26.-2009
1i-25-26018
11,25-2818
11-8-26818
1@-22/2018
18,22.,2818
18-22,26018
18282810
18-,28.-2818
11-8-26818
18282810
18,22,2018
18-6/2
1862810

q

10-6-2818
168-22/26018
18-22-2810

18-6-2818
1i-25-26018
11,25/2818

Length Hame

Contacts
Desktop

Pictures
psinvaders
Roaming
samples
Saved Games
Searches
Uideos
WINDOUS
aliases.csu
i txt

Reguired.
rg.txt
satus . txt

GETTING HELP WITH ALIASES

In Chapter 3 you learned about the built-in help system. You can also use the Get-Help
cmdlet to find help about aliases. When you run Get-Help with an alias like dir or
1s, you get the help entry for Get -ChildItem. This is useful not only for determining
how the alias works but also for determining what cmdlet the alias is associated with.

Second, aliases allow for customization. You can create your own aliases to help
reduce the length of some existing cmdlets. In Chapter 3, you saw that there
is a potential for cmdlets to be quite long, such as any cmdlet using the noun
ADDomainControllerPasswordReplicationPolicy. It would be simpler if you
could shorten that to ADDCPRP, wouldn't it? You can use aliases to do just that.

Use Built-in Aliases

More than 130 aliases are built into PowerShell, ready for you to use. To get a list of

the aliases in your PowerShell session, run the following cmdlet:

Get-Alias

67

Aliases, Functions, and

the Pipe, Oh My!

CHAPTER 4

68 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

You will see results similar to Figure 4.2.

FIGURE 4.2 Get-Alias

& Windows PowerShell
PS C:\UserssMatt> Get-Alias

Name

ForEac *Oh‘]ect
Uhere—0Ohject
Add-Content
Add-PESnapln
Get—Gontent
Set-Location
Set-Location
Cleal —Content

ory
Item
temProperty

Cupy—Item
Copy-Item
Copy—Item
Cupy—ItemPPoperty
Gonvert—Path
Disabhle-P8Breakpoint
Remove-Item
Compare—0bject
Get—ChildItem
Enable—PSBreakpoint
Urite— Output

foreach For| Eac}l-Oh.]ect
£t Format-Tahle

fu Format—Wide

gal Get—-Alias

ghp Get-PSBreakpoint
gc Get—Content

Table 4.1 describes some of the built-in aliases and their corresponding cmdlets.

TABLE 4.1 Common aliases

s cnet—Jompron

cd Set-Location Changes the current directory for your PowerShell session.
chdir

sl

kill Stop-Process Stops a running process.

Spps

copy Copy-Item Allows you to copy files, subdirectories, and so on.

cp

cpi

gcm Get-Command Lists all the cmdlets currently available in the PowerShell session.
man Get-Help If you are from a Unix background, this is your version of help,

and in PowerShell you may be happy to see this alias.

USE ALIASES 69

The Get-Alias output shows not only a list of the currently loaded aliases but also
the corresponding cmdlets they are associated with. By the way, the alias for the
Get-Alias cmdletis gal.

If you used PowerShell 1.0, these aliases look the same, and in most cases, all the
aliases in PowerShell 1.0 have found a place in PowerShell 2.0.

Create Your Own Aliases

One of the great things about aliases is that you can create your own. The ability
to create your own aliases will allow you to have PowerShell work in a way you
are familiar with. By creating and using aliases, you can make your PowerShell
commands easier to read and use. The trick with creating your own aliases is

remembering they are there.

You can create aliases for a wide variety of purposes in PowerShell. You will most
likely create aliases for cmdlets. However, you can create aliases for functions,
scripts, files, executables, and other aspects in your environment that you may want

to use in a PowerShell session.

If you find yourself constantly repeating the same cmdlets, then those
commands are perfect candidates for aliases. If you find the need to reference the
same drive and directory for PowerShell output, these are also great candidates
for aliases. You need to discover the need for the aliases so you can effectively

leverage them.

Aliases, Functions, and

the Pipe, Oh My!

Creating aliases is a straightforward process. You can use either of two cmdlets to
. CHAPTER 4
actually create the alias:

New-Alias

Set-Alias

Although you can use both cmdlets to create aliases, there is one main difference
between the two. You can use the Set-Alias cmdlet to create an alias or change
an existing alias in your PowerShell session. This lets you change the value of an
alias. You can use the Set-Alias cmdlet only on aliases that are not read-only.

For example, if you wanted to change the si alias (which by default is an alias for
Set-Item)to Get-Command, you would see an error message similar to Figure 4.3,

because the s1 alias is a read-only alias.

70 CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.3 sSet-Aliaserror

FIGURE 4.4

indows PowerShell

Mindows PowerShell
Copyright <C> 288? Microsoft Corporation. All rights reserved.

PS8 C:sUsers\Matt> Set—Alias si Get—Command

PS C:xUserssMatt> _

The New-Alias cmdlet just creates a new alias. You should consider using this
cmdlet whenever creating a new alias so that you do not accidentally overwrite
an existing alias. However, the Set-Alias command provides a great resource
if you need to change one of the aliases you have made for the PowerShell
session.

Both cmdlets have the same two parameters: an alias name and the command
element for which you want to create the alias. For example, if you wanted to create
an alias for the Get -Random cmdlet, which gets a random number or a random item
from a list, you could use one of the following two commands:

New-Alias rand Get-Random

Set-Alias rand Get-Random

Both cmdlets create the alias rand for the PowerShell session. So when you type
rand in your PowerShell session, you actually call the Get -Random cmdlet.
Figure 4.4 shows an example of the rand alias.

rand alias

= windows PowerShell _|7| x
PS C:islserssMatt? rand

1273955838

PE CasUserssMatt>

Let’s take this example a bit further to illustrate the difference between New-Alias
and Set-Alias. Use the New-Alias in the following command:

New-Alias rand Get-Command

You will get the error message shown in Figure 4.5. The reason you get the error is
because you have already created the rand alias.

USE ALIASES

FIGURE 4.5

FIGURE 4.6

rand alias error

‘Windows PowerShell I

PS C:sUserssMatt> Mew-fAlias rand Get

PS C:sUserssMattl

Alternatively, use Set-Alias in the following command:

Set-Alias rand Get-command

You will not get an error message, and your screen may look like the screen in
Figure 4.6. As you can see, the Set-Alias cmdlet overwrote the existing alias for

the PowerShell session.

Set-Alias randoverwrite

& windows PowerShell

PS NUsersiMatt?> Set—Alias rand Get-Command
PS C:nUsers\Matt> rand

Hame

ac
Add-Computer
Add—Content
Add-History
Add—Member
Add-PESnapin

n
ItenFroperty
Clear—Variable
clhy
cli

compare

Compare—Ohbject

Complete-Transaction

Connect

GonvertFrom—Csu

ConvertFrom—SecureString
From—StringData

ConvertTo—SecureString
ConvertTo—X¥ml

So again, when creating aliases, you want to consider using New-Alias rather than
Set-Alias to avoid accidentally overwriting any existing aliases in your current

PowerShell session.

Definition

ForEach-Object

Yhere—0bject

Set—Location A:

fidd—Content

Add—Computer [-DomainMamel <String> .
Add—Content [-Pathl <Stringll> [-Ual.
Add-History [[-InputObject] <{PS0bjec.
Add—Menber [-MemberIypel {PSMemberTy.
Add-PESnapin [-Mamel <Stringll> [-Fa.
Add-Type [-TypeDefinitionl] <String> .
Add-PESnapln

Set—Location

Set—Location

Get—Content

Set—Location

Set-Location ..

Set—Location N\

Set—Location

Checkpoint—Computer [-Description] <.

Content [-Pathl <String[1> [-F.
EventLog [-LogNamel <Stringl[1>.
History [[-1d] <Int3201>1 [[-C.

Sspace = Mew—Ohject System.Managemen.
Item [-Pathl <S8tringll> [-Forc.
ItenFroperty [-Pathl <{Stringll.
Variable [-Namel <Stringll1> [—
History

Compare—Ohject

Compare—Ohbject [-ReferenceObject] <{P.
Complete-Transaction [-Uerhosel [-De
Connect—WSMan [[-ComputerNamel (St
ConvertFrom—Csv [-InputObjectl {PSOb
ConvertFrom—SecureString [-SecureSte.
ConvertFrom—StringData [-StringDatal.
Convert—Path [-Pathl <{String[1> [-Ue.
ConvertTo—Csv [-InputObject] <PSObje.
ConvertTo-Html [L opertyl <Objectl.
ConvertTo—SecureString [-Stringl <{5t.
ConvertTo—¥ml [—InputObhject] <{PSO0hje.

71

Aliases, Functions, and
1

the Pipe, Oh My

(o)
X
>
]
—
m
=
£

72

CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

Make Aliases Permanent

FIGURE 4.7

When you create aliases, they are used only for the current session. It does not mat-
ter whether you use Set-Alias or New-Alias; the aliases you create with those
two cmdlets are for the existing PowerShell session. If you close your PowerShell
session and later try to run aliases you created in it, then you will most likely see
what’s shown in Figure 4.7.

Aliases not loaded

/& Windows PowerShell

Mindows PowerShell
Copyright <C> 288? Microsoft Corporation. All rights reserved.

PS8 C:N\UsersS\Matt> rand

PE C:xUserssMatt> _

This is a standard error message (you may see it even when you misspell com-
mands), but in this example, it means the rand alias does not exist.

In this section, you will learn how to keep from having to rebuild your aliases.
There are a couple of ways to be able to take your aliases with you, in other words,
make them permanent.

One method allows you to export your aliases to a text file and then reimport them
into an existing PowerShell session. The export/import method allows your aliases
to travel with you. You can place the exported text file on a USB stick or remov-
able drive. You can even email it to yourself. To export your aliases in your current
PowerShell session, run the following command:

Export-alias -path aliases.csv

This command exports your existing aliases into the file called aliases.csvin
the current directory. You can use your own filename and put the file in whatever
directory you want. You should always export the aliases to . csv so you can read
and import them easily into a spreadsheet program such as Microsoft Excel. If you
export them to a . txt file, you may not be able to easily read the results. Figure 4.8
shows aliases in a . txt file.

USE ALIASES 73

WORKING WITH FILE EXTENSIONS

When you export the aliases using extensions, you can easily work in other programs
such as Notepad or Excel. The extensions are not needed if you need to reimport the
files into a PowerShell session.

FIGURE 4.8 Lookingataliasesin Notepad

] aliases.txt - Notepad — =] x|
File Edit Format View Help
Alias File -

Exported by : Matt
Dpate/Time : Tuesday, october [5, 2010 8:01:26 AM
Machine : MT400

", "add-content”
f "Add-| PssnapIn
"Clear-Conte
"Clear-Item
dp ,"Clear- ItemProperty

Readonly, allscope”
"Readonly, AllScope”
"Readonly, A'I'\Scope
Readon'\ ¥ Allscope’
‘Readonly, all Scope"

nt

Nl C'Iearfvar'lab'le ', Readun'\y, A 'ISCDHJ
compare . compare Ob‘]'ect ", "Readonly, Allscope” =
repi’ Copy—Item Readon'ly, Allscope”
"cpp", "Copy- Ttemproj erty" "","Readonly, Allscope”
cvpa ‘Convert-Pat ‘Readonly, Allscope
g msab'le psereak mnt Readonw A'I'Iscope”
7, comgare object”,”"," ReadOnTy Allsc |]J "
"ebp‘ 5 Enable- PSBreakpo‘lnt ‘Readonly, Allscope”

"epal”,"Export-alias
"epcsy”, "Export-Cs

Readun'ly A'Hscope
Readonly, allscope”

"fc”, Format—(usto "Readonly, Allscope™
"1, Format List", Readom , Allscope
"foreach”, "ForEach-object”, ‘Readonly, Allscope”
B FOrEaCh obgect . Readun'ly, Allscope”

"ft","Format-Table’ a "readonly, Aﬂscope 'g

"fu", "Format-wide", "rReadonly, ATIscope <

ga'l","Get -alias","" "Readon'ly, Allscope” “

"ghp”,"Get- PSEreakpmn‘t ‘Readonly, Allscope” g =
"gc,"eet-—content”,"",’ Readon?y, Allscope” = =
gc‘l "Get-childItem”,"", "Readonly, AllScope” g =
"gem”, "Get-command”, Readon‘ly A'I'Iscope S5 ©
gdr" "Ger-PsDrive"”, L ”Readon'ly A'I'Iscoﬁn - g
"ges", "Get- pscallstack” 'Readonly, scope” g 2
"g ',"Get—mstor *Rreadonl ; Allscope™ -
"gi Get-Item”," ad0n1y, A 1Scol?e S o
"g'\ Get-Location’ , 'Readonly, Al Scope" ==

n
I
>
]
-
m
=
Y

gm . Get—Member" ! Readon'l , Allscope”
"gmo”,"Get-Module”,"”, "Readonly, A'\'Iscollae" _
"gp", et~ ItemProperty Y, "Readonly, allscope”

i ' ol

If you want to read the file, open it in Excel or another spreadsheet program. To do
that, complete the following steps:

1. Open Microsoft Excel, and browse to the directory where the alias file is
stored. Make sure you are browsing for all files. Select the file you want to
open, and click Open.

2. You may see a screen similar to Figure 4.9. This is the Text Import Wizard in
Microsoft Excel 2007.

74 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.9 TextImportWizard

3. Click Next.

4. Select Comma as the delimiter, as shown in Figure 4.10, and then click Next.

FIGURE 4.10 Commadelimiter

USE ALIASES

FIGURE 4.11

5. Click Finish to view your file, as shown in Figure 4.11.

Aliases file in Excel

‘/E“:! -~ s aliases.csv - Microsoft Excel ==
- Home Insert Page Layout Formulas Data Review View Add-Ins '@ - 3 X
== ¥ | |calibri -1 - | S | |General - | (B Conditional Formatting = S=lnsert~ || X ~ ﬁ- lﬁ
’j Ea (/[rim = A a7 B4~ |||$ ~ % o || [Erormatas Table ~ % Delete ~ || [§]~ -
Fazie 7[5 - A~ - (48 8 (5] cell styles ~ B Format - || 2~ ;thraf ;T:ctsi

Clipbo.., M= Font IF} Alignment Fi Mumber s Styles Cells Editing

E7 v (o | ¥
A B c | o e | F | &6 [u | 1 J K L o

1 #AliasFile %

2 |#Exported by : Matt

3 #Date/Tir 5-Oct 2010 8:00:57 AM

4 #Machine : MT400

5 jac Add-Content ReadOnly, AllScope

6 |asnp Add-PSSnapln ReadOnly, AllScope

7 |clc Clear-Content ReadOnIylAllScoEe!

8 |cli Clear-ltem ReadOnly, AllScope

9 |clp Clear-ltemProperty ReadOnly, AllScope

10 [clv Clear-Variable ReadOnly, AllScope

11 lcompare Compare-Object ReadOnly, Allscope

12 |cpi Copy-ltem ReadOnly, AllScope

13 [cpp Copy-ltemProperty ReadOnly, AllScope

14 \cvpa Convert-Path ReadOnly, AllScope

15 |dbp Disable-PSBreakpoir ReadOnly, Allscope

16 diff Compare-Object ReadOnly, AllScope

,I::z,'i;h,;‘,‘ alm;wl.&b{;nmqbn";n Doadrinhe AlICconn]. = 0

Ready |

As you can see, the alias file is easier to read in Microsoft Excel. Although you
normally would not do this, it sometimes helps to look at the file structure so that
you can make changes or additions to this file to control what aliases you import

into your PowerShell session.

When you want to import the files into your PowerShell session, run the following

command:

Import-Alias -path aliases.csv

The first time you run this file, you may see a screen similar to Figure 4.12.

Although you may be inclined to panic with all the error messages on your screen,
there is no need to do so. The repeated error messages show that you tried to import
aliases overtop existing aliases in your current PowerShell session. There are a
couple of ways to handle the error messages. The first way is to ignore the message

75

Aliases, Functions, and

the Pipe, Oh My

n
I
>
]
-
m
=
Y

76

CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.12

and just go on with your PowerShell work. The other way is to delete all the built-in
PowerShell aliases in the exported file, leaving only your custom aliases.

Importing existing aliases

& Windows PowerShell

P8 C:osUsersSMatt> Import—Alias aliases.cswv

How do you know which ones are which? Your custom aliases will be at the bottom
of the exported file and will by default have a scope of None. You can see custom
aliases highlighted in Figure 4.13.

After you have identified your custom aliases, delete all the rows above them, save
the file, and then import them into your PowerShell session without getting all the
error messages.

The second, preferred method to make your aliases permanent is to modify the
profile for your local system. By modifying the profile with your aliases you will
be assured they are at your fingertips every time you start a PowerShell session
on the system you created the custom profile on. The advantage to the export/
import method discussed earlier is that the file you create is more portable.
Having a simple . csv or . txt file on a portable drive, or even emailed to your-
self, makes your custom aliases easily transferable to other PowerShell systems.

USE FUNCTIONS 77

FIGURE 4.13 Custom aliases

‘Ez; H = 1 = aliases.csv - Microsoft Excel -BX
S Home Insert Page Layout Formulas Data Review View Add-Ins ® - = x
=51 X ||| catibr ~h ~||S = General 84 ?ﬂ Conditional Formatting ~ 5= Insert ~ * e A?- [ﬁ
j Ee) |B I u-|A A'l E= i | Sl oo | {3z Format as Table - % Delete ~ E 7
= s Sort & Find &
|| Gr- A~ [:“'Q’_'_l TR (S ceil styles [E Format * | 2~ Fiiter~ select~
Font (] Alignment] Number = Styles Cells Edifing
~(fi | #Aalias File v
A | B c D E | F 6 | H
128 clhy Clear-History ReadOnly, AllScope
129 gjb Get-Job Allscope
130 rcjb Receive-Job AllScope
131 rjb Remove-Job AllScope
132 sajb Start-Job Allscope
133 spjb Stop-Job AllScope
134 wjb Wait-Job Allscope
135 nsn MNew-PSSession AllScope
136/gsn Get-PSSession AllScope
137|rsn Remove-PSSession AllScope
138 ipsn Import-PSSession AllScope
139 epsn Export-PSSession AllScope
140 etsn Enter-PSSession AllScope
141 exsn Exit-P5Session Allscope
142| res Restart-Service None
143|rand Get-Random None
i aliases. 470 =\ [T
Ready

Custom aliases

In Chapter 3, you learned how to modify the profile for a PowerShell session.
Once you have opened and modified the profile, then it is just a matter of includ-
ing the appropriate New-Alias or Set-Alias commands to have the aliases you

Aliases, Functions, and

the Pipe, Oh My

need at your fingertips.

n
I
>
]
-
m
=
Y

Use Functions

Another powerful aspect to working with PowerShell is the ability to work with
functions. Functions go hand in hand with aliases in certain aspects but also offer
a lot of additional power. The additional power behind functions is their ability to
accept and pass parameters.

In this section, you will see some of the basics of functions. You will get a brief
introduction to the built-in functions and an overview of how to create customized
functions to perform tasks in PowerShell.

78

CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

Understand Functions

FIGURE 4.14

Functions provide another way to save time in the PowerShell environment.
Functions extend the power of aliases by being able to accept parameters or other
blocks of PowerShell script into a single command. You can then pass parameters into
the command that allow you to have the functions not only perform scripting but also
perform PowerShell scripting within the context you set by using the parameters.

One of the limitations of aliases is that you cannot create an alias with any param-
eters in it. For example, if you ran the following command:

New-Alias setd Set-Location D:

you would receive an error message, similar to Figure 4.14.

Alias with parameters error

& windows Powershell b

PS8 C:\Users\Matt> New—flias setd Set—location D:

PS G:xUserssMatt> _

As you can see, aliases cannot be created with additional parameters. In other
words, aliases are a great way to shorten base PowerShell cmdlets, but functions
allow you to not only shorten up cmdlets but also include any parameters or
additional properties you want to set as part of your PowerShell commands.

PowerShell has several built-in functions. In fact, you probably have used a PowerShell
function and did not even know it. Here is an example of a built-in PowerShell function:

D:

Again, you are probably thinking you have to run that command or a variation of
that command (C:, E:, or even Z:) to change your drive letter to whatever drive
you specified before the colon. The actual cmdlet that is performed when you run
the command is this one:

Set-Location D:

USE FUNCTIONS

So, like aliases, functions provide another built-in tool, allowing you to leverage
your existing command prompt knowledge.

Use Existing Functions

FIGURE 4.15

To list all the default functions in your PowerShell session, you can run the
following command:

Get-ChildItem -path function:

You will see a screen similar to Figure 4.15.

Listing of functions

| ndows PowerShell

:sUseprsiMatt? Get—ChildItem —path Function:

Hame Definition

Set—anatlnn n:
Set—Location B:
2 Set-Location C:
cittais Set—Location ..
cds Set-Location
Clear—Host Sspace = Neu—OhJect System.Managemen.

Function D: Set—Location

Function Disable—P8Remot ing

Function E: Set-Location

Function EF: Set-Location

Function G: Set-Location

Function Get—Uel‘h

Function

Function }1911: &

Function Set-Location

Function Impu} t8ystenmModules i

Function J: Set—-Location

Function K: Set—Location

Function Lz Set-Location

Function M: Set-Location

Function

Function pa} an{[stringlllSpaths>__.

Function N: Set-Location N:

Function : Set—Location 0:

Function Set-Location P:

Function 5¢if (test— path variable : /PSDebugCon.
Function Set-Location
Function Set—Location
Function Set—Location
Function Set-Location
Function
Function
Function
Function
Function
Function
Function

abExpans ion .
Set-Location
Set—Location
Set—Location
Set-Location
Set-Location
Set-Location

N-cxsc:—nqm::hc
NEXZSS oo

A lot of the functions listed in Figure 4.15 should look familiar if you have used a
command prompt environment. You may also notice some other functions that you
have not seen in the list before. Functions, like aliases, provide a transition point
into PowerShell. Table 4.2 explains a few built-in functions.

79

Aliases, Functions, and
1

the Pipe, Oh My

(o)
X
>
]
—
m
=
£

80

CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

TABLE 4.2

Built-in functions

Funcion—pmcipuon

Get-Verb Allows you to find all the verbs in your PowerShell session, which is useful when
you are trying to find all the cmdlets available with a particular verb.

TabExpansion Provides the ability for tab autocomplete to work in your PowerShell sessions. This
function has also been greatly improved to help not only with cmdlets but also with
file and directory locations, among other capabilities.

Clear-Host A fancy way to run CLS — and another example of being able to carry over previ-
ous knowledge from the command prompt. Additionally, CLsS is an alias for this
function.

As you can see, functions assist in the everyday usage of PowerShell.

Create Your Own Function

Functions are easy to create. They have three basic components:

» Function: This is the marker for the beginning of a function definition; it
can also be used to modify existing functions or rename functions.

» Function name: This is the name of the function you are creating.

» Script block: This is where you put all of your cmdlets and PowerShell script
with parameters; in other words, it’s where you do all the work and logic of
the function.

So, the basic syntax for creating a function is as follows:
Function (function name) {Script block}

In the following example, you will create a function that will show you all the
existing functions on your system. This example will give you a quick peek into
how functions operate.

Function Get-Function { Get-ChildItem -path function: }
As you can see, this function calls the command you saw earlier in this chapter.
One last note on functions: like aliases, functions are not permanent. If you want a
function to be permanent, you have to edit the profile for PowerShell. In Chapter 3,
you learned how to modify the profile for a PowerShell session. Just like other

commands you included in the profile, you can put your custom functions in the
profile as well, like so:

Function Get-Function { Get-ChildItem -path function: }

WORK WITH THE PIPE OPERATOR 81

In this section, you just scratched the surface of working with functions in
PowerShell. For more information and to see some of the power behind functions,

refer to Appendix D.

Work with the Pipe Operator

Up until this point, you have been using simple commands to get information out
of PowerShell. In this section, you will learn how to tie cmdlets together by using
the pipe (|) operator.

By using the pipe operator, you can string multiple commands together into
one line of PowerShell script. This not only lets you make your PowerShell
scripts simple to write but more importantly makes it easy to have consistent

commands.

Some of the things you can do with the pipe operator include recovering users from
Active Directory, finding all the services that are currently running, or sorting your
output list from a PowerShell command.

Use the Pipe Operator to Combine PowerShell Cmdlets

Piping commands together is called pipelining. Pipelining allows you to take the
output from one command and pass it to the next command, essentially becom-
ing input for the next command. This is also very similar to using | more, which
you may have used at the command prompt; like the pipe at the command prompt,
| more will help avoid scrolling through output from a PowerShell command. For [CHAPTER4
example, the following command lets you show the services on your system sorted

by their status, including the name of the service, any required services, and the

Aliases, Functions, and

the Pipe, Oh My!

(o)
X
>
]
—
m
=
£

status of the service:

Get-Service | Sort-Object -property status |

Format-Table -property name, requiredservices, status

Notice the object-based nature of the language, which allows you to work with
any of the parameters from a particular object. This allows parameter binding,
which is key to working with the pipe operator. Little scripting effort is required
when you tie commands together. The pipe routes information automatically and
correctly into the right parameters, offering a consistent experience with little

work on your part.

82 CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

Control PowerShell Qutput

FIGURE 4.16

Commands that are used with the pipe operator typically fall in one of the follow-
ing categories:

» Formatting — making the output look the way you want to see the information

v

Sorting — organizing your data further
» Redirecting output to a file or other output mechanism
» Filtering using the Where-Object cmdlet

Let’s take a look at another example using Get-Service:
Get-Service | Format-List

The Format-List cmdlet is piped the output from the Get-Service cmdlet. This
causes the output to be formatted in a list. You can see an example of this output in
Figure 4.16. As a comparison, if you run just the Get-Service cmdlet, the output
may look like Figure 4.17.

Get-Service | Format-List

B windows PowerShell E

PS8 C:xlsers~Matt> Get—Service | Format-List

: AeLookupSvc

: Application Experience

: Running
DependentServices O
ServicesDependedOn :@ {¥
GanPausefAndGontinue : False

: False

: True
: Win3d28hareProcess

: ALG
: Application Laver Gateway Service

: Win320unProcess

: AppHostSuc
: Application Host Helper Service
: Running
= {3
= {3
: True
CanShutdown : True
CanStop : True
ServiceType : Win328hareProcess

= ApplDSvc
: Application Identity
: Stopped

ServicesDependedOn : {CryptSuvc. RpeSs, ApplD>
CanPauseAndContinue : False

CanShutdoun : False

CanStop : False

Servicel : Win32ShareProcess

WORK WITH THE PIPE OPERATOR

FIGURE 4.17

Get-Service

AeLookupSvc
ALG

AppHostSuc
AppIDSve
Appinfo
AppMgmt
aspnet_state

Ati External Ev...

ATTRcAppSvc

AudioEndpointBu. ..

AudioSru

BITS
Brouser

Application Experience
Application Layer Gateway Service
Application Host Helper Service
Application Identity

Application Information
Application Management

ASP.NET State Service

Ati External Event Utility

AT&T RcAppSvc

Windows Audio Endpoint Builder
Windows Audio

Base Filtering Engine

Background Intelligent Transfer Ser...
Computer Brouwser

CAATT AT&T Con App Svc
CertPropSuc Certificate Propagation
clr_optinizatio Microsoft .MET Framework NGEN
clr_optimizatio Microsoft .MET Framework NGEN
clr_optimizatio... Microsoft .NET Framework NGEN
cly_optinizatio... Microsoft _MET Framework HGEN
COMS ysApp GOM+ System Application
CryptSuc Cryptographic Services
CscBervice Offline Files
DcomLaunch DGOM Server Process Launcher
defragsvc Disk Defragmenter
Dhcp DHCP Client
Dnscache DHE Client
Wired AutoConfig
Diagnostic Policy Service
Extensible Authentication Protocol
Encrypting File System (EFS)>
eventlog Windows Event Log
EventSystem GCOM+ Event System
Intelr PROSe ireless Event Log

i1
Microsoft Fibre Channel Platform Re...
Function I overy Provider Host
Function Discovery Resource Publica...
Windows Font Gache Service

There are also other format cmdlets to format the output in tables and grids. The
sorting cmdlet works like the format cmdlets in that its input is piped in from a
separate cmdlet. Take a look at Figure 4.18.

Get-Process | Sort-Object -Property handles
The Sort-Object cmdlet takes a property parameter specifying the property to

sort on—handles, in this case.

Another set of utility cmdlets are those that deal with output redirection. The fol-
lowing example redirects the output of Get-Service to a file rather than writing
out the services list to the PowerShell environment. Figure 4.19 shows the resulting
services. txt file.

Get-Service | Out-File -FilePath C:\temp\services.txt

The FilePath parameter of the Out-File cmdlet specifies the file path where you
want the output to be saved.

83

Aliases, Functions, and

the Pipe, Oh My!

(o)
X
>
]
—
m
=
£

84 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.18 Sort-Object

ndows PowerShell

PS C:zwUsers“\Matt> Get—Process | Sort—Ohject —Property handles
NPMCK> PHCK> WS CK> UMCH> CPU<s > ProcessName

Idle
conhost
smss
conhost
suchost
WLIDSUCH
TscHelp
SnagPriv
wam
wininit
sqluriter
taskeng
Of ficeLiveSignIn
RegSruc
suchost
winlogon
suchost
suchost
WmiPruSE
Realmon
suchost
taskhost
suchost
msdtc
AtiZevxx
svchost
InoRpc

4 spluowbd
InoTask
InoRT
AtiZeuxx
suchost
1sm
suchost
suchost
EutEng
suchost
suchost

-

-

a
4
2
6
4
5
6
8
?
16
?
8
8
8
a
?
8
a
?

D0 1 e D e b e b DD DNk e e b
S 19 50 T ()] 00 (50 6 11 60 %0 00 =4 L2 1

FIGURE 4.19 oOut-File

SEIEY

File Edit Format View Help

|»

\
Status Name DisplayName

Running AeLookupSvc application Experience

Stopped ALG Application Layer Gateway Service
Running AppHOSTSVC Application Host Helper Service
Stopped AppIDSvC Application Identity

running appinfo application Information

Stopped AppMgmt application Management

Stopped aspnet_state ASP.NET State Service L
Running Ati External Ev... Ati External Event utility

stopped ATTRCAPPSVC AT&T RCAppSVC

running audioeEndpointiu... windows audio Endpoint Builder

Running Audiosrv windows Audio

Running BFE Base Filtering Engine

Running BITS packground Intelligent Transfer ser...
stopped Browser Computer Browser

stopped CAATT AT&T COn App SvC

Running CertPropsvc certificate propagation

stopped clr_optimizatio... Microsoft .NET Framework NGEN

stopped clr_optimizatio... microsoft .NET Framework NGEN
stopped clr_optimizatio... Microsoft .NET Framework NGEN

stopped clr_optimizatio... microsoft .NET Framework NGEN
stopped COMSYsSApp CoM+ System application

Running Cryptsvc cr H:tograph'ic Services

stopped Cscservice offline Files

Running DcomLaunch DCOM Server Process Launcher
Stopped defragsve Disk Defragmenter

running Dhcp DHCP Client

Running Dnscache DNS Client

stopped dot3svc wired Autoconfig

Running DPS Diagnostic Policy Service
Running EapHost Extensible Authentication Protocol
Running EFS Encrypting File system (EFS)
Running eventlog wWindows Event Log

RUNNTNG EVEnTSySTem COM+ EVENT SysTem

Running EVLENg Intel® PROSet/Wireless Event Log

Stoppe FCReg5vec Microsoft Fibre Channel Platform Re... _|;|
¥

4]

WORK WITH THE PIPE OPERATOR

FINDING CMDLETS FOR YOUR VERBS WITH THE POWER OF THE PIPE

When working with Get -Command, you may get a long list of results. However, suppose
you want to narrow the commands to a subset of a particular verb. In this case, you
could use the pipe operator with the Get-Verb function and Get -Command to list all
the commands for a particular verb.

For example, if you just want to find all the commands that go with the Format verb,
you would run this command:

Get-Verb Format | Get-Command

The Get-Verb function lets you find any commands if you know the verb you are

looking for, and you pipe it into the Get -Command cmdlet.

Windows PowerShell

PS SUsersi\Matt> Get—Uerh Get | Get—Command

CommandT ype Name
Get—Acl
Get—Alias

Get—AuthenticodeSignature

Get—ChildIltem
Get—Command

Get—ComputerRestorePoint

Get—Content
Get—Counter
Get—Credential
Get—Culture
Get—Date

Get—Event
Get—EventLog
Get—FEventSuhscriber
Get—ExecutionPolicy
Get—FormatData

m
Get—1 temPrupe}-ty
Get—Joh

Get—Location
Get—Member
Get—Hodule
Get—PfxCertificate
Get—Process
Get—PSBreakpoint
Get—PSCallStack
Get—PSDrive
Get—PSProvider
Get—PSSession

Get—PS88SessionConfiguration

Get—PSSnapin
Get—Randon
Get—Service
Get-TraceSource
Get—Transaction

Definition

Get—Acl [[-Pathl <{8tring[1>] [-Audit...

Get—-Alias [[-Namel <{Stringl1>]1 [-Exc
Get-AuthenticodeSignature [-FilePath
Get—ChildItem L[[-Pathl {Stringl[1>]1 [
Get—Command [[-ArgumentList] <Obhject
Get—ComputerRestorePoint [[-RestoreP
Get—Content [-Pathl <{Stringll> [-Rea
Get—Counter [[-Counter] <Stringll1>1
Get dential [-Credentiall <PSCred
Get lture [-Uerbosel [-Debugl [-Er
Get-Date [[-Datel <DateTime>1 [-Year
Get—-Event [[-Sourceldentifier] (Str
Get—EventLog [-LogMamel <{String> L[[-
Get-EventSubscriber [[-Sourceldentif
Get-ExecutionPolicy [[-Scopel <Execu
Get—FormatData [[-TypeNamel <{Stringl
Get-Help [[-Mamel <String>]1 [-Path
Get—History [[-Id] (Int64[]>] [[-Cou
Get—Host [—Verhosel ehug 1 [—El‘l‘ul‘
1 ing[1>1 Comnp
Get-Item [-Pathl (Strlng[]) =] Fllter
Get—ItemProperty [-Pathl <{Stringll1>
Get—Joh [[-Id]1 <Int32[1>1 [-Uerbosel
Get-Location [-PSProvid (Strlng[])
Get-Member [[-Namel {St [1>]1 [-In
Get-Module [[-Namel <Stringl[1>1 [-Al
Get—PfxCertificate [F1lePath] {Str
Get—Process [[-Namel ing[1>1 [-C
Get-PSBreakpoint [[—St:l-lpt] (Stl-lng[
Get-PSCallStack [-Uerbosel [-Debugl
Get—PSDrive [[-Namel <String[l1>]1 [-8
Get-PSProvider [[-PSProvider] <S8trin
Get-PSSession [[-ComputerNamel <Str
Get—P88essionConfiguration [[-Namel
Get-PSSnapin [[-Namel <Stringl1>1 [-
Get—Random [[-Maximum]l <{Ohject>] [-S
Get—Service [[-Namel <{String[1>1 [-C
Get-TraceSource [[-Mamel {String[1>]
Get—Transaction [—Uerbosel [-Debugl

Format PowerShell Output

Table 4.3 describes the four main cmdlets you can use to help format data in your
PowerShell commands.

85

Aliases, Functions, and

the Pipe, Oh My!

CHAPTER 4

86 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

TABLE 4.3 Format cmdlets

T

Format-List Lets you control what properties are displayed in a list view when you run

PowerShell cmdlets.

Format-Wide Creates a wide table in the form of columns; displays one property for the objects
returned in your cmdlet. This is similar to the command prompt command dir /w.

Format-Table Outputsdatainto a table format, typically the default view for outputting data.

Format-Custom Allows you to leverage custom views defined by XML. There is a lot of customiza-
tion to be done in creating your own view. In Appendix D, you will see a little bit

more on how to create a custom view.

Let’s take a look at the format cmdlets in action. To be effective with the format cmd-
lets, you need to know the property names for the particular object you are working
with. You may recall the Get -Member cmdlet mentioned in Table 3.3 in Chapter 3.
When you run Get-Member for a particular cmdlet, it displays not only program-
matic methods for the cmdlet but the properties as well. When you are looking for
properties to use in formatting your output, you can see them in the results of Get -

Member. Figure 4.20 shows the properties for the Get-Service cmdlet.

FIGURE 4.20 Get-Service|Get-Member

Alias
properties

indows PowerShell i

PS G:isUserssMatt> Get-Service | Get—Member

TypeName: System.ServiceProcess.ServiceController

AliasProperty
AliasProperty
Euent
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
HaitForStatus Method
CanPausefAndContinue Property
CanShutdown Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

PS C:NUserssMatt>

Hame ServiceName
RequiredServices = ServicesDependedOn

System.EventHandler Disposed{System.Object, System.Ev..

Bystem.Uoid Cloze (D
System.Void Continue()
System.Runtime. Remntlng ObjRef CreateObjRef<{type requ..
System.Uoid Di el)
hnol Equalo(Syotem Object ohj>

id ExecuteCommand{int command>

hCode <>

- ect GetLifetimeService()

type GetTypel(>
System.0bject InitializeLifetimeServiced{>
System.Void Pause (D>
System.Uoid Refresh{d
System.Uoid Start(d, System.Void Startdstringl]l avgsd
System.Uoid Stop(>
string ToString{)

System.Void WaitForStatus(Bysten.ServiceProcess.Servi..

System.Boolean CanPausefndContinue {get;
System.Boolean CanShutdown {get:X

System.Boolean CanStop {get;Z>
System.ComponentModel.IContainer Container {get:;}

Bystem.ServiceProcess _ServiceControllerl] DependentSe. .

System.String DisplayMame {get;sets>
Sty ng MachineMame {geti;set;}

i SafeHandle ServiceHand..

ng ServiceMame {get;set;

UlCePlﬂC 55 .ServiceController[] ServicesDep...

vicelype ServiceType {get;}
= IS8ite Site {get;set;?
System.ServiceProc erviceControllerStatus Status ..

\

Properties

WORK WITH THE PIPE OPERATOR

FIGURE 4.21

After you know what properties to use, it is just a matter of plugging the correct
names into the -property parameter of the Format-List cmdlet. You can also
have alias properties. For the Get-Service cmdlet, there are two alias proper-
ties, name and requiredservices, which can be used for ServiceName and
ServiceDependsOn, respectively. When you use multiple property names, sep-
arate them with a comma. For example, if you wanted all the required services
for each service on your machine, you would run this command (Figure 4.21
shows the output):

Get-Service | Format-List €

-property displayname, requiredservices

Format-List with properties

L idows PowerShell I

PS C:s\Users-Matt> Get—Serwvice | Format—. —property displayname, regquiredservices

DisplayName : Application Experience
RequiredServices = £

DisplayMame

DizplayName

DizplayName

RequiredServices =

DisplayName

DisplayName

DisplayName

DisplayMame

DisplayMame

DisplayName

RequiredServices :

DisplayName
RequiredServices

DisplayName

RequiredServices =

DisplayName

: Application Layer Gateway Service
RequiredServices = £

: Application Host Helper Service
RequiredServices = £

: Application Identity

{CryptSvc, RpcSs. AppID>

: Application Information
RequiredServices =

pcSs, ProfSuc

: Application Management
RequiredServices = {3}

: ASP.MET State Service
RequiredServices = {2}

: Ati External Event Utility
RequiredServices = {2}

: AT&T RcAppSvc
RequiredServices = {3}

¢ Windows Audio Endpoint Builder

{PlugPlay>

¢ Windows Audio
: {AudicEndpointBuilder, RpcSs. MMCSS}

: Base Filtering Engine

{Rpc8s¥

: Background Intelligent Transfer Service
RequiredServices :

{Event8ystem, Rpcis

The property names also work in the Format-Table cmdlet. Figure 4.22 shows the
output of the following command:

Get-Service | Format-Table

-property displayname, requiredservices

The results of the Format-List and Format Table commands are the same; it
is the formatting that is different. Choosing which cmdlet you use really becomes a
matter of preference. These two cmdlets are the most common formatting cmdlets
you will use in PowerShell.

87

Aliases, Functions, and
1

the Pipe, Oh My

(o)
X
>
]
—
m
=
£

88 CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.22

FIGURE 4.23

Format-Table with properties

ndows PowerShell I

PS C:slUsers~Matt> Get—Service | Format-Table —property displayname. requiredservices

DisplayMame

RequlredSerulcea
Application Experience
prllcatlnn Laver Gateway Service
Host Helper Service
Identity
Information
Management
ASP.MET State Service
Ati External Event Utility
AT&I RcAppSuc
Windows Audio Endpoint Builder
Windows Audio
Base Filtering Engine
Background Intelllgent Transfer Service
Computer Brouwser
AT&I Con App Svc
Certificate Propagation
-MET Framewo

o
{CryptSvc, RpcSs, ApplD>
{RpcSs, ProfSucl

{PlugPlay>
{AudioEndpointBuilder.
<RpcB8sX

{EventSystem. Rpc8s>
{LanmanServer, LanmanWorkstation}

RpcSs. MMCSSY

Microsoft v2.8.5A727_H86
v2.8.58727_X64
-NET Framework MGEN v4 3031%_X86

-NET Framework NGEN v4.8.3031%_X64

Cryptographic Services

Off line Files

DCOM Server Process Launcher
Disk Defragmenter

DHCP Client

DHS Client

Wired AutoConfig

Diagnostic Policy Seruvice
Extensible Authentication Protocol
Encrypting File System (EFS)
Windows Event Log

COM+ Event System

Intelr PROSet/Wireless Event Log

Microsoft Fibre Channel Platform Registration Service

Function Discovery Provider Host

Function Discovery Resource Publication

Windows Font Cache Seruvice

>

{EventSystem, SEME. RpcSs}
{RpcSs>

{RpcSs>

&

{RPCSS>

<Afd. Tdx,
{nsi. Tdx>
{Ndisuio, RpcSs. Eaphost}

<

{RPCE&. Keylso}
{RPCS5>

&

{rpcssk

{RPCSS>

&

{HTTP. RpcSs?
ggTTP, RpcSs>

NSI>

The Format-Wide cmdlet, while not used for the previous commands, can be very

useful when looking at files and directories. The following example shows why

Format-Wide is a good formatting option when you want to display a list spanning

multiple columns (see Figure 4.23):

dir | Format-Wide -column 3

Format-Wide

ndows PowersShell I

PE C:xUsersiMatt? dir | Format—Wide —column 3

Directory: C:i\Users\Matt

[Contacts]
[Downloads]
[Musicl
[Roaming]
[Searches]
aliases.csv
foo.psi
psinvaders.psl
psivaders . P51
rg.txt
SErVErs.txt
status . txt

PS8 C:sUsersMatt>

[Desktopl
[Favorites]
[Pictures]
[samples]
[Nideos]
aliases.txt
nyscript.psi
psinvaders.PS1
required.psl
satus.txt
services.html

[Documents 1
Links
[psinvaders]
[Saved Games]
[WINDOWS 1
depends - txt
myscript . PS1
psinvanders.P5S1
Required.txt
SEervers.ps
services.txt

WORK WITH THE PIPE OPERATOR

Sort PowerShell Output

There is only one cmdlet you will need to know how to use for sorting your data.
The Sort-0Object cmdlet can take a few parameters. As with the format cmdlets,
you need to know the properties of an object in order to sort on them with Sort-
Object. If you want to sort the list of services by their status, run this command:

Get-Service | Sort-Object -property status
To sort this list so the running services are listed first, change the sort order with
this command:

Get-Service | Sort-Object -property status -descending

When using the Sort-Object cmdlet in conjunction with the format cmdlets,
make sure the Sort-Object cmdlet precedes the format cmdlets. This is a good
situation to use | more. Notice how the behavior of the output changes, when you
run the same command with the | more:

Get-Service | Sort-Object -property status -descending | more

It makes scrolling through the data easier. You can scroll the output either one page
at time by pressing the spacebar or one line at a time by pressing the Enter key.

Redirect PowerShell Output

TABLE 4.4

The results of almost any PowerShell command can be redirected to a file. You

can redirect your output into many different types of file formats, including CSV,
HTML, and, yes, even the GUI. Table 4.4 shows the types of output you can use for
your PowerShell cmdlets.

out cmdlets

oot Joserpion

Out-Default = Sends the output to the default output formatter. This can be useful when debug-
ging PowerShell scripts. By default, this is to the PowerShell shell. This really is just a
placeholder and does not directly impact output.

Out-File Lets you output the results of a PowerShell command to a file.
Out-Gridview Letsyou output the results to a sortable, filterable grid.

Out-Host Displays the results in the PowerShell session. This is the default output option for
most cmdlets.

Out-Null Deletes the output instead of displaying it.
Out-Printer Sendsoutputto a printer on your server.

Out-String Lets you output the results to an array of strings. This is particularly useful for set-
ting up variables for scripting operations.

89

Aliases, Functions, and

the Pipe, Oh My!

n
I
>
]
-
m
=
Y

90 CHAPTER 4 -

ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.24

The most common cmdlets when outputting data are Out-File and Out-
Gridview. Sending the output of a cmdlet to a file is as simple as knowing where
you want to save the file. If the file does not exist, the Out cmdlets create it for you.

You can control the format by combining the Out cmdlets with the Format
cmdlets, giving you the same control over the formatting for your redirection as
you do for your regular output. Although you do not have to place the Out cmd-
let at the end of the command string, you will want to place the command at the
end of the string to make it easy to follow. The following is an example of output-
ting the data to a file:

Get-Service | Format-Table -property displayname,

requiredservices |Out-File Required.txt

You can control the sort of the data by piping the Sort-Object into the command
as follows:

Get-Service | Sort-Object -property status | Format-Table &

-property displayname, requiredservices, status |Out-File status.txt
You can see what this command and its output look like in Figure 4.24.

Sort and Format and Out

B status.txt - Notepad _n

File Edit Format ‘iew Help

I

DisplayName

on screen Display

Net.Msmg Listener Adapter
Netlogon

5QL Active Directory Helper Service
Network Access Protection Agent
Net.Tcp Port Ssharing service
TPM Base Services

Net.Tcp Listener Adapter
Net.Pipe Listener Adapter
Thread ordering Server

windows Insta1?e

Credential Manager

virtual Disk

Volume Shadow Copy

PNP-X IP BUS_ENUMErator

windows Modules Installer

Microsoft i5CSI Initiator Service
Interactive services Detection
Link-Layer Topology Discovery Mapper
UPNP Device Host

Microsoft office piagnostics service
special Administration Console Helper
SPP Notification Service

Resultant set of Policy Provider

Ll

KtmRm for Distributed Transaction Co...

Reguiredservices

{was, System.ServiceProcess.ServiceC...
{Lanmanworkstation}

1k

{Rpcss}

i

{was, NetTcprPortsharing}
{was}

iy

{rpcss}

{samss, RPCSSY
rpcss}
{Plugrlay, Rpcss}
{RPCES}
{fdpHost, Rpcss}
i}

i

@

{11tdio, rpcss}
{HTTP, SSDPSRV}
1}

ir

{EventSystem}
{rPCSS}

s

As you begin to working with output data to your files, one of the invaluable param-

eters for the Out-File cmdlet is the -Append parameter. When you output data to

WORK WITH THE PIPE OPERATOR

FIGURE 4.25

tiles, by default without the -Append parameter, you overwrite the existing data in
the file. With the -Append parameter, you add data to the end of the existing file. If
the file does not exist and you still use the -Append parameter, a new file is created
automatically.

PowerShell 2.0 has a new Out cmdlet called Out-Gridview, which takes the output
of a PowerShell command and places it in a GUI window. There is one requirement:
Out-Gridview requires Microsoft NET Framework 3.5 with Service Pack 1 to be
installed on the system. This output option provides a great way to interact with
PowerShell data if you do not want to make a file.

If you find yourself creating output files, looking at the data quickly, and then deleting
the files, you may find the Out-Gridview cmdlet to be a time-saver. Not only does

it provide a nice GUI for you to see the data, but you can also filter and sort your data
quickly and easily. It is similar to working with a Windows Explorer window.

In Figure 4.25, let’s look at Get -Service again, this time in a grid view.

Get-Service | Out-GridvView

Out-Gridview
JEIE]
I ®
& Add criteria ¥ |
Status | Name | DisplayName -
Running AelookupSvc Application Experience
Stopped ALG Application Layer Gateway Service
Running AppHostSvc Application Host Helper Service
Stopped AppIDSwc Application Identity
Running Appinfo Application Information
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running Ati External Event Utility Ati External Event Utility
Stopped ATTRcAppSwc ATAT RcAppSvc
Running AudioEndpointBuildsr windows Audio Endpoint Builder
Running AudioSrv Windows Audio
Running BFE Base Filtering Engine
Running BITS Background Intelligent Transfer Service
Stopped Browser Computer Browser
Stopped CAATT AT&ET Con App Svc
Running CertPropSvc Certificate Propagation

Stopped clr_optimization_v2.0.50727_32 Microsoft .NET Framework NGEN v2.0.50727_X86

Stopped clr_optimization_v2.0.50727_&4 Microsoft .NET Framework NGEN v2,0.50727_X&64

Stopped clr_optimization_v4.0.30315_32 Microsoft .NET Framework NGEN v4.0.30319_X86

Stopped clr_optimization_v4.0.30319_64 Microsoft .NET Framework NGEN v+.0.30319_X6%

Stopped COMSysApp COM+ System Application

Running CryptSvc Cryptographic Services

Running DcomLaunch DCOM Server Process Launcher

Stopped defragsvec Disk Defragmenter

Running Dhop DHCP Client

Running Dnscache DNS Client

Stopped dot3svc Wired AutoConfig

Running DPS Diagnestic Policy Service

Running EapHost Extensible Authentication Protocol

Running EFS Encrypting File System (EFS)

Running eventlog Windows Event Log

Running EventSystem COM+ Event System

Running EvtEng Intel® PROSet/Wireless Event Log j
Shmmmad ECDanGir Mirreenft Fihrs Charnal Dlatfnmn D anictratinn ©

You can quickly sort the list by clicking the respective column heading. The Add
Criteria button allows you to filter data based on the properties you are currently
viewing in the window.

91

Aliases, Functions, and

the Pipe, Oh My

n
I
>
]
-
m
=
Y

92 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

FIGURE 4.26

FIGURE 4.27

Do not use the format cmdlets when using Out-Gridview. If you try to run the
Format cmdlets with the Out-Gridview cmdlet, like in the following command,
you will see a screen similar to Figure 4.26.

Get-Service | Format-Table -property displayname,
requiredservices, status |Out-File Required.txt

Out-Gridview error

& windows PowerShell

rzsMatt> Get—Service | Format-Table —property displayname, requiredsservices, status 1| Ou
ridview

PS GisUserssMatt?>

What if you want to add properties, such as requiredservices, to the
Out-Gridview? You can do this with the Select-Object cmdlet. Using
the previous example, the following would look like Figure 4.27 if you used
Out-Gridview:

Get-Service | Select-Object -property DisplayName, 3

name, requiredservices, status |Out—GridView

Out-Gridview with additional properties

Application Layer Gateway Service o Stopped
Application Host Helper Service AppHostSvc O Running
Application Identity AppIDSwc {Cryptsvc, Rpcss, AppID} Stopped
Application Information Appinfo RpcSs, Profsvc} Running
Application Management AppMgmt 3 Stopped
AZPNET State Service aspnet_state ¥ Stopped
Ati External Event Utility Ati External Event Utility 3 Running
AT&T RcAppSve ATTRcAppSvVC o Stopped
Windows Audio Endpoint Builder AudioEndpointBuilder {PlugPlay} Runining
Windows Audio AudioSrv {AudicEndpointBuilder, RpcSs, MMCSS} Running
Base Filtering Engine BFE RpcSs) Running
Background Intelligent Transfer Service BITS EventSystem, RpcSs} Running
Computer Browser Browser LanmanSarver, LanmanWorkstation} Stopped
AT&T Con App Svc CAATT ¥ Stopped
Certificate Propagation CertPropSvc {RpcSs} Running
Microsoft \NET Framework NGEN v2.0.50727_X86 dr_optimization_v2.0.50727 32 [} Stopped
Microsoft JNET Framework NGEN v2.0.50727_X64 cr_optimization_v2.0.50727_84 [} Stopped
Microsoft JNET Framework NGEN v4.0.30319_X86 clr_optimization_v4.0.30313_32 [} Stopped
Microsoft .NET Framework NGEN v4.0.30319_X64 clr_optimization_v4.0.30319_64 {} Stopped
COM+ System Application COMSysApp EventSystem, SENS, Rpcss} Stopped
Cryptographic Services CryptSvc RpcSs) Running
Offline Files CscService {Rpcss} Stopped
DCOM Server Process Launcher DeomLaunch o Rurining
Disk Defragmenter defragsve {RPCSS} Stopped
DHCP Clisnt Dhep {Afd, Tdx, NSI} Running
DNS Client Dnscache {nsi, Tdx} Running
Wired AutoConfig dot3svc {Ndisuio, RpcSs, Eaphost} Stopped
Diagnostic Policy Service DPs o Running
Extensible Authentication Protocal EapHost {RPCSS, Keylso} Runining
Encrypting File System (EFS) EFS {RPCEE} Runining
Windows Event Log eventiog O Running
COM+ Event System EventSystem {rpcss} Running

Intel® PROSsY/Wirsless Event Log EvtEng {RPCE5} Running _'l
n

Mirrmenft Sihra Channal Dlatinem Damictratinn © ErDantur Shrmnad

WORK WITH THE PIPE OPERATOR 93

You can also send data directly to a printer in your environment. The Out-
Printer cmdlet is easy to use. If you want to send the output of any of your
cmdlets to the default printer, append | Out-Printer on the end of your com-
mand. If you do not specify the printer name, PowerShell uses the default printer
on your system. For example, if you want a printout of the services on your
server, run the following command:

Get-Service | Out-Printer

You can also specify the printer by name as well as UNC names for network
available printers. Out-Printer also has a built-in alias 1p, which you can

leverage.

Filter PowerShell Output

Understanding how the Where-Object cmdlet works is key to understanding
PowerShell’s powerful filtering capabilities. You need to understand a couple of
key concepts about the Where-Object cmdlet. First you need to be familiar with
the automatic variable $_. This automatic variable refers to the current object

on the pipeline. If you want to learn more about automatic variables, use Help

about_automatic_variables.

Second, you need to know a little bit about the comparison operators to use with
Where-Object. Table 4.5 describes the comparison operators. Each operator begins
with a hyphen. You can also learn more about the operators by running the follow-

ing command:

Help about_Comparison_Operators _

The Where-Object command provides many useful abilities to track down and
query different aspects of the PowerShell environment. For example, the following
command shows just the stopped services on your system:

Aliases, Functions, and

the Pipe, Oh My!

n
I
>
]
-
m
=
Y

Get-Service | Where-Object {$_.Status -eg "Stopped"}

TABLE 4.5 Comparison operators

-eq Equals, used for finding identical values; you have to know the exact values of the
parameters for the objects you are looking at

-ne Not equals, includes different values; as with -eq, you need to know what you're
looking for
-gt Greater than

(continues)

94 CHAPTER 4 * ALIASES, FUNCTIONS, AND THE PIPE, OH MY!

TABLE 4.5 (continued)

-ge Greater than or equal to

-1t Less than

-le Less than or equal to

-like A matching operator that uses the * wildcard operator

-match A matching operator that uses regular expressions, with the automatic variable
SMatches

-contains Allows you to see whether an identical value exists in a list of values

-notlike Allows you to identify the value that does not match

-notmatch Allows you to find the values of a string that do not match your criteria

-notcontains Allows you to identify the values in a list that do not contain your matching criteria

Figure 4.28 shows an example of the output of this command.

FIGURE 4.28 Where-Object witha pipe operator

Windows PowerShell
P§ C:=Users“Matt> Get—Service | Where—Object {%_.Status —eq "Stopped">

DisplayName
ALG Application Laver Gateway Service
AppIDSuc Application Identity
AppMgmt Application Management
aspnet_state ASP.NET State Service
ATTRcAppSuc AT&T RcAppSuc
Browser Computer Brousep
CARTT AT&T Con App Suc
clr_optimizatio... Microsoft .NET Framework NGEN
imi i Microsoft .MET Framework NGEN
optimizatio. Microsoft .NET Framework NGEN
clyr_optimizatio... Microsoft _NET Framework NGEN
GOMS y=hpp COM+ System Application
GscService Off line Files
defragsuc k Defragmenter
dot3sve ed AutoConfig
FCRegSvc Microsoft Fibre Channel Platform Re...
fdPHost Function Discovery Provider Host
FontGache Windows Font Cache Service
hkmsuc Health Key and Certificate Management
idsvc Windows CardSpace
I1PBusEnum PnP-% IP Bus Enumerator
KtmBm for Distributed Transaction C...
ink-Laver Topology Discovery Mapper
Microsoft iSCS8I Initiator Service
ruey Windows Installer
MESQLServerADHe... 2%QL Actiwve Directory Helper Service
napagent Metwork Access Protection Agent
Hetlogon Netlogon
MetMsmgActivat Met .Msmg Listen Adapter
NetPipefActivat i i + Adapter
HetTcplictivator i dapte
MetTcpPortSharing Met.Tcp Port Sharing Service
odserv Microsoft Office Diagnostics Service
ose Office Source Engine
PerfHost Performance Gounter DLL Host
a Performance Logs & Alerts
Policyfigent IPsec Policy Agent
ProtectedStorage Protected Storage

Notice the use of the common variable preceding the name of the property you
are looking to query. This is just a simple example of the Where-Object cmdlet.

WORK WITH THE PIPE OPERATOR

However, this cmdlet can become powerful and sometimes complex when you
are looking for specific objects. You will see a few examples in Chapter 8, when
you begin working with Active Directory objects. You will be able to use Where-
Object to work with the LDAP nature of Active Directory.

EXERCISE 4: CREATE YOUR OWN ALIAS

In this exercise, you will practice working with aliases, functions, and the pipe operator.
Write a PowerShell command that does the following:

» Lists running services of your server
» Determines what services are dependent on those services
» Displays service name, status, and dependent services in a table format in a text file

Create either an alias or a function for the command you just created.

95

Aliases, Functions, and

the Pipe, Oh My!

CHAPTER 4

CHAPTER

Creating Your Own Scripts

IN THIS CHAPTER, YOU WILL LEARN TO:

> CREATE YOUR OWN SCRIPTS 98
PowerShell Scripting Overviewc.coooeiviiiiiinaen.. 99
Create a PowerShell Script........ooviiiiiiii i 100
Run Your SCripts . ..oovei e 106
Find SCripts. .. ooe e 107

> UNDERSTAND SECURITY AND POWERSHELL SCRIPTS 108
Work with Default Execution Policy of Scripts................ 109

Understand the RemoteSigned PowerShell Execution Policy. . .110

Set the PowerShell Execution Policy.................cooooo. m
Understand Digital Signing............cooooiiiiiiiiiiiin., 116
> WORK WITH THE GUI AND THE SHELL 116
Understand Whatthe ISEls.............cooiiiiiiiiiiin. 116
Use the ISEwith Scriptscoooiiiii e 119

Display the Call Stack with Scripts Requiring Parameters 123

¢ 411dVH)

n the first few chapters, you saw some of the basics of the PowerShell language. You
also learned how to tie cmdlets together with the pipe operator. Now, you will be
able to take PowerShell to another level by tying in logic. So in this chapter we will
take a look at the question: To script or not to script?

You can create scripts for several different purposes, including, but not limited to,
populating Active Directory, backing up the servers in your infrastructure, and
deploying web applications. In the “Create Your Own Scripts” section, you will see
how PowerShell works with scripts and how to create your own basic scripts.

The key to being successful with scripts is in the order of handling them:
First, find the need.
Second, write the script.
Finally, test your script.

Writing scripts is putting together the cmdlets in the proper order, with the neces-
sary logic to do your bidding. Testing is running the script and seeing whether it
does the job you want it to do. However, when you run scripts, you may run into
security issues; in the “Understand Security and PowerShell Scripts” section of this
chapter, you will see how to work with the built-in security of PowerShell and how
to run your scripts safely and securely.

When you write scripts, you can use tools you may have used in the past to create
scripts, such as Notepad, or you can use new tools such as the Integrated Scripting
Environment (ISE). In the “Work with the GUI and the Shell” section of this chap-
ter, you will see how you can leverage this new tool in PowerShell.

Create Your Own Scripts

The question at the beginning of this chapter really is not simply to script or not to
script; rather the question really is what to script, what not to script, and how to do it.

Although you can create a script to accomplish virtually anything, you do not
need to script everything. When you begin to take a look at what to script, look at
really one basic idea: is the task something you are doing repeatedly? If you find
yourself doing repetitive tasks, then those are perfect candidates for a PowerShell
script. The advantage of working with a PowerShell script is summed up in one
word — consistency.

CREATE YOUR OWN SCRIPTS

PowerShell is not case sensitive, but it is spelling sensitive, and syntax is always
important. You have probably misspelled a word or two or missed a comma, space,
or other special character while writing a batch file. Scripts give you a custom,
homegrown administrative tool, allowing you to perform tasks quickly and consis-
tently in your environment.

PowerShell Scripting Overview

PowerShell scripts are structured similarly to batch files you may have written in the
past. In terms of power and potential, they are closer to VBScript files, which you
also may have worked with. You may be thinking then, why don’t I just keep using
my VBScript files? When you begin to look at PowerShell, you will notice it is tuned
to do things that VBScript may not have been able to accomplish. In fact, you can
do many things in PowerShell with less work and complexity than with VBScript,
and one of the nice constructs of the PowerShell language is that it is similar in
nature to VBScript syntactically. This makes converting your VBScript scripts into
PowerShell fairly straightforward.

Microsoft has released the VBScript-to-Windows PowerShell Conversion Guide.
You can find it here:

http://technet.microsoft.com/en-us/library/ee221101.aspx

You will want to keep in mind a few things as you get into scripting. First,
PowerShell scripts should have the . ps1 extension in their filenames. This makes
identifying the scripts very easy. As you may recall from Chapter 3, profiles also
have the .ps1 extension. Although they are used as configuration files, they are
scripts that are designed to run when you start a PowerShell session. This is similar
to when you place programs in your Startup folder in Windows. By default, the
.ps1 extension for PowerShell scripts are associated with Notepad. So, you can still
use Notepad to create and write your scripts, as you may have done with batch files
in the past. Although you can still use Notepad, you should check out the “Work
with the GUT and the Shell” section later in this chapter to learn about an alterna-
tive way to writing scripts.

Another thing to keep in mind when creating scripts is that your scripts can have
parameters. When you use parameters in your scripts, you have more control
over those parameters. Parameters are space-delimited when you call your
custom script.

99

Creating Your Own

Scripts

100

CHAPTER 5

CREATING YOUR OWN SCRIPTS

For example, if you wanted to write a script and pass the Serverl and Server2
parameters into the script, your command would look like this:

myscript.psl Serverl Server2

When you start creating and working with scripts, you may realize that you have
several custom scripts you cannot live without on your Windows Server 2008 R2
servers. One of the built-in advantages of PowerShell, as shown in Chapter 3, is
modules. Multiple scripts can be grouped into modules, and modules make it easier
for you to distribute your custom scripts throughout multiple environments. If you
remember this last tidbit, it will make it that much easier to reuse your scripts.

Create a PowerShell Script

So, how do you create a script? It’s simple:
1. Open Notepad.
2. Type in these two lines:

Get-Process

Get-Service | Where-Object {$_.Status -eq "Running"}
3. Select File > Save As, and put a . psl extension on the end of the filename.

Although the script does not do a whole lot — the script returns the running pro-
cesses and services on your current server — it shows how easily you can create
scripts. This script would save the time of typing in the commands.

When you choose to write a script, it really can be that simple — put your cmdlets
in order, save the file with a . ps1 extension, and you are ready to go. However,
scripts in PowerShell can be a lot more powerful than the previous example. You
can accomplish many things in PowerShell scripts. You can create GUIs with
PowerShell, you can create advanced functions you can pass parameters to, and you
can write simple scripts to make sure you are in the proper directory on a server

to copy files. (Although you will be able to begin writing your own scripts in this
section, you should not expect to be able to write a full-fledged GUT in PowerShell.
If you want to take writing scripts further, check out the appendixes. Specifically,
check out Appendix F and how PowerShell can be used to create a full-fledged GUL)

The next few sections give you the logical building blocks to help you write more
advanced PowerShell scripts. However, this chapter is covering these building
blocks at a high level. If you want to get more in depth with custom scripts, take a
look at the appendices.

CREATE YOUR OWN SCRIPTS 101

Variables in Scripts

Being able to use variables inside PowerShell scripts is extremely valuable. Windows
PowerShell supports strongly typed variables; however, you do not have to declare

the variable’s type before populating it. This makes it easy when you are writing your
scripts. When you use variables in Windows PowerShell, they will always begin with a
dollar sign ($), and you set their value with the equal sign (=). You can also use dynam-
ically typed variables; you create one by referencing it or by assigning a value to it.

DYNAMIC AND STATIC VARIABLES IN POWERSHELL

Variables in PowerShell are dynamic in nature, which means they adjust to the way
the variable is used for the type of data used in the variable. If the variable needs to
be an integer or string value, PowerShell variables are able to adjust to that need on
the fly. Although this works for many situations in your scripts, there may be times
you want to control the variable and make it a static variable. You can explicitly assign
the variable type by bracketing the type. If you wanted to declare a variable to be an
integer, it would look like this:

$1i = [int] "456"

You can assign variables to many types by simply preceding the value by the type,
surrounded by [1.

Using variables allows you to quickly assign values and even cmdlets in your scripts
with just a little scripting. For example, if you wanted a variable to reference the
output of the get-service cmdlet, you would write this:

Sserve=get-service

s

H

PowerShell also offers a built-in variable, Sargs. The $args variable is a default g

. . =

storage location for the parameters passed to your scripts. Suppose you have a E,
PowerShell script called servers.ps1 and you run the following command: =5
D
S A

n
X
>
o
—
m
=
(%]

servers.psl serverl server2 server3 _

The $args variable automatically gets the array (serverl, server2, server3).
This lets you use loops and perform functions on the parameters as a collection.
Also, sargs is a zero-based array, so in the previous example, the storage number
for each of the variables would be as follows:

Sargs[0] serverl
Sargs([1l] server2

Sargs([2] server3

102

CHAPTER 5

CREATING YOUR OWN SCRIPTS

FIGURE 5.1

To see how the $args variable works, here is a simple piece of script you can use to
display the values and the count of the values in the $args variable:

Write-Host "Num Args:" Sargs.Length;
foreach ($arg in Sargs)
{
Write-Host "Arg: Sarg";
}
If you named this script servers.psl and entered the following command, you
would get results similar to Figure 5.1:

servers.psl serverl server2 server3

$args

& windows Powershell

When running these commands, you may run into a security issue with the scripts.
The default message from PowerShell you may receive prevents you from running
scripts. You can adjust the settings of PowerShell session on your system by adjusting
the remote execution policy. The “Understand Security and PowerShell Scripts” sec-
tion of this chapter shows how to use the scripts securely and avoid the error messages.

Logic in Scripts

You can use operators to increment your loop index so you do not get your PowerShell
script stuck in the loop. You can use three types of operators to get you through your
loops — arithmetic, assignment, and unary operators, as described in Table 5.1.

One of the fundamental tools you will need when you are creating scripts is the ability
to loop. Looping gives you access to more advanced scripting techniques and pro-
cedures. Specifically, looping gives you flow control through your PowerShell script.
Looping allows you to set conditions and repeat code while those conditions are met.

CREATE YOUR OWN SCRIPTS

TABLE 5.1 Common logic operators

Arithmetic

Assignment

Unary

o0
n

Addition.
Subtraction.
Multiplication.
Division.

Returns the remainder of a division operation or modulus, for
example 7%4 =3.

Allows you to set the value of a variable to a specific value. If
you are going to increment this variable, make sure you know
the proper starting number. For example, $v=10 sets the
value to 10.

Increases the value of the variable by the specified value or
will append to the value. For example, if $v =10, then $v+=5
results in $v =15.

Decreases the value by a specified value. For example, if $v =
10,then $v-=5 results in$v = 5.

Multiplies the value of the variable by a specific value. For
example, if $v =10, then $v*=5 results in $v = 50.

Divides the value of the variable by a specified value. For
example, if $v =10, then $v/=5resultsin $v=2.

Divides the value of the variable by a specified value and
assigns the remainder to the variable. For example, if v =10,
then $v%=5 resultsin $v =0.

Increments the value of an integer. For example, if $v =10,
then $v++ resultsin $v=11.

Decrements the value of an integer variable. For example, if
$v =10, then $v--resultsin $v=9.

Table 5.2 describes some of the different types of looping functions in PowerShell.

103

Creating Your Own

n
X
>
]
-
m
=
v

CHAPTER 5

CREATING YOUR OWN SCRIPTS

TABLE 5.2

Common logic statements

Commn [uge ——————Jomm

If

If Else

If Elseif
Else

For

ForEach

While

Do-While

Evaluates an expression and executes a block
of script if the expression is true.

Evaluates an expression and executes one
block of code if the expression is true and a dif-
ferent block of code if the expression is false.

Evaluates an expression and executes one
block of code if the expression is true but
tests another expression if the first expres-
sion is false. Multiple E1seif clauses can be
included.

Runs a script block based on a conditional
test. It will loop for as many iterations you
indicate.

Allows you to perform a set of tasks on each
item as your script goes through a collection
of items.

Runs a loop with a command block while
a certain condition is true. This is great
when you want to make sure tasks are
being performed until completion. The
condition is tested before each iteration
of the script.

A variation of the Wwhile loop. Runs a
command block at least once before check-
ing whether the condition is true and con-
tinues to run until the condition is returned
as false.

if (<testl>) {<code_blockl>}

if (<testl>) {<code_blockl>}
else {<code_block2>}

if (<testl>) {<code_blockl>}

elseif (<test2)
{<code_block2>}

else {<code_block3>}

for (<init>; <condition>;
<repeat>) {<code_block>}

foreach ($<item> in §$
<collection>) {<code_block>}

while (<condition>)
{<code_block>}

Do {<code_block>} while
(<condition>)

All the statements in Table 5.2 use code blocks or scripting blocks. These blocks

are surrounded by curly braces and contain a series of statements. Scripting blocks

allow you specify actions inside your scripts. In this way, you can repeat a sequence

of tasks if certain criteria is met.

Sample of a ForEach Loop

Suppose you want to know how your environment variables are configured and

want to list them in the format Name: Value. Use the following command:

Get-ChildItem -path env: | ForEach-Object

{ Write-Host $_.Name ":"

$_.Value }

Figure 5.2 shows the results.

CREATE YOUR OWN SCRIPTS

FIGURE 5.2

ForEach example

dows PowersShell

FS SsersSsMatt> Ge dlitem —path enu:
RLLUSERSPROFILE : C:5\ProgramData

APPDATA = C:=nl U“erﬂ\Hatt\RppData\RDamln

AUENGINE : C:\PROGRA™INCANSHARED™1\SCANEN“1
CommonProgramFiles : C:sProgram Files“Common Files
CommonProgramFiles{x86> Program Files (xB6>~Common Files
CnmmnnPrngramUE432 : C:Program Files\Common Files

Ci 5 1nduug\gyatem32\cmd

ERRORLOGPRTH : C:x\Program F119ﬂ\UIN7TS\Lugg1ng

FP_NO_HOST_CHECK : NO

HOMEDRIVUE : G

HOMEPATH : SUserssMatt

INOCULAN : C:5\Program Files“CA“elrust Antivirus
A : C:\UsersSMatt“AppDatasLocal

:\Program Files“\WIN?TS“AverldLog.config

sSystemRootxN\systen32 \WindowsPowerShellswl .B%;C:“Program Files“Common Files“\Microsoft Shal
ndows Live;C:“\Windowssystem32;C:\Windouws;C ndowsSSystem325Wbem;C:\Program Files\Intel\|
WiFisbin ;C:~PROGRA™1NCANSHARED 18 CANEN™1;C:“\Program Files“CANeTrust Antivirus;C:\Progran Files
(xB6>~ATI Technologies~\ATI.ACENCore—Static;C:“\Program Files (x86>\Microsoft SQL Server~iBB:Tool
s\Binn>;C:\Program Files“\Microsoft SQL Serveprs188:ToolssBinn> Program Files“\Microsoft S5QL Sew
ver180x\DISsBinn~;C:x\Windows \System32-lindovs PowerShe 11xvl . 8% ; Program Files“Common Files:Micwy
osoft SharedsWindows Live
PATHEXT : _.COM; _EXE;_BAT;.CHD; .UBS;_UBE;.JS;.JSE; _WSF;_USH: .MSC
PROCESSOR_ARCHITECTURE AMD64
PROCESSOR_IDENTIFIER Intelt4 Family 6 Model 23 Stepping 6. Genuinelntel
PROCESSOR_LEUEL : &
PROCESSOR_REVISION : 1786
rogranData : C:“ProgramData
rogramFiles : G:\Program Files
ProgramFiles(xB6> Program Files (x86)
ProgranW6432 : G:\Program Files
PSModulePath : C:\UserssMatt\Documents“\WindowsPouwerShellsModules;C:\Windowsssystem3d2\WindousPowe
rShell vl .B\Modules™
C : C:\Usersi\Public
ME Conﬂole

SystemRoot = C \Ulndnud
TEMP : C:s\Users\Matt“AppDatasLocal“\Temp
TMP : C:\UserssMattMAppDatasLocalsIem

This shows an example of the environment variable provider. Providers are another
tool making administration tasks easier to script. You will learn more about provid-

ers in Appendix C. Providing for PowerShell.

Sample of Script

Here is an example of a script that displays all the required services for the names of

the services you provide to the script:

Srg=get-service S$args -requiredservices | Format-Table

-property displayname, status;

foreach ($arg in S$Sargs)
{

Write-Host "For the "$arg "Service the following servicesed

are required:";

$ra;

105

Creating Your Own

n
==
>
)
-
m
)
(%]

106

CHAPTER 5 * CREATING YOUR OWN SCRIPTS

The following statement shows results similar to Figure 5.3.

required.psl winrm netlogon plugplay

FIGURE 5.3 Samplescript output

indows PowerShell I
P8 C:~Users“Matt? .“reguired.psl winrm netlogon plugplay
For the winrm Service the following services are regquired:

DisplayMame

Workstation
Remote Procedure Call (RPC>
HTTP

For the netlogon Service the following services are required:
DisplayName

Workstation
Remote Procedure Gall (RPG>
HTTP

For the plugplay Service the following services are required:

ation
Remote Procedure Gall (RPG>
HITP

PS8 C:sUsers“Matt>

In the script, notice the use of the $args variable to capture all the services listed in
the command. PowerShell steps through each item in the $args array, and when the
array is empty, the script ends.

Run Your Scripts

How do you run a script? Call the script by name and path. So, if you have a script

called myscript.psl located in the ¢ : \users directory, use the following com-
mand to run the script:

c:\users\myscript

The .ps1 extension does not need to be included in the command. However, it is
acceptable to use it, if you prefer.

When you are already in the directory where the PowerShell script resides, you
may be inclined to just type the name of the script file you want to run, the way

CREATE YOUR OWN SCRIPTS 107

you may have run batch files or other executables. However, when you try to run
the script in the directory, you see a screen similar to Figure 5.4.

FIGURE 5.4 Scripterror

& windows Powershell

SUserssMatt> myscript.psl

Suggestion [3.Generall: The command myscript.psl was not found. but does exist in the current lo
cation. Windows PowerShell doesn’t load commands from the current location by default.
his command. instead type ".“myscript.psl". 8ee "get—help about_Command_Precedence"

c Use%s\ﬂatt) e

You can avoid this error by referencing the full path or by using the shortcut
path notation of .\ to indicate the current directory. For example, from the
c:\users directory, you can run the myscript .psl script with the following
command:

\myscript.psl

Tab autocomplete works with PowerShell script files. So, just like cmdlets, you do not
have to always remember how to spell the scripts you want to run. If you use tab auto-
complete in the same directory where the script resides, it will put in the . \ for you.

When you run your scripts, you may encounter security issues preventing your
scripts from running. To learn more about how to handle security and your scripts,
see the “Understand Security and PowerShell Scripts” section in this chapter.

s
=
° ° o
Find Scripts 5
o

In Chapter 3, you saw the basics of the help system, as well as some online £ 8

[—

resources. One of the resources worth mentioning again is the script repository S 3

on the Microsoft TechNet website: _

http://gallery.technet.microsoft.com/ScriptCenter/en-us/

n
X
>
o
—
m
=
(%]

108

CHAPTER 5 -

CREATING YOUR OWN SCRIPTS

FIGURE 5.5

When you visit the website, you will see it contains scripts for several different
languages, including Visual Basic, Python, Kixtart, and — of course — PowerShell.
You can filter the scripts on the site to display just the PowerShell scripts (see
Figure 5.5).

Scripting repository for PowerShell

/£~ TechNet Script Center Repository - Windows Internet Explorer o & x|
—
&~ :

o0 Favorites g TechNet Saript Center Repository

t.microsoft.com/s

Other Directory Services -

Printing £ Create an Active Directory User Account {Community)
Remote Desktop Services = by The Scripting Community
Scripting Techniques + Creates an Active Directory user account, including mailbox, home
7 directory { and permissions), and profile directory (and permissions),
Security T as well as several other attributes. The
Servers b
SharePoint 2% Backup Files Using Windows PowerShell {Community)
by The Scripting Community
Storage 5

Backs up files using Windows PowerShell.

System Center =

Using the Internet = Powershell Centralized Log Monitor {Community)

by mjolinor

Monitors a collection of servers for specified log events, and sends
email alerts when it encouters the monitored events.

Windows Update -

Affiliation
Micresoft Enumerate Active Directory User Object Information (Community)
Community by Trevor Hayman
This code demonstrates how to search and retrieve User Object
information from Active Directory without any plug-ins.
Script Language Active Directory, UAC, User Accounts
< All Languages Disable USB Storage Drive (Community)
- PowerShell by ouaziz
Script help to disable USB Storage Drive -
4] | 3
http:,",fgallery.bemnet‘rrucmsoﬂﬂom,’sq’iptoa’\ber[enﬁs"7,7’7’@’7,7‘0 Internet | Protected Mode: On 8 v | *100% -

Understand Security and PowerShell Scripts

One key to working with scripts is understanding the security underlying
PowerShell. The security is designed to protect you and prevent malicious scripts
from running on your system. Not all scripts are bad; however, PowerShell by
default thinks so and will prevent scripts from running. You can see the default
message from PowerShell in Figure 5.6 when it prevents you from running scripts.

This error message was also mentioned in Chapter 3, when working with profiles.
Although profiles are technically configuration files, they do have a . ps1 extension
for the file and are treated as scripts. By default, like other scripts, they do not run.
In this section, you will see how the scripting policy works and understand how

to work with PowerShell to ensure not only that your scripts run but that they run
safely and securely.

UNDERSTAND SECURITY AND POWERSHELL SCRIPTS

FIGURE 5.6

Denied access

m| dows Powershell

PS C:sUsersh\Matt> ./myscript.psl

PS5 C:\lUsers\Mattl

Work with Default Execution Policy of Scripts

TABLE 5.3

By default, PowerShell prevents unsigned scripts from running on your system,
because the default execution policy for running scripts on your PowerShell systems
is set at the restricted level. There are four types of execution policy for scripts on
your system, listed in Table 5.3.

Execution policy settings

Seng —pmepon

Restricted This is the default execution policy for PowerShell on your system. It prevents
all scripts from running on your system, including profiles and other PowerShell
files.

Allsigned This requires all scripts — local and remote — to be digitally signed by a

trusted publisher. If they are signed, then the scripts will run as planned. In the
“Understand Digital Signing” section of this chapter, you will get a brief intro-
duction to signing scripts.

RemoteSigned This allows scripts that are local on your system to run without having to be
signed; however, scripts that have been downloaded or are remote still have to
be digitally signed before they are allowed to run.

Unrestricted This allows any script to run on your server. This is not a recommended setting
for any scenario other than testing, because this can open the security door on
your servers for unwanted and unsecured PowerShell scripts.

Although the Unrestricted execution policy poses a big security risk for your
system, it does offer one piece of security. If you download a script file from the
Internet, you have to approve it before it is allowed to run on your system. When
you run this type of script, you see a message similar to Figure 5.7.

The message lets you determine whether the script should run; by default, the script
is not allowed to run. As the administrator of the system you have to take action.
You control whether this script is allowed to run. If you choose to not run the script,
you see a message similar to Figure 5.8.

109

reating Your Own

cripts

C
S

n
X
>
o
-
m
)
w

110 CHAPTER 5

CREATING YOUR OWN SCRIPTS

FIGURE 5.7

FIGURE 5.8

Unrestricted prompt

& Windows PowerShell I

PS C:\Users“Matt> . psinvaders

Security Yarning

Run only scripts that you trust. While scripts from the Internet can be useful, this script can
potentially harm your computer. Do you want to run C: \Uﬂel“\ﬂatt\pﬁlnuadel“ psl?
[Do not run [R]1 Run once [81 Suspend [?]1 Help <default is

Unrestricted denied script

& wWindows PowerShell

PS C:sUsepssMatt? .spsinvaders.psl

Security Warning

Run only scripts that you trust. While scripts from the Internet can be useful, this script can
potentially harm your computer. Do you want to run C: \Uge}_‘\ﬂatt\p_‘lnuadelg p_‘l

[D]1 Do not »un [R]1 RBun once [51 Suspend [7]1 Help <{default is "D'>:= D

PS C:NUsers~Matt> _

Understand the RemoteSigned PowerShell Execution Policy

RemoteSigned is by far the most common execution policy setting on systems run-
ning PowerShell. Although this can pose a security risk to your server, it may not

be as bad as you think. For the PowerShell script to be local, the script needs to be
created on the system on which you want to run the PowerShell script. If you down-
load a script from the Internet, it will be denied if the script is not digitally signed.
So, this really gives you control over which scripts are allowed to run on your server.
Ideally, it would be great if all of your PowerShell scripts were signed, but sometimes
that may not be the most realistic approach.

When you download a file from the Internet, you need to find out what the
RemoteSigned execution policy checks to see whether the script can run. If you got
the file via a browser or an email client, like Microsoft Outlook, look at the zone
identifier stream. This value indicates whether the file will be able to run.

To determine the value, you can also use the zone identifier parameter for the script.
You can use Notepad to view the value of the zone identifier parameter to determine
whether the script will be considered to be remote and not allowed to execute. For
example, to find out the zone identifier for a script called myscript.ps1, run the
following command in the directory where the script resides (you can see the
output in Figure 5.9):

notepad myscript.PSl:Zone.Identifier

UNDERSTAND SECURITY AND POWERSHELL SCRIPTS 111

FIGURE 5.9 Zoneidentifier

:‘ myscript.PS1:Zone.Identifier - Notepad il I O ll
File Edit Format View Help

[zoneTransfer] =]
ZoneId=3

K| H

If the value is greater than or equal to 3, the script is considered to be remote and
will abide by your policy. After you have reviewed the zone identifier for the script,
if you choose to, you can modify the value in Notepad to allow the script to be run.
Normally, you would change the value to 2 and save the value; however, the zone
identifier can be any of six values:

NoZone -1
MyComputer 0
Intranet 1
Trusted 2
Internet 3
Untrusted 4
Don’t modify the value of the script unless you trust the location or person you got £
the script from. You don’t want to compromise the security of your environment. =
=
2,
Set the PowerShell Execution Policy 58

C
S

n
==
>
)
-
m
)
(%]

When you start working with PowerShell scripts, you need to know how to work _
with the execution policy for your system. You can change the execution policy
either via the PowerShell cmdlet Set-ExecutionPolicy or via the registry.

Before you set your policy, determine what the current policy is for your PowerShell
environment. To do that, run the following cmdlet:

Get-ExecutionPolicy

112 CHAPTER 5 * CREATING YOUR OWN SCRIPTS

Your results will look similar to Figure 5.10.

FIGURE 5.10 Get-ExecutionPolicy

ndows PowerShell

SUserssMatt?> Get—ExecutionPolicy
Re ted

PS8 CisUserssMatt>

To change the execution policy for your system with PowerShell, use the
Set-ExecutionPolicy cmdlet. The first time you try to run the Set-
ExecutionPolicy cmdlet, you may see a screen and message similar to

Figure 5.11.

FIGURE 5.11 Denied Set-ExecutionPolicy

indows PowerShell
PS C:sUserssMatt?> Set—ExecutionPolicy RemoteSigned

Execution Policy Change

The execution policy helps protect you from scripts that you do not trus
execution policy might expose you to the security risks described in the
about_Execution_Policies help topic. Do you want t

[¥1 ¥Yes [N1 Mo [81 Suspend [7?1 Help <default is "¥'>: ¥

PS C:NUserssMatt>

. Changing the

hange the execution policy?

To set the execution policy via PowerShell, load an administrative PowerShell
session. To run a PowerShell session as an administrator, follow these steps:

1. Right-click the PowerShell icon on your taskbar or in your Start menu. If
you right-click the icon on your taskbar, you will see a screen similar to

Figure 5.12.

UNDERSTAND SECURITY AND POWERSHELL SCRIPTS 113

FIGURE 5.12 Taskbar context menu

Tasks

B Run as Administrator

£ Import system modules
3 windows PowersShell ISE
E;’ Windows PowerShell help

5 Windows PowerShell
é’ Unpin this program from taskbar

2. Select Run As Administrator.
3. Ifyouare prompted by User Account Control, click Yes to continue.

When the PowerShell session launches, you will see a screen similar to Figure 5.13.
Notice the administrator indicator in the title bar of the PowerShell window.

FIGURE 5.13 PowerShell administrator session

Administrative
PowerShell session

[Administrator: Windows PowerShell

PS C:MWindowssystem3z> _

Once you are in the administrator PowerShell session, you can then set your execu-
tion policy by running the Set-ExecutionPolicy cmdlet. Based on what you
want to set your policy to, put in one of the four parameters — Restricted,

AllSigned, RemoteSigned, or Unrestricted — after the cmdlet. If you wanted £
to set your execution policy to RemoteSigned, for example, run the following =
command: >§s
Set-ExecutionPolicy RemoteSigned g %
W wn
When you run the cmdlet, you are given a warning and prompted to accept the

change. You should see a message similar to Figure 5.14.

114 CHAPTER 5 * CREATING YOUR OWN SCRIPTS

FIGURE 5.14 Set-ExecutionPolicy prompt

Execution Policy GChange
The execution policy helps protect you from scripts il:llat you do not teust. Changing the execution

policy might expose you to the security risks described in the about_Execution_Policies help
ic. Do you want to change the execution polic
s [N1 No [S1 Suspend [?] Help <default is "¥">:

To finalize your policy, type Y to accept your policy setting. Now you are ready to
run the scripts according to your new policy.

Another way to modify the execution policy is by modifying the registry directly.
You need to be an administrator of the server to get registry access. The registry
key that you need to modify is HKEY_LOCAL_MACHINE\ SOFTWARE\Microsoft\
PowerShell\1\ShellIds\Microsoft.PowerShell.

!
‘ '; WARNING Make sure you back up your registry and your system prior to
modifying the registry. Modifying the registry can cause unwanted errors, including
system errors, that may require reinstallation.

1. Click Start.

2. Place your cursor in the Search Programs And Files input box, or click the
Run command, depending on your operating system.

3. Type regedit, and click OK.
4. In the User Account Control dialog, click Yes.

5. Navigate to HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
PowerShell\1\ShellIds\Microsoft.PowerShell.

6. Modify the ExecutionPolicy key with the value you want to set for your
PowerShell. As with the Set-Execution cmdlet, use one of the four values:
Restricted, AllSigned, RemoteSigned or Unrestricted. You can see this
entry in Figure 5.15.

UNDERSTAND SECURITY AND POWERSHELL SCRIPTS 115

FIGURE 5.15 Execution Policy in the registry

& Registry Editor =& x|
File Edit View Favorites Help
[#- |, OnlineProviders ;I Name Type | Data
- . Outlook Express ab| (e Fault) REG_SZ (value not set)
[H- [y PLA REG 57 RemoteSigned
-+ | PlayReady REG_SZ C:\Windows\System32\WindowsPowerShell\|
-)y Powershell
B 1
, 0409
. PowerShellEngine
. PowershellSnapIns
. PSConfigurationProviders
. Shellids
© |, Microsoft.Powershel
- |, ScriptedDiagnostics
[H- |, Print
[H- | RADAR
[~} Ras
[~ |, Reliability Analysis
[~ | RemovalTools
[~ |, RIPMibAgent
[~ | Router
- [Rpc
- |, SchedulingAgent
[~ |. ServerManager
- | Shared
[#1~ |, Shared Tools
-~ |, Shared Tools Location
- | Sideshow
[#- |, Software
[~ |, Speech
[~ J. SQLNCLI10
[#- |, SQMClient ;I | _’I
Computer \HKEY_LOCAL_MACHINE\SOFTWAREMicrosoftiPowerShell}1\Shelllds\Microsoft. PowerShell

7. When you are finished making your change, close the Registry Editor.

This is a PowerShell book, and you can also modify the registry with PowerShell.
You do not really need to run regedit directly. You can also use providers. You
will see in Chapter 7 how to work with the registry with PowerShell, and you can
find more details on providers in Appendix C.

1. Open PowerShell in administrator mode.

s
=
2. Run the following command: =
=]
>
Set-ItemProperty -path g“ -
HKLM: \SOFTWARE\Microsoft\PowerShell\1\ShellIdsed § g
W wn

n
X
>
)
-
m
)
w

\Microsoft.PowerShell -Name "ExecutionPolicy" 3 _
-Value "RemoteSigned"

116

CHAPTER 5

CREATING YOUR OWN SCRIPTS

Understand Digital Signing

Digital signing PowerShell scripts lets you ensure the scripts have been validated
from a trusted authority or a trusted third party. So even though it can provide

an additional layer of agitation to go through the process of creating or finding
digitally signed scripts, it is worth the protection the signed scripts provide. At the
end of the day, it is worth your time to have your scripts digitally signed and, more
importantly, use scripts that are digitally signed in your environment.

Digital signing requires a Class III Authenticode Code-Signing Certificate, which
you can get in a variety of ways. You need a certificate authority (CA) to get the
certificates needed for digitally signing your PowerShell scripts. You can use an
internal CA, a commercial CA (such as VeriSign or Thawte), or even a self-signed
certificate. If you use a self-signed certificate, it is valid only for the computer you
create the certificate on.

Although understanding digital certificates is important, you will need to deter-
mine how you want to accomplish this in your environment. Installing your own
CA or getting a third party can lead you down a complex process in order to

make sure your certificates are properly signed. If you are going to sign your own
PowerShell scripts and want to learn more about the process, you will find the built-
in help extremely useful. To access the signing help, run this command:

help about_signing

Work with the GUI and the Shell

Notepad is the down-and-dirty, quick-and-easy tool to create scripts, but you may
not want to use Notepad all the time. PowerShell 2.0 introduces a new GUI to work
with scripts called the Integrated Scripting Environment (ISE).

ISE is a great tool providing you with a much-needed upgrade to Notepad when you
want to work with scripts. In this section, you will learn how to work with the ISE and
how to use it to troubleshoot and work with your scripts.

Understand What the ISE Is

In Chapter 2, you saw how to install the ISE on a Windows Server 2008 R2 system.
The server platform is the only instance where you may want to install the ISE.
The ISE is already installed on Windows 7; it is just a matter of opening the tool. In

WORK WITH THE GUI AND THE SHELL

FIGURE 5.16

either Windows Server 2008 R2 or Windows 7, you can find the tool by selecting
Start > Accessories > Windows PowerShell.

You can see what the ISE looks like in Figure 5.16.

The ISE
PEIE
File Edit View Debug Help
=N = ARE 5 N B =& ([Emo,
| Untitledl.psl X @
1
Scripting pane
Output pane
PS C:\Users\Matt= 1)
= |
Command pane

Asyou can see, the ISE provides a GUI that has three sections: the scripting pane, the
output pane, and the command pane. The command pane is similar to the PowerShell
command prompt you are already familiar with. The only difference is that the output
from commands entered in the command pane appear in the output pane.

The output pane not only displays the results of your PowerShell commands but
also displays the results of your PowerShell scripts as you run them in the ISE.
Another added benefit to the output pane is directly attributed to the GUI nature

of the tool. You can easily copy and paste using your mouse or keyboard shortcuts.
The output window is also scrollable, so you do not have to worry about having your
output scroll off the screen.

A convenient feature of the ISE is that you can quickly clear the output screen
without having to type in CLS. To clear the output pane, use the Clear Output
Pane button (looks like a squeegee).

117

reating Your Own

C
Scripts

n
X
>
o
—
m
=
(%]

118

CHAPTER 5

CREATING YOUR OWN SCRIPTS

The third pane, and the most useful in the ISE tool, is the scripting pane. This is
where the true power of the ISE lies, and really this is what the ISE was built for.
This is where the ISE provides a true PowerShell script editor for your scripts.
Although Notepad is good in a pinch, you should consider using the ISE when-
ever possible.

Also unique to the ISE, you can have multiple (up to eight) independent PowerShell
sessions running in the same ISE window. Each tab has its own environment, so
you can work with several PowerShell sessions at the same time. Figure 5.17 shows
the ISE with multiple tabs loaded.

FIGURE 5.17 Multiple sessions in the ISE

=] windows PowerShell ISE =
File Edit View Debug Help
ol ™ 0 A b N = 8 |=0oC

‘ required.ps1 X | myscriptpsl | servers.psl | profile.psi &

1 fSrg=get-service fargs -requiredservices Format-Table -property displayname, status ;

2

3 foreach (Sarg in Sargs)

q 5

5

[Write-Host "For the "$arg "Service the following services are required:";

-

8 fra;

-]

=
=

PS C:\Users\Matt> 1)

=

Another feature of the ISE is the context-sensitive help built into the tool. As
you saw in Chapter 3, learning how to find answers and examples with the
built-in help system is key to learning PowerShell. The ISE provides another way
to access the help system. To see what this can do, perform the following steps:

1. Type the following in the command pane:
Get-Service

2. Press the F1 key. You will see a screen similar to Figure 5.18.

WORK WITH THE GUI AND THE SHELL

FIGURE 5.18

ISE context-sensitive help

ndows PowerShell Help _ =10l |

= & O

Back Prnt Options

Contents I§eafch| Favomes'

[£] Get Credertial =]
5] Get Cutture

5] Get-Dats

[E] Get-Event

E] Get-Eventlog

5] Get-EvertSubscrbar
=] Get-BxecutionPolicy
5] Get-FomatData

5] Get-Help

=] Get-History

5] Get-Host

=] Get-Hotfix

] Get-tem

[E] Get-temProperty

=] Get-lob

[£] Get-Location

[£] Get-Member

5] Get-Moduls

[£] Get-PixCerificate
5] Get-Process

5] Get-PSBraskpoint
[£] Get-PSCallStack
Get-PSDrive
Get-PSProvider
Get-PSSession
[E] Get-P5SessionCorfiguratio
5] Get PSSnapin

Gets the services on a local or remote computer. —

Syntax

Get-Service [[-Name] <string[]>] [-ComputerName <string[]>] [-DependentSe
Get-Service -DisplayName <string[]> [-ComputerName <string[]>] [-Dependen

Get-Service [-InputObject <ServiceController[]>] [-ComputerName <atring[]

Description

The Get-Service cmdlet gets objects that represent the services on a local computer or
on a remote computer, including running and stopped services.

You can direct Get-Service to get only particular services by specifying the service
name or display name of the services, or you can pipe service objects to Get-Service.

Parameters

-ComputerName <string[]>

Gets the services running on the specified computers. The default is the local computer.
Type the NetBIOS name, an IP address, or a fully qualified domain name of a remote
computer. To specify the local computer, type the computer name, a dot (.), or
"localhost".

This parameter does not rely on Windows PowerShell remoting. You can use the

ComputerMame parameter of Get-Service even if your computer is not configured to

% Get-Random
run remote commands.

Daniradd Falea

4 |

il

Use the ISE with Scripts

When you use the ISE to work with PowerShell scripts, you get some much-needed
functionality not provided by Notepad such as some developer-like functions.
Although the tool is not as robust as Microsoft Visual Studio, it does a great job
with PowerShell scripts.

Although it does not include IntelliSense, the ISE shares the same keyboard short-
cuts as Visual Studio. The keyboard shortcuts for running a program, working
with breakpoints, and doing general debugging are the same commands as Visual
Studio. So if you are a developer who thrives with keyboard shortcuts, this point of
consistency should make you happy.

In the script pane, you can both write and edit your scripts. When you load a script
into the ISE, you see color coding and line numbering, making the code much eas-
ier to read and work with. The numbering alone is worth its weight in gold. If you
have ever had to troubleshoot a long script in Notepad and all you had to go on was
that there was an error in line 653 of your script, you know the pain. However, going

119

Creating Your Own

n
X
>
)
-
m
)
w

120

CHAPTER 5

CREATING YOUR OWN SCRIPTS

FIGURE 5.19

to line 653 is as simple as pressing Ctrl+G while in the script pane and entering the
line number. This is an example of a Visual Studio keyboard shortcut in ISE.

To load a script into the ISE, select File > Open; then browse to your script, and
click OK. Figure 5.19 shows the ISE with a script loaded.

ISE with a script
=] windows PowerShell 1SE & x=]
File Edit View Debug Help
el = [A I N Pl | w| 8| BT
| Untitled1.pst required.psl X ~)
1 Srg-get-service fargs -reguiredservices Format-Table -property displayname, status ; -

2
foreach (Sarg in Sargs)

3
4
5
3 Write-Host "For the "farg "Service the following services are reguired:”;
a3
- $raq;

3

}

0

B

PS C:\Users\Matt= t

=

To run a script in the ISE, click the green Play button on the toolbar or press F5.

The ISE has a built-in debugger. This tool provides all the necessary basics,
including breakpoints, for debugging commands, functions, and scripts for the
PowerShell scripts you work with. Breakpoints allow you to not only step through
your code but also check the values of variables as your script executes.

The key to debugging with breakpoints is knowing where you want your script to
pause. Follow these steps to set and use a breakpoint in your script:

WORK WITH THE GUI AND THE SHELL

FIGURE 5.20

1. Place your cursor in the line you want to set the breakpoint on.

2. Select Debug > Toggle Breakpoint, or press F9. This highlights the selected
line, as shown in Figure 5.20.

Breakpoint in ISE

Breakpoint
B windows PowerShell ISE IS
File Edit View Debug Help
DoRE - OxAer |« | 8|Bloo,
| myscript.pst X | (]

4
2 get-process

PS C:\Users\Matt> (€3]

>

Ln1 Coll

3. After you set your breakpoint, run your script by either pressing F5 or click-
ing the green Play button on your toolbar.

4. When the ISE hits your breakpoint, you see a screen similar to Figure 5.21.
Notice also in your PowerShell output and command windows that the [DBG]
indicator appears to notify you that the script is paused. Your script is marked
as read-only while it is executing.

121

reating Your Own

cripts

C
S

n
X
>
)
-
m
)
w

122 CHAPTER 5

CREATING YOUR OWN SCRIPTS

FIGURE 5.21

Breakpoint

] windows PowerShell ISE

File Edit View Debug Help

=18 x|

== |

SR & O» C RN A= s
| myscript.psl [Read Only] X &

i1 get-service
2 get-process

PS C:\Users‘\Matt> C:\Users\Matt\myscript.psl
[DBG]>>> Hit Line breakpoint on 'C:\Users‘\Mattymyscript.psil:1’

[DBG]: PS C:\Users\Matt>=> n

5. You have a few choices while your script is paused. You can do the following:

Step Into When you select Step Into, you can walk your script, going line by
line. If your script calls another procedure, you can step through the other pro-
cedure one line at a time.

Step Out When you are stepping line by line through your script and you step
into a secondary procedure called by your initial script, you can use Step Out to
complete the procedure you are currently in and take you to the line after the one
in your original script that called the second procedure.

Step Over When you are stepping line by line through your script and you hit
a line that runs another procedure in your script, you can select Step Over, which
runs through the called procedure completely and returns you to the next line in
your script paused.

Run/Continue This runs your script up until completion or the next
checkpoint.

Stop Debugger This stops the execution of your script at the current point of
execution. This does not complete your script.

WORK WITH THE GUI AND THE SHELL

Display Call Stack This is an extremely valuable function that displays the
value of your variables and arguments at that point in time in your script.

6. Once you are done debugging your script, you can stop your script or run it to
completion.

Display the Call Stack with Scripts Requiring Parameters

When you are working with scripts requiring parameters to be entered into the
script to execute properly, you have to run the script with the breakpoints slightly
differently.

1. Set the breakpoints in your script.
2. Save the script.

3. Execute the script via the command pane in the ISE as if you are running the
script normally. You see a screen similar to Figure 5.22 before running your script.

FIGURE 5.22 ISE script with parameters

] Windows PowerShell ISE =1
File Edit View Debug Help
ekl & w0k (&b @ | & |=mn0
]
| required.psl X ol
-lSrg=get-service $args -requiredservices | Format-Table -property displayname, status ;

3 foreach (Sarg in Sargs)

4

5

& Write-Host "For the "farg "Service the following services are required:";
7

8

]

fra;

}

PS C:\Users\Matt> (6]

> .\required.psl winrm netlogon p'\ugp'laﬂ

| n1caze [

4. Ifyou want to see the values of your arguments for the script, then select
Debug > Display Call Stack. Your screen looks similar to Figure 5.23.

123

reating Your Own

cripts

C
S

n
X
>
)
-
m
)
w

124 CHAPTER 5 * CREATING YOUR OWN SCRIPTS

FIGURE 5.23 ISEdisplay call stack
PEIES

File Edit View Debug Help

SRE - Ox|9 @ W@ |8 Eoo,

| required.ps1 [Read Only] X
1 Srg-get-service $args -requiredservices Format-Table -property displayname, status ;

foreach (%arg in Sargs)
4
[Write-Host "For the "S%arg "Service the following services are required:";

S$ra;

}

2
3
5
q
&
2
0

B

PS C:“Users'Matt> .\reguired.psl winrm netlogon plugplay
[DBEG]>>> Hit Line breakpoint on "C:\Users\Matt\required.psl:1"

[DBG]: PS C:\Users\Matt=>>> ®

e

n1 Coll

5. Finish running or stepping through your script.

As you have seen in this section, the ISE provides a powerful and useful tool for
your PowerShell tool belt, especially when you are working with scripts. Learn to
use the tool, and you will soon have your scripts running smoothly.

EXERCISE 5: CREATE A SCRIPT TO FIND STARTUP PROGRAMS

In this exercise, you will write a script that lists all the processes that run on startup.
Hint: check the registry Run and RunOnce keys.

CHAPTER

Remoting with PowerShell 2.0

IN THIS CHAPTER, YOU WILL LEARN TO:

> CONFIGURE POWERSHELL REMOTING 126
Learn the Requirements.coviiiiiiiiiiiniannn 126
Enable PowerShellRemotingcooooiviiiin..n, 128
Disable PowerShell Remotingccoovviiiiiiin.... 133

> RUN COMMANDS ON REMOTE SYSTEMS 138
Use Invoke-Commandcooeeiiiiiiiiiniiinnennnnn. 140
Use PowerShell Remote Sessionscovvvieennn... 140

Use RemotinginthelSE...........cooiiiiiiiiiiiiiiiininn 143

9 411dVH)

owerShell 2.0 lets you run PowerShell commands on remote Windows Server
2008 R2 servers and other systems that have PowerShell 2.0 installed. PowerShell
remoting expands the horizons of PowerShell; with it, you can manage your entire
Microsoft environment.

Prior to PowerShell 2.0, you may have run remote commands on other systems by
using Remote Desktop Connection, Terminal Services, or some other remote con-
trol. Although you can still use these tools, they are not the most efficient. Using the
built-in remoting capabilities provides a faster and more efficient way to work with
PowerShell on remote systems.

PowerShell provides the ability not only to bring up a remote PowerShell session but
also to run commands on your local server to gain access on remote servers. For
example, you can run a PowerShell command that would give you the running ser-
vices or processes, you can walk the registry, and you can run any other PowerShell
commands you want on your current servers and also any other server you want to
know about.

In this chapter, you will learn how to enable PowerShell remoting on your
PowerShell 2.0 systems, as well as become familiar with the internal components
that are required to allow remoting. You will also see how to run PowerShell
commands on remote servers, via either a remote session or remote commands.

Configure PowerShell Remoting

Remoting is disabled by default. This is by design to ensure the security of your
environment. You need to enable remoting not only on the systems you want
to manage but also on the systems from which you will run the PowerShell
commands.

By enabling PowerShell remoting, you are configuring the system and firewall to
handle the remote PowerShell requests. In this section, you will take a look at the
components that work on your infrastructure.

Learn the Requirements

Before you enable PowerShell remoting in your infrastructure, you should under-
stand the components you need for your environment. Specifically, you need two
components in addition to PowerShell 2.0 to enable remoting on your systems:

CONFIGURE POWERSHELL REMOTING

» NET Framework 2.0 or later
» Windows Remote Management (WinRM) 2.0

WinRM is the main component used by PowerShell remoting for your PowerShell
2.0 systems. WinRM 2.0 is part of Windows 7 and Windows Server 2008 R2.
However, you need to download this if you are working with other operating
systems. This is available via the integrated installation package in the Windows
Management Framework, as mentioned in Chapter 2. WinRM is installed as a
service. Although the service is installed, it is not enabled by default.

WinRM is a remote management service and is Microsoft’s implementation of the
WS-Management protocol. The WS-Management protocol allows remote systems
to communicate; it’s designed to help heterogeneous systems—both hardware and
software—perform commands remotely in your infrastructure.

This type of communication used to be handled by protocols like Remote
Procedure Call (RPC). WinRM is an easy-to-configure, standards-based protocol
that works seamlessly with your firewalls and your infrastructure’s security.

In addition to having WinRM on the systems you want to manage with PowerShell,
you also need to make sure you have the proper permissions to run the remote com-
mands. You need to be a member of the local administrators group on the remote
computer to establish a connection and be able to run the commands remotely on
other systems. You can also provide the administrative credentials if you are not
currently logged on as an administrative account.

A WORD ON NETWORK LOCATION

In operating systems such as Windows Server 2008 R2 and Windows 7, you have the
choice of three network locations: domain, private, or public. The network location
primarily helps determine the proper security level for your systems on your network. It
also determines how the firewall is configured. You can change your network location
in the Network and Sharing Center.

For remoting to be configured on your system, the current network location has to be
domain or private. If you are on a public network location, you will not be able to con-
figure PowerShell remoting, because when you are in a public location, the Enable-
PSRemoting function (see the “Enable Remoting for PowerShell 2.0” section in this
chapter) is unable to create the firewall exception for WinRM. You will get an error
similar to Figure 6.1.

127

emoting with
owerShell 2.0

R
P

n
I
>
)
1
m
=
(=)}

128 CHAPTER 6 * REMOTING WITH POWERSHELL 2.0

FIGURE 6.1

Network location error

i3/ Administrator. Windows PowerShell o E ==l

Windows PouwerShell
Copyright (C> 2889 Microsoft Corporation. ALL rights resewved.

IPS C:\Windous' ten32> Enable—-PSRemoting

WinRM Quick Configuration
Running command “Set—WSManQuickConfig" to enahle this machine for remote management through WinRM seruice.

This include
1 .

2 Cif alveady startedd the WinRM sexuice
. Setting the WinRM s tart

. Creating a listener Lo accept requ on any IP address

. Enabling firewall exception for US-Management traffic <for http only).

want to continue?
[A1 Yes to A1l [Nl No [L]l No to A1l [81 Suspend [?] Help (default is "¥">: ¥
inR heen updated to peceive requests.
W inRi ice type changed successfully.
WinRl ruice started.
Conf igured LocalfccountTokenFilterPolicy to grant administrative rights remotely to local users.

PS C:\Windous\systend2> _

Enable PowerShell Remoting

FIGURE 6.2

Enabling PowerShell remoting is as simple as using one command, regardless of the
operating system. To enable PowerShell remoting, run the following function from
an administrative PowerShell session:

Enable-PSRemoting

The function actually runs the Set-WSManQuickConfig cmdlet; it takes care of all
the automated processes to run WinRM and PowerShell remote commands. If you
try running this command from a regular, nonadministrative PowerShell session,
you will see an error similar to Figure 6.2.

Access denied for Enable-PSRemoting

ndows PowerShell

s\Matt> Enabhle—-PSRemoting

PS C:tUsers\Matt) _

If you see this error, execute an administrative PowerShell session. After you load a
PowerShell session as an administrator, you can then enable PowerShell remoting
with the Enable-PSRemoting command. After you run Enable-PSRemoting,
you will see a screen similar to Figure 6.3.

CONFIGURE POWERSHELL REMOTING 129

FIGURE 6.3 Enable-PSRemoting

emn32> Enabhle—-PSRemoting

WinRM Quick Configuration
Running command "Set-WS8ManQuickConfig" to enahle this machine for remote management through
WinRM service
Th include
. Starting or tarting (if already started> the WinRM service

2. Setting the M service type to auto start
3. Creating a listener to accept regu on any IP addr
4. Enabling firewall exception for WS-Management traffic <(for http onlyd.

Do you want to continue?
[¥]1 Yes [A] Yes to A1l [N]1 Mo [L] Mo to A1l [§1 Suspend [?] Help <default is ¥

Type Y to continue the PowerShell remoting configuration of the WinRM service.
You see a screen similar to Figure 6.4.

FIGURE 6.4 Confirmation of PowerShell remoting

rs~Administrator?> Enable—PSRem q

WinRH Guick Configuration
RBunning command "Set-WSManQuickConfig" to enable this machine for remote management through
WinRM service.
This includes:
1. Starting o starting (if already sta}-ted) the WinRH service

- Setting the WinRM service type to aut

. Creating a listener to accept requests on any IP addres

. Enabling firewall exception for WS—Management traffic (fﬂl http only).

want to continue?
[Al Yes to A1l [N]1 No [L] Ho to A1l [S8]1 Suspend [?]1 Help <{default is "¥">: ¥
WinBAM already is set up to receive requests on this machine.
WinRAM already is set up for remote management on this machine.

Conf irm

Are you sure you want to perform this action?

Performing operation "Set-PSSessionConfiguration” on Target “Mame: microgsoft.powerchell SDDL:
sNEG:BAD:PCA;;GA;5:BASPCAUSFAGA; 5 sUDI CAUSSAGRGH; ;5UDY . This will allow selected users to

remotely run Windows Powerfhell commands on this computer".
[A]1 ¥Yes to A1l [H] Ho [L] Ho to A1l [21 Suspend [?]1 Help {default is "¥">:z ¥_

Type Y to confirm the configuration of PowerShell remoting, and you are returned
to your PowerShell command prompt.

Instead of typing ¥ to verify the configuration of your systems, you can also type
A (yes to all), after which the Enable-PSRemoting function runs to comple-
tion. Alternatively, if you do not want to see the prompts for confirmation in the
PowerShell session, you can run the following command:

Enable-PSRemoting -Force

= o

e

By running Enable-PSRemoting with the -Force switch, you suppress the con- z=
=

firmations during PowerShell remoting configuration. -E <
HE

n
I
=
)
1
m
=
(=)}

130

CHAPTER 6 -

REMOTING WITH POWERSHELL 2.0

XP Mode

FIGURE 6.5

As you saw in Chapter 2, you can install PowerShell on the XP mode virtual
machine on a Windows 7 machine. You can also enable remoting on the XP mode
system with the Enable-PSRemoting function. However, when you first run the
function, you will see a screen and error similar to Figure 6.5.

XP mode Enable-PSRemoting error

Mindous PowerShell
Copyright <(C> 2089 Microsoft Corporation. All rights reserved.

PS C:“Documents and Settings“XPMUser> Enabhle-PSRemoting

WinRM Quick Configuration
Running command "Set—| lJSI‘IathuckConfig" to enahle this machine for remote
management through WinRM service.
This includes:
1. Starting or 1e..ta1t1ng_(1f already started? the WinBRM service

3. 5 o 3
4. Enabling firewall exception for WS- Hanagement traffic (ful http only>.

Do you want to continue?

[¥]1 Yes [A] Yes to All [NH] Ho [L]1 No to A1l [%] Suspend [?1 Help
{default is "¥">:y

WinRM ha; heen up(late(l to receive requests.

WinRM service type changed successfully.

MinBH service started.

PS C:~Documents and Settings\XPMUser> _

The error indicates the default security parameter in XP mode and how it
handles authentication for network logons when the system is using a local
account. The default setting maps all the users to a local guest account, and

it does not have enough permissions to change the setting. You can change

the setting so the account used for network logons is not mapped to the guest
account but mapped to the actual authenticated account. To change the setting
in XP Mode, modify the local computer policy setting by using the following
procedure:

-—

. On the XP mode virtual machine, select Start > Run.

2. Type gpedit.msc, and press Enter. This loads the Group Policy Editor for
the local XP mode system.

3. Click the Computer Configuration container, and expand the tree.

4. Navigate to Windows Settings > Security Settings > Local Policies >
Security Options.

CONFIGURE POWERSHELL REMOTING 131

5. Find Network Access: Sharing And Security Model For Local Accounts.
Double-click the setting to modify the current value.

6. Change the value to Classic — Local Users Authenticate As Themselves. Your
screen will look similar to Figure 6.6.

FIGURE 6.6 XP mode Group Policy setting

Metwork access: Sharing and security model for local ac... E|g|

| Local Security Setting | Explain This Setting

(;L' Metwork access: Shaing and security madel for local accounts

i Guest only - local ugers authenticate az Guest v

7. Click OK.
8. Close the Group Policy Editor.

After you have modified the setting, you can return to the PowerShell session in

XP mode and run the Enable-PSRemoting function, which should now run
without error.

Getting to Know Enable-PSRemoting

When you run the Enable-PSRemot ing function, you may notice that it tells you
it is going to do four main things:

» Start or restart (if already started) the WinRM service

emoting with
owerShell 2.0

R
P

» Set the WinRM service type to autostart

CHAPTER 6

132 CHAPTER 6 * REMOTING WITH POWERSHELL 2.0

» Create a listener to accept requests on any IP address
» Enable firewall exception for WS-Management traffic (for HTTP only)

Enable-PSRemoting performs several tasks. For example, the Enable-
PSRemoting function runs the Set-WSManQuickConfig cmdlet. The Set-
WSManQuickConfig cmdlet performs several vital configurations on your system:

» Starts up the WinRM service and sets the service startup type to Automatic.
» Creates a listener to listen for and accept requests on an IP address.

» Enables a firewall exception for Windows Remote Management via
WS-Management communications. The default port is TCP 5985, and you
can see an example of the firewall rule from a Windows Server 2008 R2 in
Figure 6.7.

FIGURE 6.7 WinRM firewall port

Windows Remote Management (HTTP-In) Properties ﬂ
Protocols and Ports | Scope I Advanced I Users I
General | Programs and Services I Computers I

@ This is a predefined nule and some of its properties cannot
be modified.

— General

Name:

Sl \indows Remote Management (HTTP-In)
Description:

Inbound rule for Windows Remote Management via A|
W5-Management. [TCP 5385]
vI

IV Enabled

r— Action
. ¥ Allow the connection

© 7 Allow the connection f it is sscure

Customize... |

" Block the connection

Leam more about these settings

oK | Cancel | apon |

» Enables all the registered PowerShell session configurations to receive
instructions from remote computers.

CONFIGURE POWERSHELL REMOTING 133

» Registers the Microsoft.PowerShell session configuration (unless it has
already been registered).

» Registers the Microsoft.PowerShell32 session configuration on 64-bit
systems (unless it has already been registered).

» Removes the Deny Everyone setting from the security descriptor for all
registered session configurations.

» Restarts the WinRM service to finalize the configurations and settings.

Disable PowerShell Remoting

If you no longer want to have PowerShell remoting enabled on your systems, you
can run another function to disable remoting:

Disable-PSRemoting

However, when you run the command, you will see a screen similar to Figure 6.8.

FIGURE 6.8 Disable-PSRemoting

on_configupations doos not undo all the changes mads by the Enablo-PSRenoting or
n cedlet. You might have to manually undo the changes by following these step

ons .
which restricts remote access to members of the

computer.

re you want to p this actlnn"‘
operation “Set-] ionConf igur e: microsoft.povershell SDDL:
BAYS:PLAl; Fn Gn,,,uD)(nu sn cxcu,,,lm) This will disable access to this session

[A] Yes to n11 [N] No [L1 Mo to A1l [S1 Suspend [?]1 Help {default is "¥'D:

Although this function effectively disables remoting for the server, it does not
undo all the changes that Enable-PSRemoting makes. As the warning note
states, you may still have to do the following:

» Delete the WinRM listener
» Stop and disable the Windows Remote Management service

» Remove the firewall exception for WinRM

= o

» Restore the value of the LocalAccountTokenFilterPolicy to 0 in the £d
registry E £

g

To finish undoing all the changes that were performed by Enable-PSRemoting, g2

perform the following procedures, which will help you complete the process. _

n
I
>
)
1
m
=
(=)}

134 CHAPTER 6 -

REMOTING WITH POWERSHELL 2.0

FIGURE 6.9

However, before you complete them, make sure you do not have other applications
running on your system that require the settings you will be disabling.

Delete the WinRM Listener
1. Open a command prompt window by selecting Start > Command Prompt.

2. You need the address of the listener to delete. To see all the listeners, use the
following command to get the address:

winrm enumerate winrm/config/listener

You will see a screen similar to Figure 6.9.

WinRM listeners

Administrator: Command Prompt

C ersPuinrm enumerate winrmsconfig-slistener
Listener

Address = =

Transport = HITP

Port = 5985

Hostname

Enahled = true

URLPrefix = wsman

CertificateThumbpri

ListeningOn = 18.8.8.2, 127.8.0.1, ::1, feBB@::100:7f:fffexi5. felB
H.0.2:x12

C:nlUsers>

3. Write down the address for the listener that has Port=5985 and
Transport=HTTP. In Figure 6.10, the address is an *.

4. To delete the listener, enter the following command, placing your address in
the italicized address parameter:

winrm delete winrm/config/Listener?Address=

Address+Transport=HTTP

5. Press Enter to delete the listener and close your session.

CONFIGURE POWERSHELL REMOTING

Stop and Disable the Windows Remote Management Service

1.

2.

3.

On the system, open the Services control panel by selecting Start > All
Programs > Administrative Tools > Services.

In the Services control panel, scroll down to the Windows Remote
Management (WS-Management) service.

Right-click the service and select Properties, or double-click the service. You
will see a screen similar to Figure 6.10.

FIGURE 6.10 WinRMservice

4.
5.
6.
7.

Windows Remote Management (WS-Managen pertis x|
General | Log On I Flecoveryl Dependencies I

Servicename: WinRM

Display name: Windows Remote Management (WS-Management)

Pscaiaten indows Remote Managemert (WinRM) service A
e ements the WS5-Management protocol for rernote_l

Path to executable:
CA\Windows'\System32'svchost exe « NetworkService

Startup type: IAutomatic (Delayed Start) LI

Help me configure service startup options.

Service status: Started

Start | Stop | Fatize Festime

‘You can specify the start parameters that apply when you start the service
from here.

Start parameters: I

QK I Cancel ALoply

Click Stop to stop the service.

Click the Startup Type drop-down list, and select Disabled.
Click OK.

Close the Services control panel.

135

emoting with
owerShell 2.0

R
P

n
=
=
o
1
m
=
(=)}

136 CHAPTER 6 * REMOTING WITH POWERSHELL 2.0

As an alternative, you can also use PowerShell to stop and disable the service with
the following cmdlets:

Stop-Service WinRM
Set-Service WinRM -StartupType Disabled

Disable the Firewall Exception for WinRM

1. Open the Windows Firewall with Advanced Security program by selecting
Start > All Programs > Administrative Tools > Windows Firewall With
Advanced Security.

2. Click Inbound Rules.

3. Scroll down the list of the rules to the Windows Remote Management

FIGURE 6.11

(HTTP-In) rule, and select it. Your screen will look like Figure 6.11.

Disabling the WinRM firewall exception

-ioix
File Action View Help
4 $ e
{3 Inbound Rules o e ' -
B Outbound Rules F r .
5. Connection Security Rules outing and Remote Access (PPTP-In) Routing and Remote Access i3 vewRuk...
g Moritoring Routing and Remote Access Remote Manag... Routing and Remote Access R... -
.Rouﬁng and Remote Access Remote manag... Routing and Remote Access R... T Filter by Profile 4
’Secure Socket Tunneling Protocol (SSTP-In) Secure Socket Tunneling Proto... 7 Fiter by State »
@World ‘Wide Web Services (HTTPS Traffic-In) Secure World Wide Web Servi... 5
@ 5104 Trap Service (UDP In) SNIMP Tray W Fiter by Group *
p p
OSNMP Trap Service (UDP In) SMMP Trap View 3
@Windows Backup (RPC) Windows Backup
@Wlndows Backup (RPC-EPMAP) Windows Backup 6] Refresh
Windows Communication Foundation Net.TC... Windows Communication Foun... |z Exportlist...
.\ﬁhndows Firewall Remote Management (RPC) Windows Firewall Remote Man... Help
’W’lndows Firewall Remote Management (RPC... Windows Firewall Remote Man...
.Windows Management Instrumentation (ASy... Windows Management Instru...
.Wlndows Management Instrumentation (DC... Windows Management Instru... N
Windows Management Instrumentation (WM... Windows Management Instru... ¥ Disable Rule
.Wlndows Media Player (UDP-In) ‘Windows Media Player X Cut
.Windows Media Player x&8 (UDP-In) Windows Media Player -
.Windows Remote Management - Compathilit... Windows Remote Management LE“ Sy
note Management (HTTP-In) te Management K Delete
.SCW remote access firewall rule - Scshost - ... W\nduws Security Configurak... D Properties
.SCW remote access firewall rule - Scshost -... Windows Security Configurat...
.SCW remote access firewall rule - Svchost - ... Windows Security Configurati... ﬂ Help
@World Wide Web Services (HTTP Traffic-In) World Wide Web Services (HT...
N [|] —

4. With the rule highlighted, click Disable Rule in the action pane on the right,
or right-click the rule and select Disable Rule.

5. Close the Windows Firewall with Advanced Security program.

CONFIGURE POWERSHELL REMOTING

Restore the Value of the Local AccountTokenFilterPolicy to 0

You may find this setting in client operating systems like Windows 7. You may not
see this registry key when you look in your local registry.

!
‘ ,' WARNING Bevery careful whenever you are modifying the registry; if you modify
the registry incorrectly, with unwanted results, you may have to reinstall your system.

1. Select Start > Run. Type regedit . exe, and press Enter to start the Registry
Editor.

2, If prompted with a User Account Control dialog box, click Yes to continue.

3. Navigate to the following location in the registry: HKEY_ LOCAL_MACHINE\
SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System.

4, Find the LocalAccountTokenFilterPolicy key. If you do not see the
registry key, close the Registry Editor.

5. Double-click the LocalAccountTokenFilterPolicy key, and change the
value to 0. Your screen will look like Figure 6.12.

FIGURE 6.12 LocalAccountTokenFilterPolicy

TGO T T CCOETroTT T

2b]legalnoticetext REG_SZ
‘.’.'31 LocalAccountTokenFilterPolicy REG_DWORD 000000001 (1)
‘-'-'51 PromptOnSecureDesktop REG_DWORD 0:00000001 (1)
‘.’.'o'] scforceoption REG_DWORD 000000000 (0)
5| shutdownwithoutlogon REG_DWORD 000000001 (1)
‘.’.'o'] undockwithoutlogon REG_DWORD 000000001 (1)
‘.'.'é]\u’alidateAdminCodeSignatures REG_DWORD 000000000 (0)
Edit DWORD (32-bit) Value (2]
Value name:

LocalAccount TokenFitterPolicy

Value data: Base
i] @ Hexadecimal
() Decimal

6. Click OK.

7. Close the Registry Editor.

137

emoting with
owerShell 2.0

R
P

n
I
>
)
1
m
=
(=)}

138

CHAPTER 6

REMOTING WITH POWERSHELL 2.0

Again, since this is a PowerShell book, you can also run the following command to
change the value of the LocalAccountTokenFilterPolicy key:

Set-ItemProperty -path 3

HKLM: \ SOFTWARE\Microsoft\Windows\CurrentVersion 3
\Policies\System -Name "LocalAccountTokenFilterPolicy" 3
-Value "0"

Run Commands on Remote Systems

After you enable remoting on your Windows Server 2008 R2 and other PowerShell
2.0 systems, you can use this administrative tool. With PowerShell 2.0 remoting,
you can begin to work with remote servers in two ways. First, you can run com-
mands on your local server that pull data from the remote servers you place in the
PowerShell command by using the invoke-command cmdlet. Second, you can start
a PowerShell session on your local administrative system. The session allows you to
have an interactive PowerShell session on the remote system.

In addition to enabling the remote capabilities of PowerShell, several cmdlets
do not require remoting to be enabled to be effective. Some cmdlets have the
ComputerName parameter. If a cmdlet has this parameter, you may not need
to have PowerShell remoting enabled for it to work. Some of the more com-
mon administrative cmdlets, such as Get-Service, Get-Process, and Get -
Eventlog, support the ComputerName parameter and therefore work without
having PowerShell remoting enabled.

To find a list of all the cmdlets with the ComputerName parameter, you
canrun Get-Help * -parameter ComputerName. The results will be
similar to Figure 6.13.

Even with the ComputerName parameter in a cmdlet, you still may need to have
remoting enabled to use the cmdlet in a remote fashion. If you are not sure whether
you need remoting for a particular cmdlet, you can use the Get-Help cmdlet. For
the Invoke-Command cmdlet, your results will look similar to Figure 6.14.

When you use the ComputerName parameter, you can use either the fully qualified
domain name (FQDN), NetBIOS name, or IP address of the system or systems you
are going to be working with.

RUN COMMANDS ON REMOTE SYSTEMS

FIGURE 6.13 Cmdlets with the ComputerName parameter

dows PowersShell

UsershMatt> Get—Help * —parameter ComputerName

Category Synopﬂlﬂ
Gets events from event logs and event tracing lo
Cmdlet Gets performance counter data from local and rem
Cmdlet Tests whether the WinRM serwvice is »unning on a
Inuvoke-! USHachtlun Cmdlet Invokes an action on the object that is specifie
onnect—WSMan Cmdlet Connects to the WinRM service on a remote compute
Disconnect-WSMan Cmdlet Disconnects the client m the UinRM service on
Get—WSHanInstance Cmdlet Displays management information for a resource i
Set—WSManInstance Cmdlet Modifies the management information that is rela
Remove—WSManInstance Cmdlet Deletes a management resource instance.
Mew—WSManInstance Cmdlet Creates a new instance of a management resource.
Invoke—Command Cmdlet Buns commands on local and remote computers.
Neu—P88ession Cmdlet Creates a persistent connection to a local or re
Get—PSSession Cmdlet Gets the Windows PowerShell sessions (PSSessions
Remove—P8Session Cmdlet Closes one or more Windouws PowerShell sessions
Receive—Job Cmdlet Gets the results of the Windows PowerShell backg
Enter—PSSession Cmdlet Starts an interactive session with a remote comp
Get—EventLog Cmdlet Gets the events in an event log. or a list of th
Clear—EventLog Cmdlet Deletes all entries from specified event logs on
ite—EventLog Cmdlet Weites an event to an event log.
Cmdlet Sets the event log properties that limit the si=
Cmdlet Displays the event logs of the local or a remote
Cmdlet Creates a new event log and a new event source o
Cmdlet Deletes an event log or unregisters an event sou
Cmdlet Gets instances of Windows Management Instrumenta
Invoke—-WmiMethod Cmdlet Calls Windows Management Instrumentation C(WMI> m
Get—Process Cmdlet Gets the processzses that are running on the local
Remnue UmthJect Cmdlet Deletes an instance of an existing Windows Manag
Cmdlet Subscribes to a Windows Management Instrumentati
Cmdlet Gets the services on a local or remote computer.
Cmdlet Starts, stops. and suspends a service, and chang
Cmdlet Creates or updates an instance of an existing Wi
Get—HotFix Cmdlet Gets the hotfixes that have been applied to the
Test—Connection Cmdlet Sends ICMP echo request packets (“pingz'") to one
Resta Computer Cmdlet Restarts ("peboots'") the operating system on loc
Stop—Computer Cmdlet Stops (shuts down? local and remote computers.

PS8 C:islUsers\Matt>

FIGURE 6.14 ComputerName requiring remoting

Windows PowerShell

PS C:i:sUsersSMatt> Get—Help Invoke—Command —parameter ComputerMame

—ComputerName <stringl[l>
Specifies the computers on which the command runs. The default is the local computer.

When you use the ComputerMame parameter. Windows PowerShell creates a temporary connection
that is used only to run the specified command and is then closed. If vou need a persistent
connection, use the Session parameter.

Type the HETBIO2 name, IP address. or fully—gqualified domain name of one or more computers
in a cummg—“egagated list. To specify the local computer, type the computer name, "localhos
t", or a dot -

To use an IP address in the value of the ComputerMame parameter. the command must include t
he Credential parameter. Also. the computer must be configured for HITPS transport or the I
P address of the remote computer must be included in the WinRM TrustedHosts list on the loc
al computer. Por instructions for adding a computer name to the TrustedHosts list, see "How
to Add a Computer to the Trusted Host List" in about_Remote_Troubleshooting.

Mote: On Windows Vista, and later versions of Windows. to include the local computer in th
e value of the CnmputerName paraneter,. vou must open Windows PowerShell with the "Run as ad
ministrato

false
i

Position?
Default value
Accept pipeline input? true (ByPropertyMame?
Accept wildcard characters? Ffalse

PS C:xlUsersiMatt> _

139

th

PowerShell 2.0

ing wi

Remot

n
=
=
)
1
m
=
(=)}

140

CHAPTER 6 -

REMOTING WITH POWERSHELL 2.0

Use Invoke-Command

You can use the Invoke-Command cmdlet to run cmdlets on a remote server.
This allows you to run a script block of PowerShell commands on the servers
you specify. With Invoke-Command, PowerShell connects temporarily to the
server you want to manage and runs the commands you specify. The basic syn-
tax of the Invoke-Command cmdlet is Invoke-Command -ComputerName
{Scriptblock}.

So if you had the following command, it would restart the Windows Update service
on the following servers: Server4, Server8, and Serverl5:

Invoke-Command -ComputerName Server4, Server8, Serverl5 3

{Restart-Service -name wuauserv}

Once the commands are sent to the remote computer, they will run until comple-
tion. If you want to stop the command running on the remote computer, you can
send an interruption request by pressing Ctrl+C.

Use PowerShell Remote Sessions

FIGURE 6.15

You can run PowerShell commands in an interactive session remotely via the
Enter-PSSession cmdlet. This lets you have a temporary interactive session
directly on the server you are remoting to. When you run the cmdlet, will have a
direct connection to the remote server until you exit the remote session. Once you
are connected to the remote session, you have access to built-in cmdlets on the
remote server. For example, if you wanted to have a PowerShell session on a server
named Server3, your cmdlet would be Enter-PSSession Server3,as shown
in Figure 6.15.

Example of a remote PowerShell session

B Administrator: Windows PowerShell

PS C:\Users“Administrator> Enter—PSSession Serverd
[zerverdl: P8 C:slserssadministrator.CONTOSONDocuments> _

RUN COMMANDS ON REMOTE SYSTEMS 141

When you are in the remote session, the system you are connected to is referenced in
the prompt with brackets ([]). When you are done with managing the remote servers
and want to return to your local PowerShell session, type the following cmdlet:

Exit-PSSession
This takes you out of your current remoting session.

You can have multiple persistent sessions. Use the New-PSSession cmdlet to create
these persistent connections. If you want to create a session for a server named
Server2, type the following:

New-PSSession Server?2

If you use New-PSSession without specifying a computer name, the cmdlet
creates a new session for the local system. When you create a new session with the
New-PSSession cmdlet, the session is given an ID. The ID can also be used to
enter the remote session. You can see an example of the output of three sessions
created with the New-PSSession cmdlet in Figure 6.16.

FIGURE 6.16 New sessions

PS C:sUsersSAdministrator? New-PSSession

ComputerHame State igurat ionName Availabhility

soft .PowerShell Availahle

rat ionName Availability

ft _PowerShell Available

rationName Availability

3 Session3d serverd i soft .PowerShell Available

P8 C:sUserssAdministrator?

You can also create multiple remote PowerShell sessions by using the
ComputerName parameter with the New-PSSession cmdlet. For example, the
following cmdlet would create three remote PowerShell sessions for the computers
named Server3, Server5, and Server6:

New-PSSession -ComputerName Server3, Server5, Server6.

emoting with
owerShell 2.0

R
P

One of the advantages of using the New-PSSession cmdlet is that it creates a
persistent connection during your local PowerShell session so you can easily switch | CHAFTERG

n
I
=
)
1
m
=
(=)}

142

CHAPTER 6

REMOTING WITH POWERSHELL 2.0

between the sessions on your systems. To see what sessions you currently have
started on your system, type the following cmdlet:

Get-PSSession

Figure 6.17 shows an example of the output of the Get-PSSession cmdlet.

FIGURE 6.17 Get-PSSession

rator: Windows Powershell
NlUserstAdninistrator? Get-PS8Session

ComputerNamne State Conf igurationName Availability

localhost Microsoft.PowerShell Availahle
server Opened Microszoft _PowerShell Availahble

serverl Opened Microsoft.PowerShell Availahble

PS8 C:\lUsers“Adninistratord>

After you have created the sessions, you can run commands by either the Invoke-
Command or Enter-PSSession cmdlet using the session ID, instead of the com-
puter names for the systems you want to remotely manage. You can also assign
variables for any or all of the sessions you want to use. For example, the following
cmdlet would assign the variable $psr to all the remote sessions currently started on
the server:

Spsr=Get-PSSession

You can then use this variable in your commands to simultaneously communicate
with remote servers. For example:

Invoke-Command -Session $psr {Get-Service}
Figure 6.18 shows the output of another command using this variable.

To enter one of the existing sessions, you can use the Enter-PSSession men-
tioned earlier in this section in combination with the session ID to access the
session. So if you wanted to access PowerShell session with ID 2, you would type the
following:

Enter-PSSession -ID 2

When you enter the remote PowerShell session, you will have an interactive session
with the remote server. However, since you have created a persistent connection
with the New-PSSession cmdlet, the remote session remains open when you use
the Exit-PSSession cmdlet. The PowerShell sessions remain open as long as your

RUN COMMANDS ON REMOTE SYSTEMS

FIGURE 6.18

local PowerShell session is open. If you do not want the PowerShell session to be
open, you can run the Remove-PSSession cmdlet followed by the ID number to
close the remote PowerShell session. For example, to close the session with ID 3, you

would type this command:

Remove-PSSession -

ID 3

Variable for Invoke-Command

Stonned

fAeLookupSuc
AppMgmt
BFE

BITS
Brouwser
CertPropSuc
clr_optimizatio...
COMS y=hpp
CryptSvc
DecomLaunch
defragsvc
Dhcp
Dnscache
DPS

EFs

event log
EventSystem
FCRegSvc
gpsuc
hidserv
hkmsuc
IKEERT
iphlpzuc
Kevylso
KtmRm
LanmanServer
LanmanWorkstation
1ltdsvc
Imhosts
MpsSuc
MSDTC
MSiSCSI
msiserver
napagent
Metlogon
netprofm
NlaSuc

nei
PerfHost
pla
PlugPlay
PolicyfAgent
Pouwer
ProfSuc

ProtectedStoraae

fApplication Experience
Application Management
Base Filtering Engine
Background Intelligent

Computer Browser

Cevtificate Propagation

Microsoft .NET Framework NGEN v2.8....
COM+ System Application

Cryptographic Services

DCOM Server Process Launcher

Disk Defragmenter
DHCP Client
DNS Client

Diagnostic Policy Service
Encrypting File System (EFS)

Windows Event Log
COM+ Event Systen

Microsoft Fibre Channel Platform Re...
Group Policy Client

Human Interface Device fAccess

Health Key and Certificate Management
IKE and AuthlP IPsec Keying Modules

IP Helpew
CHG Key Isolation

KtmRm for Distributed Transaction C...

Server
Workstation

Link-Laver Topology Discovery Mapper
TCPA/IP NetBIOS Helper

Windows Firewall

Distributed Transaction Coordinator
Microsoft iSCSI Initiator Service

Windows Installer

MNetwork Access Protection Agent

Hetlogon

Netuwork List Service

Metwork Location Awareness
Network Store Interface Seruvice
Performance Counter DLL Host

Performance Logs &
Plug and Flay
IPsec Policy Agent
Pouer

lser Profile Service

Proatected Stopace

Use Remoting in the ISE

$psr {Get—Servicel

PEComputerName

serverd
serverd
serverd
serverd
serverd
serverld

nununaLuran

serverd
serverd
serverld
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverl
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd
serverd

You can also leverage PowerShell remoting in the Integrated Scripting

Environment (ISE) to host your remote sessions. Within the ISE, you can create
tabs, as you saw in Chapter 5, to host remote sessions. To start a remote session in

the ISE, do the following:

1. With the ISE open, click File > New PowerShell Remote Tab. You will see a

screen similar to Figure 6.19.

143

th

owerShell 2.0

Remoting wi
P

n
I
=
)
1
m
=
(=)}

144 CHAPTER 6 -

REMOTING WITH POWERSHELL 2.0

FIGURE 6.19 New PowerShell Remote tab in the ISE

FIGURE 6.20

New Remote PowerShell Tab

";‘ Computer: I

User name: |

You will be asked for credentials when you connect

Connect | Cancel |

2. In the New Remote PowerShell Tab dialog box, enter the computer name, and

if you want to use a different user credential than you are currently logged on
with, you can enter it here as well.

3. After you have finished filling out the form, click Connect. You will see a
screen similar to Figure 6.20, with the new tab in the ISE.

ISE with PowerShell remote tab

FE Administrator: Windows PowerShell ISE ==
File Edit View Debug Help

L -] w B =]
= [| = (85 B

| PowerShell 1 | server3 X

Saipt ()
PS C:\Users\Administrator> Enter-PSSession '"server3’
if ($?) {$psISE.CurrentPowerShellTab.DisplayName = 'server3'}

[server3]: PS C:\Users\administrator.CONTOSO\Documents=> (€3]
>

Completed

Lnl Coll

You may have noticed after you loaded the session that the ISE used the Enter-

PSSession cmdlet to start the session. This session ends when the tab is closed in
the ISE.

RUN COMMANDS ON REMOTE SYSTEMS

You also saw when you brought up the new PowerShell remote tab that it asked for
alternate credentials. Using the ISE is not the only way to start a remote PowerShell
session. You can use the cmdlets Invoke-Command, Enter-PSSession, and New-
PSSession to provide alternate credentials for the remote session. All three of the
cmdlets provide support for the -credential parameter, as well as an authen-
tication method to allow you to use the proper user accounts with permissions to
perform the tasks you may need in the remote PowerShell session.

EXERCISE 6: SET UP A REMOTE POWERSHELL SESSION

Create a PowerShell management environment that has remote PowerShell sessions
ready at your fingertips.

145

emoting with
owerShell 2.0

R
P

n
I
>
)
1
m
=
(=)}

CHAPTER

Server Essentials in PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

> WORK WITH YOUR SERVER IN POWERSHELL 148
Work with Server ManagerCmdlets......................... 148
ANAlyze YOUr SEIVEr. ...ttt 150

> ADD RELIABILITY TO YOUR SERVER 156
Install the Backup Toolscooviniiiii i 156
Perform a Backup with PowerShell.......................... 156
Load-Balance Your Network ..., 159

> USE OTHER POWERSHELL UTILITIES FOR THE SERVER 163
Use the Registry with PowerShell 163
Use PowerShell Troubleshooting Packs...................... 166
Schedule PowerShell Scripts........coooviiiiiiii i, 169

L 411dVH)

aving PowerShell built into Windows Server 2008 R2 gives you flexibility in
managing your server. Several PowerShell cmdlets let you perform many of the
key administrative jobs you may need to do on a daily basis, including installing
features for your Windows Server 2008 R2 server, backing up your server, analyz-
ing the server, and many others. PowerShell lets you perform many of these tasks
consistently on a batch basis.

This chapter outlines key modules for managing day-to-day server administration,
including using Server Manager, using Best Practices Analyzer, doing backup and
recovery, performing network load balancing, and troubleshooting.

Work with Your Server in PowerShell

One of the fundamental tasks you will perform on your servers is adding new roles
and services, which provide your infrastructure with added functionality. Although
you can use the Server Manager GUI to perform tasks, you can easily install new
features on your server with PowerShell.

In this section, you will work with the Server Manager module for PowerShell,
which provides the ability to install and remove features on your Windows Server
2008 R2 servers. The Server Manager module can be imported on Server Core
installations as well. This allows you to use the same commands to install the
features on both the full and Server Core installations of Windows Server 2008 R2.

Once you have installed PowerShell on a Server Core installation, you can use the
Server Manager cmdlets to install features. This provides an alternative to the DISM
installation tool on your Server Core installations.

Work with Server Manager Cmdlets

Before you can install new features with PowerShell on your Windows Server 2008
R2 server, you have to import the Server Manager module into your PowerShell
session. Run this command to import the Server Manager module into your
PowerShell session:

Import-Module ServerManager

WORK WITH YOUR SERVER IN POWERSHELL

FIGURE 7.1

FINDING OTHER POWERSHELL MODULES

Several PowerShell modules may be available to you on your Windows Server
2008 R2 server. As you may recall from Chapter 3, you can run the Get-Module
-ListAvailable cmdlet to see what modules are available to you and verify the
correct spelling of the module names.

After you have imported the Server Manager module, you need to know how to use
three main cmdlets for working with your server features:

Get-WindowsFeature
Add-WindowsFeature
Remove-WindowsFeature
With Get-WindowsFeature, you can see all the features available to install on

your Windows Server 2008 R2 server. When you run Get-WindowsFeature, you
will see a screen similar to Figure 7.1.

Get-WindowsFeature

Active Directory Certificate Services
[1 Certification Authority

Active Directory Domain Services

[1 fictive Directory Domain Controller

Active Directory Lightweight Directory Services

DHCF Server
DNS Server
File Services
[1 File Server
[1 Distributed File Systen
[1 DFS Hamespaces
[1 DFS Replication
[File Serwver Resource Manager
[Services for Metwork File System
L BranchCache for network files
Hyper—U
Print and Document Services
[1 Print Server
[1 LPD Service
Remote Desktop Services
[1 Remote Desktop Uirtualization Host

AD—Certificate
ADCS—Cert—Authority
AD-Domain—Services
ADDS-Domain—Controller
ADLDS
DHCP
DHNS
File-Services
F8-FileServer
FS—-DFS
FS—-DFS—-Hanmespace
FS-DFS-Replication
FS—Resource—Manager
FS—NF8-Services
FS—BranchCache
Hyper—U
Print—Services
nt—Server
Print-LPD-Service
Remote—Desktop—Services
RDS—VUirtualization

149

Server Essentials in

PowerShell

150 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

Take note of a couple of things in the output of the cmdlet. First, you can identify
which features are available to install by the empty brackets: []. (Already installed
features are noted by [X].) Second, the Name column tells you all the names of the
features you can install on your server. Those names are also used in the
Add-WindowsFeature and Remove-WindowsFeature cmdlets.

For example, if you want to install DNS on your server, use the following command:
Add-WindowsFeature DNS

Likewise, if you want to remove the DNS role from your server, you run this

command:

Remove-WindowsFeature DNS

Although some features are easily installed, other features may require additional
planning and configuration after you install the feature with PowerShell. For exam-
ple, with Active Directory, you have to run DCPROMO . exe after you have installed
the Active Directory role.

You can also add or remove multiple roles at a time by separating the names of the
roles or features with commas. When you install or remove the features, you may
also be required to restart your server. You can restart the server manually, or you
can add the -restart parameter in your PowerShell commands. For example, the
following command installs the Branch Cache and Windows Backup tools on your
server:

Add-WindowsFeature BranchCache, Backup-Features

Analyze Your Server

The Best Practices Analyzer (BPA) is now built into Windows Server 2008 R2 serv-
ers. It provides instant analysis for many of the roles installed on your server, giving
guidance for improvements. Although you can run the BPA tool in Server Manager,
you can also run the tool from a PowerShell session. In this section, you will see
how to use PowerShell with the BPA tool.

The BPA tool scans your system with a series of criteria and rules, comparing

your server configuration against known best practices from Microsoft as well as
Microsoft’s early adopters. This allows you to discover room for improvement or fix
errors on your Windows Server 2008 R2 server.

WORK WITH YOUR SERVER IN POWERSHELL

Loading the BPA Module

TABLE 7.1

With the BPA providing PowerShell support, you can run just a handful of
commands to analyze all the roles on your server. Additionally, the PowerShell tools
provide the ability to run BPA scans of multiple roles at one time with one cmdlet.

To run the BPA PowerShell commands, you need to load both the Best Practices
Analyzer and Server Manager modules into your PowerShell session. Although you
can run scans without the Server Manager module, its additional capabilities enable
a better experience with the BPA tool. In an administrative PowerShell session,
enter the following at the prompt:

Import-Module ServerManager

Import-Module BestPractices

After you have the BPA module loaded, you can then analyze your system and see
how it compares to the best practices. There are four cmdlets you need to know in
order to effectively use PowerShell with the BPA, as described in Table 7.1.

BPA PowerShell commands

e T

Get-BPAModel Allows you to view the roles installed on the server where you run BPA scans.
This tool also shows you when the last scan on a particular role was run.

Get-BPAResult Allows you to view the results for any given BPA scan you have performed.
Invoke-BPAModel Allows you to run a BPA scan on your server for a particular role.
Set-BPAResult Allows you to filter the BPA report from the Get -BPAResult command.

Using the BPA with PowerShell

Before you can scan the system with the BPA tool, you need to know the ID name
for the role you want to scan. To determine which roles currently installed on the
server can be scanned with BPA, use the following command, resulting in a screen
similar to Figure 7.2:

Get-BPAModel

As you may have noticed, not only can you see the role ID name, but you can also
see whether a scan has been done on the role before. However, you need to take note

151

Server Essentials in

PowerShell

n
=
>
)
-
m
=
~N

152 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

of the ID names. The role IDs are used in the other BPA commands to perform
designated tasks.

FIGURE 7.2 Get-BPAModel

Windows PowerShell
ystem32> Get—BpaModel

LastScanT ime

Microsoft/Windows ApplicationServer
Microsof t-lindows Hyper—U Never
Microsoft Windows /NPAS Neuver

soft/Windows/TerminalServices 168-14-2809 1:
sof t/Windows UebhServer 168-14-2889 1
Microsoft -Hindows WEUS Never

PS8 C:“\Windows“system32>

When Windows Server 2008 R2 initially shipped, there were only five roles you
could scan with the BPA tool:

» Active Directory Certification Services (AD CS)
» Active Directory Domain Services (AD DS)

» DNS

» Remote Desktop Services (RDS)

» Internet Information Services (IIS)

As Windows Server 2008 R2 has matured in the technology market, Microsoft has
added several updates to the BPA tool via Windows Update. Even though you may
have updated your servers and installed the BPA updates, you can use the BPA scan
only if the role has been installed on the server. You may not see all the possible IDs
for your own Windows Server 2008 R2 server.

Table 7.2 describes some of the current role ID names that can be used with the
BPA tool.

TABLE 7.2 BPA role IDS

Microsoft/Windows/CertificateServices Active Directory Certification Services (AD CS)

Microsoft/Windows/DirectoryServices Active Directory Domain Services (AD DS)
Microsoft/Windows/DNSServer DNS

Microsoft/Windows/TerminalServices Remote Desktop Services (RDS)

WORK WITH YOUR SERVER IN POWERSHELL 153

=
Microsoft/Windows/WebServer Internet Information Services (IIS) %
&
. . = _
Microsoft/Windows/Hyper-V Hyper-V 8 3
WA
Microsoft/Windows/ApplicationServer Application Server g g
g o
Microsoft/Windows/WSUS Windows Software Update Services ~ e
CHAPTER 7
Microsoft/Windows/NPAS Network Policy and Access Services
Microsoft/Windows/FileServices File Services
Microsoft/Windows /DHCP DHCP

For example, to scan the Active Directory Domain Services on your server, run the
following command:

Invoke-BPAModel -id Microsoft/Windows/DirectoryServices

Although you can scan each role individually, you may want to scan all the roles
on your Windows Server 2008 R2 server. To scan all of the roles, run the following
command, with results similar to Figure 7.3:

Get-BPAModel | Invoke-BPAModel.

FIGURE 7.3 Multiple BPA scans on a server

& Administrator: Windows Powershell
PS C=“lUszsersz Administrator> Invoke-BPAModel -id Microsoft- Windows- DirectorySeruvices

8 il

softslindows/DirectoryServices T keBpaMode 10utputDetaild

PS C:\Users“Administrator? Get-BPAModel ! Invoke-BPAModel
8 il

ft/Windows/ApplicationServer T keBpaMode 10utputDetail)

£t Wind DirectoryServices True {InvokeBpaMode 10utputDetaild
ft/Wind: DHEServer True {InvokeBpaMode 1QutputDetail >

icw £t Wind HehServer True {InvokeBpaMode 10utputDetail)
Microsoft/Windows AUSUS True {InvokeBpaMode 10utputDetail>

PS C:\Users“Administrator?

After you have run the scans, you will want to look at the results. You can use

the Get-BPAResult cmdlet to see the results of your scan. If you see an error
message similar to Figure 7.4, this indicates a scan has not yet been run for the role
you indicated.

154 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

FIGURE 7.4 Rolenotscanned by BPA

d Microsoft/ dows /lehSer
et—BpaResult : There has been a Best Practice Analyzer error for Model Id ’Microsoft Windows- A
ehferver’. The Result file has not vet heen generated. Please perform the scan first and ti

—id Microsoft/Windows-WebhServer|
+ Categorylnfo : Resourcelnavailable: (:)> [Get—BpaResultl. CommandLetException
lyGualif iedErrorld : ResultFileNotFound. Microsoft_BestPractices.CommandLets._GetResult

PS C:~Users> _

To see the report for your Hyper-V role, run the following command, with results
similar to Figure 7.5:

Get-BPAResult -id Microsoft/Windows/Hyper-V

FIGURE 7.5 Get-BPAResult for Hyper-V

i
2icrnsnft/Hindous/Hyper—U

3189586A98

Information

Configuration

The Hyper—U Uirtual Machine Management Serwice zhould be configured to start aut
omatically

Compliance The Hyper—U Best Practices Analyzer scan has determined that you are in complian
ce with this best practice.

Help
Excluded False

ResultMumber : 2
lode 11 Microsoft-Windows Hyper—U
b

491140398

Information

Configuration

ThilHyper—U Metworking Management Service should be configured to start automati
cally

Resolution
Compliance : The Hyper—U Best Practices finalyzer scan has determined that you are in complian
ce with this best practice.

Help
Excluded False

ResultNumber 3
Mode1Ild Microsoft Windows Hyper-U
Ruleld
ResultId 2169218094
Severity Infopmation
Category GConfiguration
itle The Hyper—-U Image Management Service should be configured to start automaticallwy
Prohlem

You can filter results in PowerShell with the Get -BPAResult cmdlet and a Where
clause. If you want to view a BPA report for Hyper-V for only errors, run the follow-
ing command, with results similar to Figure 7.6:

Get-BPAResult -id Microsoft/Windows/Hyper-V|e

Where { $_.Severity -eq "Error" }

WORK WITH YOUR SERVER IN POWERSHELL

FIGURE 7.6 Hyper-Verrorsonly

FIGURE 7.7

PS C:s\UWindows>

ResultNumber

idows Powershell i
Get—BpaResult —-id Microsoft-Windouws- Hyper—U | Where { %5__Severity —eq "Error"¥

2
;I::;.crosu ft-Windows Hyper—U

1193784167

Error

Conf iguration

More than one network adapter should be available

t This server is configured with one network adapter. vhich must he shared hy the

Resolution

Compliance
elp
Exc luded

ResultNunber

Resolution
Compliance

He 1p
Exc luded

PS G:sWindows>

Although you can view the results in the PowerShell window, you can see there is

management operating system and all wvirtual machines that reguire access to a ph
ysical network.

Networking performance may be degraded in the management operating system.

fAdd more network adapters to this comput To reserve one network adapter for e
xclusive use by the management operating emn, do not configure it for use wit
h an external virtual network.

[:ttip://gu .microsoft.com-fwlink/?LinkId=154016
alse

13
Microsof t/Wlindows-/Hyper—U
24179749808

rror
Policy
Use RAM that provides error correction
e RAM in € compute not error—correcting (ECC)> RAM.
Microsoft does not support Windo Server 2008 R2 on computers without error—cor
recting RAM.

= Verify the server is listed in the Windows Server catalog and gualified for Hupe

http://go.microsoft.com fulink/?LinkId=154820
False

alot of data in the scan. You can also use the |more command or even the| Out

command to help organize your output. PowerShell provides great ways to work

with this data, but remember you can always view the results in the Server Manager
interface even if you ran the scan from PowerShell. So if you want to view the full

report, I reccommend using the Server Manager interface. You can find the BPA

reports in the role summary screens under each individual role. You can see an
example of the Hyper-V BPA report in Figure 7.7.

Hyper-V BPA in Server Manager

~ | Best Practices Analyzer:

Noncompliant (7) | Excluded (0) | Compliant (22) | a1 (29) |

7 noncompliant; 0 exduded; 22 compliant Last Scan: 11/11/2010

t‘s Scan This Role
4:58:06 PM -

B= Exdude Result

* Indude Result

Warning The Server Core installation option is recommended for serversru... Configuration
Warning Enable all virtual network adapters configured for a virtual machine ~ Configuration
Warning Avoid using snapshots on a virtual machine that runs a server wo... Operation

Warning Windows Server 2008 R2 should be configured with the recomme... Configuration

Mare than one network adapte uld be available igurati D FEani=s
Error Use RAM that provides error correction Palicy 53 Copy Result Properties
Warning Hyper-V should be the only enabled role Configuration E Help

155

Server Essentials in

PowerShell

n
I
>
]
-
m
=
~N

156 CHAPTER 7 -

SERVER ESSENTIALS IN POWERSHELL

Add Reli

Instal

FIGURE 7.8

ability to Your Server

One of the most common daily tasks you should perform on your servers is a
backup. With Windows Server 2008 R2 and PowerShell, you have a powerful
tool to help you automate this process. This helps ensure that your backups occur
frequently and consistently on your servers.

| the Backup Tools

The backup tools are not installed by default in Windows Server 2008 R2. You can
quickly install the tools on your server in an administrative PowerShell session,
though. Use Add-WindowsFeature, mentioned earlier in this chapter, to install
backup features on a server. Whether this is a full Windows Server 2008 R2 server
installation or a Server Core installation, the procedure in PowerShell is the same:

Import-Module ServerManager

Add-WindowsFeature Backup-Tools

This not only installs the core components for Windows Backup but also installs the
necessary components to perform a backup from PowerShell or a command line.
After the command is run, your screen will look similar to Figure 7.8.

Installing the backup tools

[&+] Administrator: C:\Windows\system32\cmd.exe - powershell

Success {Windows Server Backup. Command-line Tools}

PE C:slUsers>

If you are prompted to restart the server, restart it before working with the backup
tools.

Perform a Backup with PowerShell

After you install the PowerShell backup tools, you can use the PowerShell cmd-
lets on Windows Server 2008 R2 to perform backups and recoveries. Before you
can run these tools, though, you have to verify the PowerShell snap-in for backup
has been loaded. Snap-ins are like modules in that they contain a collection of

ADD RELIABILITY TO YOUR SERVER

PowerShell cmdlets; however, they do have differences. In Appendix E you can see

the differences between the two.

To verify the tools have been loaded in a PowerShell session, run the following

command to verify Windows . ServerBackup was loaded:

Get-PSSnapin

If you do not see Windows . ServerBackup in your loaded snap-ins, run the
following commands:

Add-PSSnapin windows.serverbackup

Get-PSSnapin

The result should look similar to Figure 7.9.

FIGURE 7.9 Windows.ServerBackup snap-inloaded

Description

LEWES
PSUersion
Description
MName
PSUersion
Description

Description

PS C::\Uindows>

Jindows PowerShell snap—in contains

cmdlets (such as Get—WSManlInstance and §

BManInstance> that are used by the Windows PowerBhell host to manage WSMan op

erations.

gigrosoft.Pnuershell.cnre

indows PowerShell snap—in contains
owerShell.

e of t .PowverShell.Utility
Tﬁis dindows PowerShell snap—in contains

: Microsoft.PowerShell.Host
2.8

This Windows Pouwer8hell snap—in contains
op-Transcript) that are provided for use
Eigrosoft.Pnuershell.ﬂanagement

Tﬂis Windows PouwerShell snap—in contains
components.

gigrosoft.PnuePShell.Security

Tﬁis dindows PowerShell snap—in contains
urity.

cmdlets used to manage components of Win

utility Cmdlets used to manipulate data.

cmdlets {such as Start—Transcript and St

with the Windows PowerShell console host

management cmdlets used to manage Window

cmdlets to manage Windows PowerShell sec

After you load the backup snap-in, you will have access to a tool allowing some

flexibility for performing backups. To perform backups in PowerShell, you have to
define the backup policy for your server. The backup policy for PowerShell is stored
in an object called WBPolicy. The WBPolicy object contains all the settings for the

backup, including the schedule, backup types, backup targets, and so on.

157

Server Essentials in

PowerShell

n
I
>
]
-
m
=
~N

158 CHAPTER 7 -

SERVER ESSENTIALS IN POWERSHELL

TABLE 7.3

You need to set the values for the WBPolicy object when working with PowerShell
and backup. Table 7.3 lists some of the common PowerShell commands used for
backup and recovery and for setting the parameters for WBPolicy. For a full listing
of the PowerShell backup cmdlets, run the following cmdlet:

Get-Command *wb* -commandtype cmdlet

PowerShell backup cmdlets

Get-WBPolicy Displays the current settings for the WBPolicy object on the server
Set-WBPolicy Sets the parameters for the WBPolicy
Add-WBVolume Adds a volume to the WBPolicy object to be backed up

Add-WBSystemState Adds the system state to the WBPolicy object to be backed up

Set-WBSchedule Sets the time for your daily backup schedule
Start-WBBackup Starts a one-time backup
Get-WBJob Shows the current status of a running backup job

Asyou can see in Table 7.3, there are only a few cmdlets to work with the WBPolicy.
Here a couple of examples to allow you to get used to using PowerShell with backup
policies.

The following two lines back up your system with your current backup policy
settings:

Spolicy = Get-WBPolicy
Start-WBBackup -Policy S$policy

This first line sets the Spolicy variable to the current settings in WBPolicy. The
second line starts the backup process with settings currently in $policy.

The following script backs up the c: drive, d: drive, and system state on your sys-
tem to your z: drive. The script uses a variety of the add cmdlets to modify the
value of the variable $policy, as well as variables for target and paths:

$policy = New-WBPolicy

Svolume = get-WBVolume -VolumePath c:
Add-WBVolume -Policy $policy -volume S$volume
$volumel = get-WBVolume -VolumePath d:
Add-WBVolume -Policy Spolicy -volume S$Svolumel
Add-WBSystemState -Policy S$policy

Starget = New-WBBackupTarget -VolumePath Z:

ADD RELIABILITY TO YOUR SERVER 159

Add-WBBackupTarget -Policy S$policy -target Starget
Start-WBBackup -Policy S$policy

Load-Balance Your Network

One of the core features built into Windows Server 2008 R2 servers is network load
balancing (NLB). NLB enables your server to even out traffic across TCP/IP clusters
on your network and offers easy scalability to your web-based servers and applica-

tions in your infrastructure.

Server Essentials in

PowerShell

As with many of the Windows features mentioned in this chapter, you can use
PowerShell to install NLB. In an administrative PowerShell session, enter the fol-
lowing at the prompt:

Import-Module ServerManager
Add-WindowsFeature NLB

After NLB is installed, almost all the configuration of NLB can be done in
PowerShell. You can create NLB clusters, manage port rules, or work with your
nodes, all in PowerShell. Before you can access the cmdlets, you need to load the
NetworkLoadBalancingClusters module with the following command:

Import-Module NetworkLoadBalancingClusters

After you have loaded the module, you can view all NLB cmdlets by running the
following command:

Get-Command -Module NetworkLoadBalancingClusters
The result should look similar to Figure 7.10.

After installing the feature, a cluster needs to be set up. You can create a new cluster
with the New-NLBCluster cmdlet. Table 7.4 lists the parameters that are used by
this cmdlet.

The following command will create a new NLB cluster tied to the network interface
named webl with the IP address for the cluster set to 10.0.0.156.

New-NLBCluster -InterfaceName webl
-ClusterNamePrimaryIP 10.0.0.156

After you have configured an NLB cluster, you can quickly get basic information on
the properties of the cluster with this cmdlet:

Get-NLBClusterDriverInfo

The result should look similar to Figure 7.11.

CHAPTER 7 -

SERVER ESSENTIALS IN POWERSHELL

FIGURE 7.10 NLBcmdlets

ommand —Module Net

Name

Add-N1bhClusterNode
Add-H1bhClusterModeDip
Add-N1bhClusterPortRule
Add-H1bhClusterlUip
Disable—N1lhClusterPortRule
Enabhle-H1bhClusterPortRule
Get—N1bhCluster
Get—N1hClusterDriverinfo
Get—N1bhClusterNode
Get—HN1bhClusterModeDip
Get—N1bhClusterModeNetuworkInterface
Get-HN1hClusterPortRule
Get—N1hClusterlip
New-H1hCluster
MNew—HN1hClusterlpuGhddress
Remove—HN1bCluster
Remouve—N1bClusterNode
Remove—N1bClusterNodeDip
Remouve—N1bhClusterPortRule
Remove—N1bClusterUip
Rezume—N1bCluster
Resume-H1bhClusterNode
Set-N1bhCluster
Set-N1bClusterNode
Set—N1hClusterNodeDip
Set-H1bClusterPortBule

kLoadBalanc

Set—N1bhClusterPortRuleNodeHandlingPriority

Set—MN1bClusterPortRuleNodelleight
Set—N1hClusterlip
Start-NlbCluster
Start-NlbClusterNode
Stop—MN1bCluster
Stop—N1hClusterHNode
Suspend-MN1bCluster
Zuzpend—N1bClusterNode

PS8 C:i:sUserssAdministrator> _

TABLE 7.4 New-NLBCluster parameters

lusters
Defini

Add-N1bhClusterMode [—MewN
Add-H1bClusterNodeDip [-I
Add-N1bClusterPortRule [
Add-H1bClusterUip [-1IP1 ¢
Disable—N1bClusterPortRul
Enahle-Nl1bClusterPortRule
Get—N1bhCluster [[-HostHam
Get-N1bClusterDriverInfo

Get—N1lbhClusterMode [[-HNod
Get-H1bClusterModeDip [[-|
Get—N1bClusterNodeMNetwor

Get-N1bGlusterPortRule [L
Get—N1bClusterlUip L[[-IF]

New-N1bCGluster [[-HostNam|
Meu—N1bClusterlpubAddress
Remove-N1bCluster [[-Host
Remove-N1bhClusterNode [I[-
Remove-—N1lbClusterNodeDip

Remove-N1bhClusterPortRule
Remove-—N1bGlusterUip [-1P
Resume-N1bhCluster L[[-Host
Resume-N1bhClusterNode [I[-
Set—N1bhCluster [[-HostHam
Set—NlhGlusterMNode [[-Hos
Set—-N1bClusterNodeDip [-I
Set—-NlbhClusterPortBule [L
Set—N1lbhClusterPortRuleNod
Set—N1bClusterPortBuleNod
Set—N1bClusterlUip [-IP1 <
Start—MNlhCluster [[-HostMN
Start—NlhClusterNode L[[-H
Stop—H1bCluster [[-HostHa
Stop-N1bClusterNode [[-Ho
Suspend-N1bCluster [[-Hos
Suzpend—HN1bClusterNode [L

tion

Name of the network interface for NLB to use. You can get a list of the

names available on your local machine from the following command: gwmi
win32_NetworkAdapter | FL NetConnectionID,AdapterType,
NetworkAddresses. The NetConnectionID is what is used for the

The primary IP address for this cluster. A cluster has one primary IP address and

can have other IP addresses associated with it as virtual IP addresses (VIPs).

Used for clustering on a remote machine. If this parameter is not specified,

The dedicated IP address for the targeted node. If this parameter is not spec-
ified, the default value is the existing static IP address on the targeted node.

The subnet mask for the dedicated IP address. If this parameter is not speci-
fied, the default value is the existing static IP address subnet mask on the

InterfaceName

InterfaceName parameter.
ClusterName Name of the cluster.
ClusterPrimaryIP
HostName

then the local machine is the target node.
DedicatedIP
DedicatedIPSubnet

targeted node.
OperationMode

The operation mode for the cluster. There are three types of operation
modes: unicast, multicast, and igmpmulticast. If this parameter is
not specified, the default value is unicast.

ADD RELIABILITY TO YOUR SERVER

FIGURE 7.11

TABLE 7.5

Get-NLBClusterDriverInfo

FullyQualifiedDomainName
ParvametersUersion

Ef fectiveMlbUersion
HostId

ClusterName
GClusterIPAddress
ClusterMacAddress
AliveHszgPeriod
MaxConnectionDescriptors
IcmpFilteringEnahled
InitialHostState
CurrentHostState
PersistedHostStates

PS C::\Users“Administrator>

Get—NlbhClusterDriverInfo

Serverl.contoso.com
b

513
i

18.A.0.156
A2-BF-BA-80-88-2C
18668

262144
False
Started

: Started

False

There are several cmdlets used to work with NLB clusters. Table 7.5 lists some of the
common cmdlets.

Common NLB cmdlets

net——pocrpon —JGrompe

Get-NLBCluster

Add-NLBClusterNode

Remove-

NLBClusterNode

Suspend-NLBCluster

Displays the cluster
name and IP address;

can be piped into other

cmdlets

Removes an
existing node from the this:

cluster

Lets you add nodes to
an existing cluster

Pauses all the nodes in
the NLB cluster; com-
monly used when per-
forming maintenance

To list information about the cluster, run
Get-NLBCluster.

To add server5 to an existing NLB cluster (with
the NLB primary server1) using the network

interface nlb5 on node5, you would use the

following:

Get-NLBCluster serverl |
Add-NLBClusterNode
-NewNodeName server5
-NewNodeInterface nlb5

To remove server4 from the NLB cluster, use

Remove-NLBClusterNode -HostName

serverd.

This cmdlet prompts you for confirmation. If
you do not want to be prompted, you can use
the -force parameter to bypass confirmation.

suspend.

on the cluster; also
stops any tasks running
remotely on the cluster

Suspend-NLBCluster suspends the clus-
ter on the local machine; you can use the
-HostName parameter to specify the host to

(continues)

161

Server Essentials in

PowerShell

n
=
>
)
-
m
=
~N

CHAPTER 7 -

SERVER ESSENTIALS IN POWERSHELL

TABLE 7.5 (continued)

T N

Resume-NLBCluster

Stop-NLBClusterNode

Start-
NLBClusterNode

Get-NLBClusterNode

Set-NLBClusterNode

Get-NLBClusterVip

Set-NLBClusterVip

Restarts all the nodes
in the NLB cluster if it is
currently suspended

Drains the
connections on the
node and then stops
clustering on this node

Puts a stopped
cluster node back into
the cluster

Gets nodes of a cluster

Sets the node
properties

Displays the virtual IP
addresses of the cluster

Changes the VIP for the
cluster; both IPv4 and
IPv6 are supported

Resume-NLBCluster resumes a suspended
cluster on the local machine; you can use the
-HostName parameter to specify the host to
resume.

You may need to stop clustering on a node for
maintenance. Use the -Drain parameter to
drain any existing connections on the node
before stopping. Use the -Timeout parameter
to set the maximum wait time before stopping
the node. Suppose you wanted to stop the
current node, having it drain connections and
force the stop to happen in 15 minutes even if
connections are not fully drained. Use the fol-
lowing command: Stop-NLBClusterNode
-Drain -Timeout 15.

After maintenance on the current node, you
would run the following command to put it
back in the cluster: Start-NLBClusterNode.

This can be piped to other commands to be run
on multiple nodes.

Properties include HostPriority and
InitialHostState.HostPriorityisthe
ID for the cluster node and should be between
1and32.InitialHostState can be started,
stopped, or suspended. To set the current node
to HostID 4, use the following command:
Set-NLBClusterNode -HostPriority 4
To set all nodes in this cluster to the initial state
of started, use Get-NLBClusterNode |
Set-NLBClusterNode
-InitialHostState started.

Get-NLBClusterVIP displays the IP address
being used by the cluster.

To change the IP address of the cluster to
10.0.0.225, use Get-NLBClusterVIP|
Set-NLBClusterVip -NewIP
10.0.0.225. By using the | to pass the cur-
rent VIP, you will not need to interact with the
cmdlet.

Although Table 7.5 lists most of the cmdlets, there is one other set of cmdlets to
know when it comes to managing NLB clusters—Get-NLBClusterPortRule,

USE OTHER POWERSHELL UTILITIES FOR THE SERVER 163

Set-NLBClusterPortRule, Add-NLBClusterPortRule, and Remove-
NLBClusterPortRule. These are used to manage port rules for the cluster.

For example, suppose you have to support ASP.NET code that relies on session
states in a clustered web environment. Suppose your cluster is currently set up with
the affinity set to None to take advantage of the load balancing among all nodes in
the cluster. That means a website visitor may hit one node the first time they load a _
page and then another node of the cluster another time they load the page. This can

cause problems for some ASP.NET applications. You can adjust the NLB cluster’s

affinity so that once a visitor hits a node, they stay on that node for the length of

their current session. To do this, you would need to adjust the web port’s affinity

from None to Single. The following code could be used:

Server Essentials in

PowerShell

n
I
>
]
-
m
=
~N

Set-NlbClusterPortRule -NewStartPort 80 &
-NewEndPort 80 -Port 80 -NewAffinity Single

Although these are just a few things you can do manage with NLB clusters, you can
always get more examples from running Get -Help with any of the NLB cmdlets
using the -examples parameter.

Use Other PowerShell Utilities for the Server

Many tools and PowerShell modules can help you perform routine server main-
tenance functions. In this section, you will see how PowerShell can be used

to work with the registry on your systems and how to use the troubleshooting
module.

Use the Registry with PowerShell

As you briefly saw in Chapter 6, you can use PowerShell to work directly with the
registry. When you work with the registry in PowerShell, you are using a built-in
structure called a provider. Providers give PowerShell the ability to navigate a data
store on your system. You can find more about providers in Appendix C.

'

‘ ,’ WARNING Make sure you back up your registry and your system prior to modifying
the registry. Modifying the registry can cause unwanted errors, including system errors,
that may require reinstallation.

164 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

Many types of drives are available in PowerShell. Some of the PowerShell drives
include your hard drives, like c: or d:. Other drives include the registry, certifi-
cates, and environment variables. You will find a full listing in Appendix C. To see
the list of PowerShell drives available in your current PowerShell session, run the
following command, which should look similar to Figure 7.12:

Get-PSDrive
FIGURE 7.12 Get-PSDrive

& Windows PowerShell

PS GC:n> Get-PSdrive

Used <GB> Free (GB> Provider Root Curren
tLocat

Gan
ic S
FileSystem D:
FileSystem E:~
Envirenment
FileSystem F:~
Function
Registry HEEY_ CURRENT_USER
Registry HKEY_LOCAL_MACHINE
Uariahle
WSHMan

You will see the two main hives of the registry listed with the Get-PSDrive
cmdlet:

» HKEY_CURRENT_USER (HKCU) is the hive key for the current user.
» HKEY_LOCAL_MACHINE (HKLM) is the hive key for the local machine.

With PowerShell drives, you can navigate the registry just like you would any other
drive on the system. You can use the commands, such as cd, dir, or 1s, to move
through the keys. For example, if you wanted to switch to HKCU, you can use this
command:

cd HKCU:
Then you can work through the registry structure just like working through

a file structure. In Figure 7.13, you see the results of running dir in the HKCU
root.

USE OTHER POWERSHELL UTILITIES FOR THE SERVER

FIGURE 7.13

FIGURE 7.14

dir for HKCU

| lows PowerShell

PS HKCU:%\> dir

HKEY_GURRENT_USER

Property

AppEvents >

Console {ColorTabledd, ColorTableBi, ColorTableB2. ColorTable...
Gontrol Panel >

Environment {TEMP. TMP. path>

EUDC >

Keyboard Layout

Hetwork

Printers

Softuare

System <r

Uolatile Environment {LOGONSERVER. USERDOMAIN,. USERNAME. USERPROFILE...Z}

=
e B0 (0 0 o (D (D DD

*QoLeREwEeR

o
)
=
=
o
=

N>

As you begin navigating through the registry, you may notice you cannot see
registry values with the dir commands. There are some unique aspects of navigat-
ing the registry. After you navigate to the desired registry location, you can use the
Get-ItemProperty cmdlet to see the values in the local directory. You will also
have to add the . (period) to reference the local directory in the registry. This is
shown in Figure 7.14. The results are from the Desktop Windows Manager location
in the registry.

Get-ItemProperty
Get-ItemProperty

m| lows PowerShell

PS HKCU:“sof twaresmicrosof t windowsxdum> Get—ItemProperty .

PSPath : Microsoft.PowerShell.Cor istry: :HKEY_CURRENT _USER:\so
ftwaresmicrosof t\windo dwm

PSParentPath : Microsoft.PowerShell.G i : :HKEY_CURRENT _USER“so
ftwaresmicrosof t\uwindous

;SChildName =

rive :
: Microsoft.PowerShell.CoreMRegistry

: 997313534
: 16

: 977313534
: 18

ationBlurBalance HRE
ationGlassRef lectionIntensity = A
IColorizat ionOpagqueBlend ERk
EnahlefieroPeek
A lvaysHibernateThunbnails

zationAfterglowBalance

PS HKCU:“\sof twaresmicrosof t windows\dum>

165

Server Essentials in

PowerShell

n
X
>
]
-
m
=
~N

166 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

Alternatively, you can specify the path in the Get-ItemProperty cmdlet so you
do not have to fully navigate to the location:

Get-ItemProperty -path HKCU:\software\microsoft\windows\dwm

If you know the name of the key you explicitly want to look at, you can specify it
using the -name parameter. If you just wanted to see the EnableAeroPeek value,
you would run the following:

Get-ItemProperty . -name EnableAeroPeek
When you want to set or change the values in the registry, use the Set-ItemProperty
cmdlet. You saw the following example of this cmdlet in Chapter 5:

Set-ItemProperty -path <
HKLM: \SOFTWARE\Microsoft\PowerShell\1\ShellIdse?
\Microsoft.PowerShell -Name "ExecutionPolicy"

-Value "RemoteSigned"

The -path and -name parameters work the same way as they do in the Get -
ItemProperty cmdlet. The unique parameter for Set-ItemProperty is the
-value parameter. When you work with the registry in PowerShell, you may have
to do some research to make sure you put in the proper value and proper type of
data. This will avoid any errors or misconfigurations.

Use PowerShell Troubleshooting Packs

PowerShell 2.0 includes a module called Troubleshoot ingPack. This module
and its cmdlets can help you run system diagnostics on various aspects of your
Windows Server 2008 R2 server. With the troubleshooting packs, you can check
your network interface and program compatibility.

You already have two troubleshooting packs on your server, for network-
ing and program compatibility. To use them within PowerShell, load the
TroubleshootingPack module with this command:

USE OTHER POWERSHELL UTILITIES FOR THE SERVER 167

Import-Module TroubleShootingPack

This module gives you two cmdlets:

Get-TroubleShootingPack

Invoke-TroubleShootingPack

Server Essentials in

PowerShell

These cmdlets let you identify and work with the troubleshooting packs. To be able to _
run to troubleshooting cmdlets, you need know their location on your system. They

are located by default in the $windir%\diagnostics\systemdirectory on your

system. Once you locate the directory on your Windows Server 2008 R2 server, you

should see the two directories for Networking and PCW, as shown in Figure 7.15.

n
I
>
]
-
m
=
~N

FIGURE 7.15 Diagnostics directories

= windows PowerShell

PS8 C:swindowssdiagnosticsssystem> dip
Directory: C:iswindowssdiagnosticshsystem

LastWriteTime Length Name

/14,2009 1:41 AM Networking
77142889 1:41 AM PCY

PS C:swindowssdiagnosticshsystem?>

Starting the TroubleshootingPack module launches an interactive session. Run
the PowerShell session as an administrator to allow troubleshooting to perform
actions to diagnose and fix your system. After you have launched an administrative
PowerShell session, run the following command. This will launch the networking
diagnostics troubleshooter:

Get-TroubleShootingPack -path 3
C:\Windows\Diagnostics\System\Networking |3
Invoke-TroubleShootingPack

After you launch the command, you will be asked to specify an instance ID. Press
the Enter key, and you will see a screen similar to Figure 7.16.

168 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

FIGURE 7.16 Network troubleshooting

dows PowerShell
PS8 C:swindowssdiagnosticshsystem? Get—TroubleShootingPack —path C:\Hindoul’
ezshootingPack —i
Starting network diagnostics...

Instance ID
Mot to bhe specified outside of MSDT application.

Select entry point
Please select the entry point for Metwork Diagnostics.

Web Connectivity
File Sharing
Metwork Adapter
Winsock Connectivity
Grouping

Inbound

DirectfAccess
DefaultConnectivity
Reserved

Help
Exit

As you can see, you are able to check various aspects of your network connectivity
on your server by stepping through the menus. To work with the troubleshooter,
just specify the option you want to work with using the corresponding number. In
Figure 7.17, you can see how the troubleshooter discovered the problem with a
network adapter and suggested a resolution.

FIGURE 7.17 Networkresolution

ndows PowerShell

Select the network adapter to diagnose
If you’re not sure, select the last option in the list.

Local Area Connection
Wireless Metwork Connection
Local Area Connection 3
Local Area Connection 4
All network adapters

Help
Exit

Looking for problems...
Collecting results...

Collecting configuration details...

Please select the resolutions to appl
following resolutions are availabhle to address problems that were foun

Local Area Connection adapter is disahled
Enahle the ’Local Area Connection’ adapter

Help
Exit

USE OTHER POWERSHELL UTILITIES FOR THE SERVER

TROUBLESHOOTING PACKS ON WINDOWS 7

With Windows Server 2008 R2 servers, you have two packs you can leverage. With
Windows 7, there are several more troubleshooting packs you can use:

>

>

>

>

Aero

Audio

Device
DeviceCenter
HomeGroup
IEBrowseWeb
IESecurity
Networking
PCW
Performance
Power
Printer

Search

WindowsMediaPlayerConfiguration

WindowsMediaPlayerMedialLibrary

WindowsMediaPlayerPlayDVD

WindowsUpdate

You can use PowerShell remoting to take advantage of these extended troubleshooting
packages on Windows 7 systems.

Schedule PowerShell Scripts

As you work with PowerShell, you might run into a situation where you want to run

a PowerShell script on a schedule. Scheduling a PowerShell task is straightforward,

using three tools to make it happen:

» powershell.exe

169

Server Essentials in

PowerShell

n
I
>
]
-
m
=
~N

CHAPTER 7

SERVER ESSENTIALS IN POWERSHELL

» Command prompt
» Task Scheduler

The command prompt may appear to be the odd one in the list, but you can start a
PowerShell session from the command prompt by simply typing powershell.exe.
If you have a PowerShell script you want to run, you can put the path of the script
and script name at the end of the command prompt line. For example, the following
will run a script called myscript.ps1 stored in the scripts directory:

powershell c:\scripts\myscript.psl

You can include the -noninteractive parameter for powershell.exe to allow
your script to run without interaction from the user on the system. For example, the
command to runmyscript.psl without an interactive prompt is as follows:

powershell -NonInteractive c:\scripts\myscript.psl

Since you can run PowerShell and add a script to the session, you then need to use
the Task Scheduler to run your command on a schedule. You can find the Task
Scheduler in your Administrative Tools. On Windows Server 2008 R2 server, click
Start > All Programs > Administrative Tools > Task Scheduler. You will see a
screen similar to Figure 7.18.

FIGURE 7.18 TheTask Scheduler

loixl
File Action WView Help

es ==

(5 Task Scheduler (Local) - | Actions

% Task Scheduler Library Task Scheduler (Local) g

Connect to Another Computer...

. You can use Task Scheduler to create “§| Create Basic Task...
and manage common tasks that your

p will carry out ically at
the times you specify. To begin, click a Import Task...
command in the Action menu.

e Create Task...

[

E{ Display All Running Tasks

T ——m— ;I] Disable All Tasks History
W ﬂ AT Service Account Configuration
Status of tasks that ha.. [Last 20 hours 7] Ve r
Summary: 52 total - 0 running, 52 succeeded, 0 st... i E Refiesh
Help

Task Name Run Rauﬂﬂ
AitAgent (last run succeeded at...
Consolidator (last run succeede...
KernelCeipTask (last run succee...
LPRemove (last run succeeded ...
Microsoft-Windows-WindowsB... ;I =l

Last refreshed at 11/19/2010 12:47:18 PM Refresh

USE OTHER POWERSHELL UTILITIES FOR THE SERVER 171

To create a task, you can choose either Create Task or Create Basic Task. For this
example, you will use the Create Basic Task option:

£
=
1. Click Create Basic Task. £ _
w o
4 =
2. Enter the name and description of your task, and click Next. 5 §
. g &
3. Select how often you want to run the task, and click Next.

4. Based on your selection in step 3, you will be asked to set the parameters of
when the script will run. For example, if you chose daily, you could have the
script run at a specific time of day. After you have set the frequency;, click Next.

5. On the Action screen, select Start A Program, and click Next.

6. In the Start A Program field, fill in the parameters as follows. When finished,
click Next. Figure 7.19 shows an example task.

FIGURE 7.19 Taskcreated

Create Basic Task Wizard x|

(9| Starta Program

Create a Basic Task

Trigger Program/script:

Ray |power5hell.a<e Bromeer |
Action
Add arguments (optional}: ||c:\5cripts\my5cript.ps.1
Finish

Start in (optional): Ic:\scripts

< Back | Mext > | Cancel

Action: powershell.exe

Add Arguments (Optional): The path and name of your script and any
parameters, including -noninteractive

Start in (Optional): The directory of your script

172 CHAPTER 7 * SERVER ESSENTIALS IN POWERSHELL

7. Review the summary screen, and click Finish.

Your scripts have to adhere to the script execution policy set on the server, as you
saw in Chapter 5. Ensure you have the correct execution policy set, allowing your
script to execute properly.

EXERCISE 7: CREATE A SCHEDULED BACKUP WITH POWERSHELL

In this exercise, create an automated process to back up the c: drive and system state
on your Windows Server 2008 R2 server.

CHAPTER

Managing Active Directory with
PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

> WORK WITH ACTIVE DIRECTORY 174
Load the AD PowerShellModule................coocoiiia. 174
Understand PowerShell Active Directory Basics.............. 178
Work with Users, Groups,andOUscovvuven... 182

> UNDERSTAND MANAGED SERVICE ACCOUNTS 185
Understand Managed Service Accounts............ccoevuen. 185
Create Managed Service Accountsoveeuieinnnen.. 186
Install and Use Managed Service Accounts 188

> WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 189
Understand How the Recycle BinWorks..................... 190
Enable the ADRecycleBin............oooiviiiiiiiii.n, 191

Usethe ADRecycleBin........cooviiviniiniiiiiiiniieenn 193

8 4i1dVH)

owerShell 2.0 has more than 90 cmdlets dedicated to Active Directory (AD). In
PowerShell 1.0, you could work with AD objects, albeit not easily because doing

so required a detailed knowledge of the Lightweight Directory Access Protocol
(LDAP). Although you still need to know about LDAP in PowerShell 2.0, you do not
have to delve as deep as you did in PowerShell 1.0.

PowerShell 2.0 and its built-in AD cmdlets make it easier for you to work with users,
groups, organizational units (OUs), and many other objects in AD. This chapter
outlines some of these new cmdlets and how PowerShell can directly interact with
AD. The cmdlets are in the AD module that comes with the Active Directory server
role; this chapter will show you how to access the cmdlets.

You can use PowerShell 2.0 not only to work with core AD objects but also to work
with several other domain functions.

In addition to the AD cmdlets in PowerShell 2.0, Windows Server 2008 R2 offers
several new services for AD. Windows Server 2008 R2 has two new powerful fea-
tures for AD—managed service accounts and the AD recycle bin.

Work with Active Directory

PowerShell lets you automate users and groups in your AD environment. In
Windows Server 2008, you could use PowerShell to manage objects, but it was
cumbersome. Windows Server 2008 R2 includes several improvements and addi-
tions for easy management with Windows PowerShell. Newly created PowerShell
cmdlets and the new AD recycle bin provide easier access to working with AD ata
PowerShell level. You will see both of these in this section.

Load the AD PowerShell Module

Before you can begin using the new cmdlets, you need to load the AD PowerShell
module. The AD PowerShell modules are installed by default on your Windows
Server 2008 R2 server after you install Active Directory Domain Services. There are
two ways you can load the AD module:

» Open the Active Directory module for PowerShell by selecting Start >
Administrative Tools > Active Directory Module For PowerShell.

» Load a Windows PowerShell session (preferably an administrative session
since many cmdlets will require administrative privileges), and import the

WORK WITH ACTIVE DIRECTORY

Active Directory module manually, using the command Import-Module
ActiveDirectory.

You may prefer to load the Active Directory module for PowerShell instead of start-
ing a PowerShell session. The main benefit of loading the AD module this way is that
the Active Directory module for PowerShell automatically loads an administrative
PowerShell session. A majority of the AD commands require administrative privileges.

Verify the module was loaded by running Get-Module.

MANAGING ACTIVE DIRECTORY WITH POWERSHELL ON A WINDOWS 7 CLIENT

You may want to manage your AD environment from a Windows 7 client worksta-
tion. Microsoft provides a free downloadable tool set called the Remote Server
Administration Tools (RSAT) for Windows 7.

These tools can be installed only on computers running Windows 7 Enterprise, Windows
7 Professional, or Windows 7 Ultimate. RSAT contains three PowerShell modules you
can use for managing your servers:

» Active Directory
» Failover Cluster
» Network Load Balancing

Having the AD module on your system allows for quick access to working with the AD
environment from your management console.

You can download the tools here:

www.microsoft.com/downloads/en/details
.aspx?FamilyID=7d2f6ad7-656b-4313-a005-4e344e43997d

You should see the Active Directory module loaded. You can see a list of all the AD
cmdlets by running the command Get-Command *-ad* or the command Get-
Command -Module ActiveDirectory, resultingin a screen similar to Figure 8.1.

All the nouns in the Active Directory cmdlets begin with AD. This will help you
learn the new cmdlets and explore their functionality.

PowerShell provides access to the AD data structure in a way that is similar to
accessing the registry (see Chapter 7). So, you can use the same directory-style com-
mands (such as cd or dir) to move around the AD structure; the command cd

AD: lets you access the AD structure.

175

Managing Active
Directory with
PowerShell

[a}
I
>
)
-
m
=
o

176 CHAPTER 8 -

MANAGING ACTIVE DIRECTORY WITH POWERSHELL

FIGURE 8.1

TABLE 8.1

Active Directory cmdlets

; : Active Directory Module for Windows PowerShell
PS C::\UserssAdministrator> Get—Module

ExportedCommands

Manifest ActiveDirectory {Set—-ADDrganizationalllnit. Get—-ADDomain. ..

PE C:slUserssAdministrator?> Get—Command —Module ActiveDirectory

Name Definition
Add-ADComputerServicefAccount Add-ADComputerServiceAccount
Add-ADDomainControllerPasswo Add-ADDomainControllerPasswo.
Add-ADFineGrainedPasswordPol. .. Add-ADFineGrainedPasswordPol.
Add-ADGroupMember Add-ADGroupMember [-Identity.
Add-ADPrincipalGroupMembership Add-ADPrincipalGroupMember
Clear—ADAccountExpiration Clear—ADAccountExpiration
Disable—ADAccount Disable—ADAccount [-Identity.
Dizable—ADOptionalFeature Dizable—-ADOptionalFeature [
Enable—-ADAccount Enable-ADAccount [—Identityl.
Enable—ADOptionalFeature Enable-ADOptionalFeature [-1.
Get—ADAccountAuthorizationGroup Get—-ADAccountAuthorizationGe
Get—ADAccountResultantPasswo. .. Get—ADAccountResultantPasswo.
Get—-ADComputer Get—ADComputer —Filter <Str
Get—ADConputerServicefAccount Get—ADComputerServicefccount . .

When you run the cd AD: command, the command prompt changes to PS AD: \>.
This prompt reflects your current location in the Active Directory hierarchy. From
there you can run dir to see the objects at the root and navigate to the domain.
Before you can navigate, you need to know some of the basic LDAP naming conven-
tions. You also need to know the basic navigation terminology and how Microsoft
uses the terms in AD. Table 8.1 describes some of the basic terms.

Basic LDAP navigation terminology

dc Domain component. The components of a domain name are separated by dots.
The sequence of components in AD goes from the lowest level to the top level. For
example, if your domain is called deploy . com, then you would refer to it in LDAP
terminology as dc=deploy, dc=com.

ou Organizational unit. Use this to move into OUs. The finance OU in the deploy
.com domain would be ou=finance, dc=deploy, dc=com.|fyou have
nested OUs, list the deeper OUs first. For example, the Cleveland OU inside
the Finance OU in the deploy.com domain would be ou=cleveland,
ou=finance, dc=deploy, dc=com.

cn Container. In AD, this lets you navigate into special containers, such as Users. The
Users container in the deploy.com domain would be cn=Users, dc=deploy,
dc=com.

You will see this terminology used throughout this chapter with many of the AD
cmdlets. Whether you are creating, navigating, or restoring users, understanding
the basics will allow you to navigate inside AD quickly and easily. If you do not use
the correct naming conventions as you are working with AD, you may see the error
shown in Figure 8.2.

WORK WITH ACTIVE DIRECTORY 177

FIGURE 8.2 Navigation error

dc=com’ hecause it does not exist.

+ Categorylnfo : ObjectNotFound: C(AD:“\zales, dc=contozo, dc=com:8tring

ionl, ItemMotFoundException
+ FullyQualifiedErrorld : PathMotFound.Microsoft.PowerShell.Commands.SetLocationCommand]

PS AD:“\dc=contoso, dc=com>

-3

2
Using the basic naming conventions, you can navigate through your domain with €E

< ==
cd. To change to the root of your domain, you would run a command similar to cd £ s

o S
"de=yourdomainname, dc=com" (or your FQDN ending). Additionally, you can 29 %

=5a

also use tab completion here; this will help you avoid typing in the wrong domain path.

[a}
=
=
)
-
m
=
(-]

After you have navigated to the root of your domain, you then can navigate to the
OU or container with cd. To change to your container after you have navigated to
your domain structure, run this command:

cd cn=containername
If you want to switch to an OU, the command is slightly different:
cd ou=Organizational Unit

Once you have navigated to the desired location in AD, you can run the dir com-
mand to see the contents in that particular location. Figure 8.3 shows an example of
the dir command in an OU.

FIGURE 8.3 dirinActive Directory

ontoso, dec=com? cd ou=sales
PS AD: \ou—ﬂales.dc =contoso,. dc=com> le

ObjectClass
DC=conteso.DC=com

=contoso,
ontoﬂo D¢

alea,DC—contugo Te
ales.DC—cuntoﬂD D
les . DG

IBen—Sachar
JFluegel

JHance

JHenningsen

JHoward

JJamison ser
JLugo usep

G

Cl

G

G

G

G

G

C

G

G

G

G

G

C

3 G
JGoldbherg 3 Cl
G

[

G

G

G

JHat thews Cl
G

G

G

G

G

C

G

G

178 CHAPTER 8 * MANAGING ACTIVE DIRECTORY WITH POWERSHELL

Understand PowerShell Active Directory Basics

This section covers some of the basics of working with domains, domain control-
lers, and forests (collections of namespaces, each of which may be a tree containing
multiple domains). Forests provide a security boundary for your organization in
AD, and you can manage them with PowerShell.

To display directory service-specific entries (DSEs) for your domain and configura-
tion, run Get -ADRootDSE. This cmdlet displays the directory information tree for
the domain, as shown in Figure 8.4.

FIGURE 8.4 Get-ADRoOtDSE

rator: Active Directory Module for Windows PowerShell
sMidministrator? Get-ADRootDSE

conf igurat ionNamingContext : CN=Configuration,.DC=contoso.DC=com

currentTine : 11,27-2818 37 PM

defaultNamingContext : DC=contoso,DC=com

dnsHostMame : Serverl.contoso.com

domainControllerFunctionality : Windows2BBBR2

domainFunctionality : Windows2@B8R2Domain

dsServiceName B CN TDS Settlnga.CN =SERUER1 . CN=Servers.CN=Default-First-Site-Na
ites.CN=Configuration,DC=contoso,DC=com

forestFunctionality B Ulnduu;ZlﬂSRZFu}e»t

highestCommittedUSN : 16935

i : {TRUE>

ruerl$BCONTOS0. COM
namingContexts H - i iguration.DC=contoso,.DC=com, CN=Sche
-DC=com, DC=DomainDnsZones, DC=con

rootDomainNamingContext

=chemaMamingContext 2 i om

serverMame H UER1 .CH o irst-Site—Mame.CN=Sites . CN=Co
nfiguration. D

hemaSubentry : CN-Aggregate. Sc -CN= Cnnflgulatlnn,DC =contoso.DC=com

supportedCapabilities A o 84' 113556 s L 4 EEB ¢LDAP_CAP_ACTIUE_DIRECIOR! ID>. 1.2.84
0.113556.1.4.167@ (LDAP_CAP_ACTIVUE_DIRECTORY_US1_0ID>, 1.2.84@.
113556.1.4.1791 <LDAP_CAP_ACTIVE_DIRECTORY LDAP_INTEG_OID>, 1.2
-848.113556.1.4.1935 (LDAP_CAP_ACTIUE DIRECTORY U61i _OID>...>

supportedControl : {1.2.84@.113556.1.4.319 CLDAP_PAGED_RESULT_OID_STRING>, i.2.848
-113556.1.4.881 (LDAP_SERUER_SD_FLAGS_OID)>, 1.2_84@.113556.1.4.
473 (LDAP_SERUER_SORT_OID>, 1.2.84A_113556.1.4.528 (LDAP_SERUER
_MOTIFICATION_OLID>

supportedLDAPPolicies b {HaxPuu%Threads. H atagramRecu, MaxReceiveBuffer, InitReculim
eout...

supportedLDAPUersion : {3, 22

supportedSASLMechanisns : {GESAPI. GSS-SPMEGO. EXTERNAL. DIGEST-MD53

PS C:NUsers\Administrator>

This shows the basic information about your domain and naming conventions. You
can then use that information for many other commands. If you want to see all the
domain controllers, use Get-ADDomainController -Discover. Thenadd

the domain you are looking at, and you can find all the DCs in your environment. The
following cmdlet will find the DCs in the contoso. com domain:

Get-ADDomainController -Discover -DomainName contoso.com

Your results may look like Figure 8.5.

WORK WITH ACTIVE DIRECTORY 179

FIGURE 8.5 Get-ADDomainController

& Administrator: Active Directory Module for Windows PowerShell
P8 C:sUsersSAdministrator> Get—ADDomainController —Discover —DomainName contoso.com

: contoso.com

Ri
: Default-First—Site—Name

PS C:sUsers“Administrator> _

You can also work with your global catalog (GC) servers via several cmdlets. GCs

Managing Active
Directory with
PowerShell

contain a subset of the data stored in AD. They are used to process all queries in
the domain. If you are looking for users, groups, or printers, GC will process the _
requests across your entire forest. This functionality is not only used by AD but is

[a}
=
=
)
-
m
=
(-]

also used by Microsoft Exchange for address book requests. Because GCs span
multiple domains, they assist in user authentication and universal group member-
ship processing. Knowing where your GCs are helps keep your AD environment
running smoothly. To see what GCs are loaded in your forest, run this command:

Get-ADForest deploy.com | FL GlobalCatalogs

You can also enable or disable the GC status for a server with the following
PowerShell command. For the options parameter, 1 enables a GC and 0 disables
the GC. The following example disables the GC for Serverl in the deploy.com
domain:

Set-ADObject "CN=NTDS Settings,CN=Serverl,CN=Servers,
CN=Default-First-Site-Name, CN=Sites,CN=Configuration,
DC=deploy,DC=COM" -Replace @{options='0"'}

To verify that the GC has been enabled or disabled on a server with the Get -
ADRootDSE cmdlet, look for the value next to IsGlobalCatalogReady. Ifit is
true, then the GC has been enabled. Enabling a GC on a server can take several
minutes depending on your AD environment. You can also filter just the value for
the global catalog with the Get -ADRootDSE cmdlet. This cmdlet looks at the global
catalog value from the directory services information tree for Serverl:

Get-ADROOtDSE -Server Fabrikam-DCl | FT GlobalCatalogReady

Figure 8.6 shows an example of the results.

180 CHAPTER 8 * MANAGING ACTIVE DIRECTORY WITH POWERSHELL

FIGURE 8.6 Global catalog status

X Administrator: Active Directory Module for Windows PowerShell
PS C:MUsers“Administrator?> Get—-ADRootDSE —Server serverl i FI GlobalCatalogReady

PS C:N\Users“Administrator>

Working with the FSMO Roles

One of the other administrative tasks you may have done in the past is working
with flexible single master operation (FSMO) roles. Typically you may have wanted
to view the roles or transfer the roles to another server. With the new AD cmdlets,
you can work with these roles on your server.

In PowerShell, you need to know the role names and how they are referred to in the
cmdlets. There are five roles, listed in Table 8.2 with their PowerShell counterparts.

TABLE 8.2 FSMO roles in PowerShell

Schema Master SchemaMaster Holds the schema, or definition, for all the AD
objects in your forest. There can be only one
for the entire forest.

Domain Naming Master = DomainNamingMaster Controls the addition and removal of domains
in your forest. There can be only one for the
entire forest.

PDC Emulator PDCEmulator Processes all the password change requests
from your users. It will also replicate the
change across the entire domain. There is one
per domain in your forest.

RID Master RIDMaster Sequences the relative IDs (RIDs) for the
entire domain when you create new objects.
The relative ID is combined with the domain
SID to ensure that a unique identifier is cre-
ated for every new object in the domain.
There is one per domain in your forest.

Infrastructure Master InfrastructureMaster Helpskeep information aboutobjectsin the
domain the Infrastructure Master role resides
in consistent by comparing it to a GC for the
domain. The primary purpose is to ensure the
groups that users belong to from other domains
are properly maintained and correct. There is
one per domain in your forest, and generally it is
not placed on the same server as a GC.

WORK WITH ACTIVE DIRECTORY

FIGURE 8.7

If you are looking for the Schema Master or Domain Naming Master role, use the
Get-ADForest cmdlet. For example:

Get-ADForest deploy.com | FT SchemaMaster,DomainNamingMaster

If you are looking for the PDC Emulator, RID Master, or Infrastructure Master, use
the Get-ADDomain cmdlet. This command shows all three of those FSMO roles for

the deploy.com domain:

Get-ADDomain contoso.com | FT PDCEmulator,RIDMaster,

InfrastructureMaster

Figure 8.7 shows an example of both commands being run. For either command,
add or remove FSMO names for the particular roles you are interested in.

Discovering FSMO roles

| trator: Active Directory Module for Windows Powershell
P8 C:slUsers™Administrator> Get—ADForest contoso.com ! FT SchemaMaster.DomainNamingMastewr

DomainNamin
Serverl.contoso.com
P8 C:\Users\Administrator> Get—ADDomain contoso.com i FI PDCEmulator.RIDMaster.InfrastructureMas
ter
PDCEnulator RIDHMaster

Serverl.contoso.com Serverl.contoso.

PS C:sUserssAdministrator> _

To transfer the FSMO roles to another server, run the following command. As with

viewing the FSMO roles, add or remove the role names based on what roles you
want to work with. This moves the Infrastructure Master role to Server2:

Move-ADDirectoryServerOperationMasterRole

-Identity Server2 -InfrastructureMaster

To seize control over an FSMO role, add the -force parameter to the previous
command, as shown here:

Move-ADDirectoryServerOperationMasterRole &

-Identity Server2 -InfrastructureMaster -force

You may have converted or upgraded your domain from previous versions of
Windows Server to Windows Server 2008 R2. The version of operating system on
your domain controllers determines your forest functional level. The forest func-

tional level ensures proper functionality and communication in your domain. It can

also determine what features are available in your domain. For example, you can
use the AD recycle bin in Windows Server 2008 R2 only if your forest functional
level is Windows2008R2Forest.

181

Managing Active
Directory with
PowerShell

[a}
=
=
)
-
m
=
(-]

182

CHAPTER 8

MANAGING ACTIVE DIRECTORY WITH POWERSHELL

In PowerShell, you can view what your forest mode is by running Get-ADForest,
as shown in Figure 8.8.

FIGURE 8.8 Forestmode

Forest mode

& Administrator: Active Directory Module for Windows PowerShell
PS C:slUserssAdministrator?> Get—ADForest

ApplicationPartitions : {DC=DomainDnsZones.DC=contoss.DC=com,. DC=ForestDnsZones,DC=contoso.DC=c

sForestReferences :

DomainMamingMaster
Domains
ForestMode
GlobhalCatalogs B o contoso.com>
LELT H n
PartitionsContainer H ions .CN=Conf iguration.DC=contoso.DC=com
RootDomain H com
SchemaMaster : Serverl.contoso.com

i & E?efault—First—Site—Name)

ites
SPMSuffixes &
UPHSuffixes 2 4

PE C:SUserssAdministratory _

To change your forest mode, use the Set -ADForestMode cmdlet. You can use one
of the four following parameters to raise your forest functional level:

» Windows2003InterimForest

Windows2003Forest

v

» Windows2008Forest

» Windows2008R2Forest

This PowerShell command raises the forest functional level to
Windows2008R2Forest for the deploy.com domain:

Set-ADForestMode -Identity deploy.com
-ForestMode Windows2008R2Forest

Y
‘ ,' WARNING Whenyouraise the forest functional level, this is a one-way trip. Once

you raise the level of your forest, you cannot go backward.

Work with Users, Groups, and 0Us

Table 8.3 lists some of the common tasks for using PowerShell with your users
and groups. When you run the commands listed in the table, they run from the
directory you are currently located in.

WORK WITH ACTIVE DIRECTORY

FIGURE 8.9

TABLE 8.3

You can quickly find out which domain you are currently managing by running the

Get-ADRootDSE cmdlet mentioned earlier in this chapter. You can also change to

the AD provider with cd AD: and run dir to see which domain you are currently

working in. Figure 8.9 shows an example.

dir on the root of the AD provider

Administrator: A Directory

PS C:sUserssAdministrator> cd AD:
PE AD:=x> dir

DistinguishedName

domainDNS
configuration
MD

contoso
Configuration
Schema
DomainDnsZones
ForestDnsZones

domainDNS
domainDNS

PS AD:~> o

lodule for Windows PowerShell

ontoso,.DC=com
CHN=Conf iguration.DC=contoso,.DC=com
CH=8chemna.CHN=Conf iguration.DC=cont...
omainDnsZones .DC=contoso,.DC=com
DC=ForestDnsZones .DC=contoso.DC=com

You can also use the LDAP terminology to navigate to the path of the object you
want to modify. You can use Get-Help with any of the commands in Table 8.3 to

learn more.

Common PowerShell AD object commands

T N

Get-ADobject Lists multiple AD objects,
including users and groups.
Works similarly to other
Get cmdlets. Uses

filter, ldapfilter, and
searchbase to query the
information. Use this with
format and out switches to
work with the command'’s
output.

Lists the AD users in

the domain. Uses

filter, ldapfilter, and
searchbase to query the
information. Use this with
format and out switches to
work with the commands
output.

Get-ADuser

This command lists all the objects in AD:

Get-ADObject -Filter {name
_like II*VI}

This command lists all the users at your
current level of the AD hierarchy:

Get-ADUser -Filter {name -like
"k }

(continues)

183
-]

2 -
TE
=< = =
=0 v
ESS
(=]
g‘GE
S£3
=aa

[a}
=
=
)
-
m
=
(-]

184 CHAPTER 8 -

MANAGING ACTIVE DIRECTORY WITH POWERSHELL

TABLE 8.3 (continued)

T T

New-ADuser

Set-
ADaccountpassword

Remove-ADuser

New-ADgroup

Add-ADGroupMember

New-
ADorganizationalunit

Creates a new user in your
AD environment. You can
also control most of the
properties for this cmdlet.
You need to set a password
and enable the account

for use.

Sets the password for an
AD account. Depending on
how you use this command,
you may be presented with
a series of prompts to set
the password. When you
run this command, you do
not need to specify the OU
or domain name if you are
located in the OU that con-
tains the user.

Removes a user from AD.
When you run this com-
mand, you do not need to
specify the OU or domain
name if you are located in
the OU that contains

the user.

Creates a new group. You
can also specify group type,
scope, and other properties
of the group.

Allows you to modify
the membership of an
AD group. Use the get-
ADgroup command to
select a group.

Creates a new AD organiza-
tional unit.

This command creates a user John Smith
in the Marketing OU in the admin. com
domain, with the display name and given
name filled out:

New-ADuser johnsmith
-GivenName "John" - Surname
"Smith" -Displayname

"John Smith" -Path
'OU=Marketing, DC=admin, DC=com'

This command resets the password of
John Smith with a new password of
pa55w3rd:

Set-adaccountpassword
-identity johnsmith -reset
-newpassword (Convert
To-SecureString -AsPlainText
"pa55w3rd" -force)

This command deletes the johnsmith user:

Remove-aduser johnsmith

This command will create a new global
security group called Accounting:

New-adgroup Accounting -group-
scope global

This command adds John Smith to the
Marketing group in the admin.com domain:

Get-ADGroup -SearchBase
"DC=admin, DC=com" -SearchScope
Subtree -Filter {Name -Like
"*Marketing*"} | Add-
ADGroupMember -Member John
Smith

This command creates a new OU called
Finance in the admin. com domain:

New-ADOrganizationalUnit
-Name "Finance" -Path
"DC=admin, DC=com"

UNDERSTAND MANAGED SERVICE ACCOUNTS 185

When you are creating one of the many AD objects, you also have to become famil-
iar with many of the parameters associated with the object type you are trying to
create. For example, the New-ADUser cmdlet has many optional parameters you
can use. Like all PowerShell cmdlets, you can ask for help. With the AD cmdlets,
the -full switch for Get-Help displays a wealth of information and examples.

With any of the AD objects, you need to also learn the many properties associated
with the objects. Knowing the properties allows you to manage your AD environ-
ment in scale. One of the tricks to working with the AD properties is knowing the
names of the properties. To get the property names and to work with your AD
objects, you can use the Export-CSV cmdlet. For example, the following command
will export all the user objects in AD to a CSV file; you can then import the output
into a spreadsheet to see all the property names:

Managing Active
Directory with
PowerShell

[a}
I
=
)
-
m
=
o

Get-ADUser -filter * -properties * | Export-CSV alladdusers.csv

Understand Managed Service Accounts

Installing an application such as Exchange Server or IIS on your server typically
requires a dedicated account to run it securely. This account is called a service account.

Typically, these accounts are associated with the services running behind the scenes.
These accounts also govern the security privileges your applications have as they
interact with your system. These accounts are like typical AD accounts; they have
passwords that need to be maintained. If the passwords were to expire or change for
these accounts, the applications they are associated with would normally stop work-
ing. As you can imagine, fixing this problem can be an administrative headache.

In the past, you may have set their passwords to never expire after creating a secure
password, thus creating a stale password and leaving a security vulnerability in your
environment. Some administrators may have used the same account or built-in
accounts for multiple services. This would not provide service isolation; if the account
became unusable, multiple applications on the server would have been affected.

Understand Managed Service Accounts

Managed service accounts are special accounts you create on your server to help
with the management of your applications. These accounts are tied to your server’s
applications, but they avoid the pitfalls of the past. These accounts also provide

a built-in capability to isolate your services for the different applications on your

186

CHAPTER 8

MANAGING ACTIVE DIRECTORY WITH POWERSHELL

server. This helps avoid a single point of failure for your infrastructure and creates
an easier troubleshooting path.

Even more effective at saving your time and effort is the automatic password man-
agement with managed service accounts. This helps you avoid manual password
resets, stale passwords, and other possible issues in your infrastructure.

You create a service account tied to a specific server; you cannot have a service
account shared by multiple servers. One of the key benefits is that service accounts
allow server renaming under Windows Server 2008 R2 domain functional mode.

Create Managed Service Accounts

Creating a service account in your domain environment requires at least one
Windows Server 2008 R2 domain controller. Several cmdlets allow you to work
with managed service accounts. You need to be a domain administrator to be able
to create managed service accounts. If your domain is in native Windows Server
2008 R2 mode, you are ready to begin working with managed service accounts.
However, if your environment is in Windows Server 2008, Windows Server 2003,
or another mixed-mode domain environment, you need to prepare your forest and
domain. To prepare your environment, run these two commands on your Windows
Server 2008 R2 domain controller:

» adprep /forestprep

» adprep /domainprep in every domain where you want to create and use
managed service accounts

After your domain is prepared, you can create managed service accounts. Load the
administrative PowerShell session with the AD module loaded. You can do this by
clicking Start > Administrative Tools > Active Directory Module For PowerShell.

To create a managed service account, use the New-ADServiceAccount cmdlet.
By default, managed service accounts are created in the Managed Service Accounts
container. You can specify a different location if you want. The account will also

be enabled after you create it. The following command creates a managed service
account called Exchange2010 in the default Managed Service Accounts container:

New-ADServiceAccount Exchange2010

This command creates a managed service account called WebServer in the web
organizational unit in the contoso. com domain:

New-ADServiceAccount WebServer -path "ou=web,dc=contoso,dc=com"

UNDERSTAND MANAGED SERVICE ACCOUNTS 187

After you have created your managed service accounts or if you want to know what
managed service accounts are on your server, you can run the following command:

Get-ADServiceAccount -filter *

Your results will look similar to Figure 8.10.

FIGURE 8.10 Managed service accounts

trator: Active Directory Module for Windows PowerShell

v

UsersS\Administrator> Get—-ADServiceAccount —filter = E =

cxE
< ==
DistinguishedName : CM=exchange2818.CN=-Managed Service Accounts.DC=contoso.DC=com ooV
Enahled : True £ oo
HostComputers i =) 3]
: exchange281@ 8T o
: msD§-—ManagedServicefccount g o =
: aB3B9@fe—35%aa—4bhel-h2e2-aaf647214595 = - O
SamAccountName : exchange2@iB5 Qo

[a}
=
=
)
-
m
=
(-]

SID : §-1-5-21-2211986152-3555877645-3763396541-1338
UzserPrincipalName -

DistinguishedName : CN=WebServer. OU=UWeb.DC=contoso.DC=con
Enahled : True
HostComputers H

: WehBerver

: msDE-ManagedServiceflccount

: 59aPaa3?-Bb2f-4de?-bcld-bhfa?9h238548
SamAccountMame : WebServers

SID : §-1-5-21-2211986152-3555877645-37633%6541-1332
UserPrincipalName =

P8 C:\Users\Administrator>

You may have noticed that when the managed service account is created, you do
not need to specify a password. You can specify a password if you want; however,
you should let Windows Server 2008 R2 handle the password. If you do not specify
a password, the system generates a random password of 240 cryptographically
random characters.

Not having to manage the passwords for the managed service accounts is a key benefit
for you as an administrator. This formerly time-consuming process is now taken care
of by the system. Managed service accounts are also subject to the domain’s password
policy, and their passwords will be changed automatically to comply with the policy.

If you no longer want to use a managed service account, you can remove the
account with the Remove-ADServiceAccount cmdlet. To avoid downtime,
make sure the managed service account is no longer in use before you remove
the account. The following command removes the WebServer managed service
account from the server:

Remove-ADServiceAccount WebServer

When you run the command, you are asked to confirm deleting the account, as
shown in Figure 8.11. Enter Y, and the account will be deleted.

188

CHAPTER 8 -

MANAGING ACTIVE DIRECTORY WITH POWERSHELL

FIGURE 8.11

Removing a managed service account

& Administrator: Active Directory Module for Windows PowerShell

Conf irm
fAire you sure you want to perform this action?
Performing operation "Remove™ on Target "CN=WebServer,OU=Weh,DC=contoso,DC=com'.
1 ¥Yes to A1l [M]1 Mo [L]1 Mo to A1l [S81 Suspend [7]1 Help {default is "¥">:

Install and Use Managed Service Accounts

After creating the managed service account, you then need to install the service
account on the server or system on which you want to use the service account. After
you install the account, you then need to configure the service with the managed

service account.

Install the managed service account on the system via the Install-
ADServiceAccount cmdlet. For example, to install a managed service account
called WebServer on your system, run the following command:

Install-ADServiceAccount WebServer

After you install the managed service account on the server, it gets marked in AD
to prevent it from being used on another server. A managed service account can be
used by only one server.

After installing the account, configure the service to use the managed service
account:

1. Start the Services console by selecting Start > Administrative Tools >
Services.

2. Right-click the service you want to configure, and select Properties.
3. Click the Log On tab.

4. Click the This Account radio button.

5

. You can type the name of the account in the format of domainname\
accountname, or you can click Browse to search for the account. After you
have put the account name in the Services console, type a dollar sign ($) at
the end of the account name to ensure proper configuration.

6. Ensure that the password field is blank. Your screen will look similar to
Figure 8.12.

WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 189

FIGURE 8.12 Configured managed service account

|General LogOn | Recoveryi Dependencies I

Logon as:

¢~ Local System account

= Al 2 b jriteran ko
{* This account: !CONTOSO"-\WebSeNerS Browse... I
Password: I
g
Confirm password: i| 'E ‘.=_'
<< § -
Help me configure user account log on options. |]
£5%
LT
S o ;
8S= 0o
=8 a

[a}
I
=
)
-
m
=
(-]

[ok | cancel Apply

7. Click OK.

8. Before you close the Services console, you can click Start or restart to verify
the service was properly configured.

You can also use managed service accounts with your Internet Information Services
application pools. Chapter 10 shows how to configure IIS application pools with a
managed service account.

If you are done with a managed service account on the system, you can uninstall
the account with the Uninstall-ADServiceAccount cmdlet. For example, this
cmdlet uninstalls the WebServer managed service account:

Uninstall-ADServiceAccount WebServer

Work with the Active Directory Recycle Bin

You may have at one time deleted a user by accident. In previous versions of
Windows, you had to implement AD disaster/recovery scenarios for recovering the
deleted object when an accidental deletion occurred. This method was complicated.
Although using the recycle bin can be part of your overall backup and recovery
strategy, you still need to perform your regular backups in your environment.

190 CHAPTER 8 * MANAGING ACTIVE DIRECTORY WITH POWERSHELL

Understand How the Recycle Bin Works

Windows Server 2008 R2 includes the AD recycle bin. This is an addition to AD
and an optional tool you can enable on your Windows Server 2008 R2 domain
controllers. The recycle bin provides a tool for you to recover deleted users, groups,
OUs, and other AD objects. All attributes of the object are automatically restored,
including description, password, group membership, managed by, and formerly
problematic linked attributes.

Prior to Windows Server 2008 R2 and the AD recycle bin, when you deleted an
object, it became a tombstone object. By default, the tombstone object was still

on the server and available for recovery for 180 days. During that time, you could
restore the object with an authoritative restoration of your Active Directory. After
180 days, a garbage collection process would permanently remove the object from
AD. Performing an authoritative restore of your AD was time-consuming and
could involve downtime for your server.

After you enable the AD recycle bin, the process changes for deleted objects.
When an object is deleted, it is placed in a container called Deleted Objects. By
default, the object is in the Deleted Objects container for 180 days. During that
time, you can use PowerShell to recover the object. After 180 days, the object
becomes a recycled object. The object is in a tombstone state for another 180
days until the garbage collection process removes the object from AD.

You can change the default time for the recycle bin and tombstone by
modifying their attribute values. To change the recycle bin, modify the
msDS-DeletedObjectLifetime attribute. You can use the Set-ADobject
cmdlet to change the object. The following command would set the recycle bin
lifetime to 60 days for the deploy.com domain:

Set-ADObject -Identity "CN=Directory Service,CN=Windows NT 3
,CN=Services,CN=Configuration, DC=deploy,DC=com" 3

-Partition "CN=Configuration,DC=deploy,DC=com" 3

—-Replace:@{ "msDS-DeletedObjectLifetime" = 60}

To change the tombstone lifetime, modify the tombstoneLifetime attribute.
You can use the Set-ADobject cmdlet to change the object. The following
command would set the tombstone lifetime to 60 days for the deploy.com
domain:

Set-ADObject -Identity "CN=Directory Service,CN=Windows NT, &2
CN=Services,CN=Configuration, DC=deploy,DC=com" -Partition &3

WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 191

"CN=Configuration,DC=deploy,DC=com" 3
-Replace:@{ "tombstoneLifetime" = 60}

The new timeframe applies only to newly deleted objects. Any object deleted
before you enable the recycle bin follows normal deletion processes.

Enable the AD Recycle Bin

By default, the recycle bin is not enabled on your server. There are several things you
need to know about the recycle bin before you enable it. The first thing is that once
it has been enabled, you cannot disable it. The only way to work around the recycle
bin is to reduce the lifetime of the recycle bin by modifying the msDS-DeletedOb-
jectLifetime attribute.

Managing Active
Directory with
PowerShell

[a}
I
=
)
-
m
=
o

Before you enable the AD Recycle Bin, make sure your forest functional level is set
to Windows Server 2008 R2. This is required to ensure that all domain controllers
preserve attributes necessary to complete a successful object recovery. To raise the
forest functional level to Windows Server 2008 R2, you need to have all of your
domain controllers running Windows Server 2008 R2 as their operating system.

OTHER DOMAIN FUNCTIONAL MODES

Before enabling the recycle bin, you may need to perform some additional tasks on
your domain. If your environment was in Windows Server 2008, Windows Server 2003,
or other mixed-mode domain environments, you need to prepare the schema with the
attributes necessary to support the recycle bin. You need to prepare the forest and
the domain after you upgraded your domain controllers to Windows Server 2008 R2.

To prepare the forest, run the following command on the server that is the schema
master operations master:

adprep /forestprep
Run the following command on the server that is the infrastructure operations master role:
adprep /domainprep /gpprep

If your domain has read-only domain controllers (RDOCs), you also need to run the
following command:

adprep /rodcprep

Raising the functional level really has no effect other than allowing optional fea-
tures, such as the recycle bin, to be enabled. You can raise the functional level with
confidence and avoid any unnecessary side effects. Enabling the recycle bin can

192 CHAPTER 8 * MANAGING ACTIVE DIRECTORY WITH POWERSHELL

lead to a growth of the Active Directory database file of around 5-10 percent when
installed on a new DC. The growth of the database depends on the size and fre-
quency of object deletions in your domain.

To see whether the recycle bin has already been enabled on your server, run the
following command:

Get-ADOptionalFeature 'Recycle Bin Feature'

Your results should look similar to Figure 8.13.

FIGURE 8.13 Recycle bin feature disabled

PS C:SUsers“Administrator?> Get—ADOptionalFeature *Recycle Bin Feature’

DistinguishedMame : CN=Recycle Bin Feature.CH=Optional Features.CN=Directory Service.CN=Windous
NI ,.CH=Services . CN=Configuration,DC=contoso.DC=com
EnabhledScopes = {2
FeatureGUID : 7h6ddcdB-acd@—445e—F3h?-a?E9h6744f2a
FeatureScope : {ForestOrConfigurationSet?
IsDisableable : False
: Recycle Bin Feature
: meDE-0OptionalFeature
: Bab62fB96-7h58-499b-hB8B5—aecefed?64547
RequiredDomainMode :
RequiredForestMode : Windows20B8R2Forest

PS C:.UsersSAdministratord> _

If you do not see anything in the EnabledScopes parameter, the recycle bin is
currently disabled. To work with the recycle bin, you need to enable the optional
feature with the AD modules for PowerShell. To enable the recycle bin, perform the
following procedure:

1. Load the Active Directory module in PowerShell in administrator mode. You
can do this with Import-Module ActiveDirectory.

2. Type the following command to enable the recycle bin. You will see a screen
similar to Figure 8.14.

Enable-ADOptionalFeature "Recycle Bin Feature" -Scopeed

ForestorConfigurationSet -Target 'your domain name’

FIGURE 8.14 Enabling the recycle bin

ersSAdministrator> Enable—ADOptionalFeature '"Recycle Bin Feature" —Scope ForestorConfigur|
ationSet -Target contoso.com
WARNING: Enabling ‘Recycle Bin Feature’ on ‘CH=Partitions.CN=Configuration.DC=contoso.DG=com’ is
an irreversible action?! You will not be able to disable ‘Recycle Bin Feature' on
*CN=Partitions,.CN=Conf iguration,.DC=contoso.DC=com’ if you proceed.

Conf ipm

Are you sure you want to perform this action?

Performing operation "Enabhle" on Target "Recycle Bin Feature'.

[¥]1 Yes [A1 Yes to A1l [N] No [L] Ho to A1l [81 Suspend [?]1 Help {default is

WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 193

3. Type Y to enable the feature.

4. Verify the recycle bin has been enabled by running the following command.
Your screen will look similar to Figure 8.15.

Get-ADOptionalFeature 'Recycle Bin Feature'

FIGURE 8.15 Enabled recycle bin

2 ad : Acti ectory Module for Windows PowerShell
PS C:\UserssAdministrator? Get—ADOptionalFeature ’Recycle Bin Feature’

DistinguishedName
on

EnabledScopes =com,. CH=NTDS Settings

=8itesg, CN=Configuration,

oso.DC=conX

: 766ddcdB—acd@-445e—£3h9-a?f?h6P44f2a

= {ForestOrConfiguration8et}

F.

1 H

j 55 H DS—OptionalFeature

OhjectGUID : Bab2f8%6-7hh8-422h-hBB5-acelfe4764547

RequiredDomainMode =

ReguiredForestMode = Windows2008RZForest

Managing Active
Directory with
PowerShell

[a}
=
=
)
-
m
=
(-]

PS C:\UsersAdministrator>

Notice now the enabled scope has your domain referenced in the parameter.

Use the AD Recycle Bin

After enabling the recycle bin, you can access the container by using PowerShell. If
you have deleted a user and need to bring that AD object back, you can recover the
object from the recycle bin with the AD module for PowerShell.

Before restoring an Active Directory object, you need to know the ObjectGUID for

the object you want to restore. To recover an object from the recycle bin, perform
the following procedure:

1. With the AD module loaded, use the following command to view the objects
in the recycle bin:

Get-ADObject -SearchBase "CN=Deleted Objects, 3
DC=your domain name,DC=Com" -ldapFilter " (objectClass=*)" &3
-includeDeletedObjects | format-list

Another useful cmdlet you can leverage here is Out-Gridview. This makes
it easier to see the objects, and with the built-in sorting capabilities, you can
find the necessary ObjectGUID quickly. Figure 8.16 is an example of the
previous command, using Out-Gridview.

194

CHAPTER 8 * MANAGING ACTIVE DIRECTORY WITH POWERSHELL

FIGURE 8.16 Recyclebinin GridView

X Get-ADObject -SearchBase "Cl=Deleted Objects,DC=conto it |E||1|
[Filter =
4 Add criteria v|
Name ObjectClass OjU]D : -
j container fbf327a4-eb&3-4f6-bif2-b2f0bbBcS600
ABarbariol)
DEL:cBShBC1b-5cb5-4ab3-b7da-182163das0bs =" Soeber Il sels sl 1 Belade ke
g‘gﬁ;’bemz_m T b5be0352-9414-4e93-92bb-0cd54dbfi270

To filter the results even more, you can modify the objectClass parameter
from the previous command. To recover user objects, change the object-
Class parameter to user. To see just the user objects in your recycle bin,
change your command to look like the following:

Get-ADObject -SearchBase "CN=Deleted Objects, €
DC=your domain name,DC=Com" -ldapFilter " (objectClass=user)" 3

-includeDeletedObjects | format-list

Write down or copy the ObjectGUID for the object you want to recover; this
is the identity of the object you have deleted. You can use PowerShell to help
copy the text. This procedure is similar to previous command prompt knowl-
edge you may have. To copy text from a command prompt, right-click and
then select Mark. Highlight the text to copy, and then press Enter. To paste,
right-click and then click Paste.

. Recover the object with the following command:

Restore-ADObject -Identity ObjectGUID from step 2

To verify the object has been recovered, you can check your AD or run the
following command:

Get-ADObject -Filter {displayName -eq "users display name"} 3
-IncludeDeletedObjects

WORK WITH THE ACTIVE DIRECTORY RECYCLE BIN 195

Figure 8.17 shows an example of the command. Notice the deleted param-
eter is no longer marked as true.

FIGURE 8.17 Recovered AD object

Directory Module for Windows PowerShell
PS C:\Users“Administrator? Get—ADObject —Filter {displayName —eq "mhester"? —IncludeDeletedObject|

Deleted 3
DistinguishedName - CH=mhester.0U=Marketing.DC=contoso.DC=com

: mhester

: user
OhjectGUID = b5heB352-9414-4e?3-92bh—Bcd54dbf 8270

PS C:nUserssAdministrator?

Managing Active
Directory with
PowerShell

[a}
I
=
)
-
m
=
(-]

Recovering Multiple Users

Although knowing how to recover an individual user can be extremely useful, the
process can be time-consuming. What if you deleted an entire OU by accident,
with 100 users or more? Do you need to find each ObjectGUID and recover each
user individually? The answer is no. You can use the power of the pipe symbol to tie
together the Get -ADObject and Restore-ADObject cmdlets.

You can run this with one PowerShell command. To make your job easier, you need
to know the name of the deleted OU. The following command is an example to
recover all the deleted users from the Marketing OU in the deploy.com domain:

Get-ADObject -SearchBase "CN=Deleted Objects,

DC=your domain name,DC=Com" -Filter {lastKnownParent 3

-eq "OU=marketing,DC=deploy,dc=com"} -includeDeletedObjects &3

| Restore-ADObject

Depending how many users you want to recover, this command may take several
minutes to run in your AD environment.

EXERCISE 8: POPULATE AN ACTIVE DIRECTORY TEST ENVIRONMENT

Create a PowerShell procedure that creates 10 users. Create an OU called test, and put
the 10 users in the OU. Delete all 10 users after you create them. Using the recycle bin,
recover the users.

CHAPTER

Managing Desktops
with PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

ACCESS GROUP POLICY 198
Understand Group Policy...........cooviiiiiiiiiieen, 199
Understand How Group Policy Works 200
MANAGE GROUP POLICY 201
Create Group Policy Objects........covvviivininiininenn.. 204
Use Starter GPOS.oonii i 206
Work with Settings.oviiiiii i 208

Understand the Difference Between Policies and Preferences. 209

Work with Domain Password Policies 210
Understand Order of Precedencecccoovevvnnnee.. 212
Control Group Policy Order of Precedence................... 213
Work withRSOP ... 215
Back Up and Restore Group Policy Objects 216
MANAGE APPLOCKER 217
Understand AppLocker..........ooviiiiiiin i, 217
Understand AppLocker Policyccooeiiiiiien, 218

Configure AppLockeroooiiiiiiii 219

6 4i1dVH)

hen you have installed Active Directory into your infrastructure, one of your goals
should be centralization. In other words, you want to be able to control security,
management, and resource access from one central location. You also want to be
able to manage and control your desktops.

Active Directory has a tool, called Group Policy, for centrally managing your desk-
tops. With Group Policy you can manage virtually everything on the systems in your
infrastructure — from the color of the wallpaper to what applications can run to how
security works. This includes not only your client desktops but also your servers.

This chapter provides an overview of Group Policy and how it functions. You will
also see how you can use PowerShell to help manage the Group Policy environment,
working with not only the settings themselves but also the administrative mainte-
nance of Group Policy objects. The chapter closes with a look at a new feature for
Windows 7 and Windows Server 2008 R2 called AppLocker.

Access Group Policy

In managing the systems in your network, one goal to strive for is consistency across
all of the systems. To do this, Active Directory provides a tool called Group Policy.

Group Policy allows you to provide daily control and maintenance of your users’
desktops from a centralized location. Group Policy can help configure either the
computers or the users in your Active Directory. By targeting a computer with
Group Policy, you can maintain the desktop and ensure that every user who uses
the desktop has a default configuration you mandate for your systems. When you
target users with Group Policy, the users’ settings based on the group policies travel
with the users within your AD environment.

Group Policy also allows you to define your corporate desktop configuration. There
are thousands of settings you can configure, including settings for security, startup
scripts, mapped printers, application standardization, quality of service (QoS), and
Internet Explorer maintenance. This is not only for maintaining and configuring
your infrastructure but also for protecting your infrastructure by managing these
settings in a centralized location and allowing you to prevent users from chang-
ing these settings. Being effective with Group Policy can save you time and energy
when working with the desktops and users in your environment.

ACCESS GROUP POLICY

Although Group Policy gives you centralized control over your users’ environment,

you also have to balance control with workability. In other words, do not be so

restrictive with Group Policy that it negatively affects your users’ needs to accom-

plish their jobs.

Understand Group Policy

TABLE 9.1

Group Policy allows you to enforce your IT policies, implement any necessary secu-

rity settings, and implement a standard computing environment across your Active

Directory environment.

Having a standard environment provides a consistent base and helps alleviate sup-

port desk calls. Group Policy helps simplify your day-to-day administrative tasks

and leverage your existing knowledge of the AD environment. Before you begin

working with Group Policy, you need to be aware of some basic terms. You need to

understand the scope of policy management as well how Group Policy is processed

by the client systems. Table 9.1 describes some of the terms used with this tool.

Group Policy terminology

Group Policy
Management Console
(GPMCQ)

Group Policy object
(GPO)

Group Policy link

Administrative
template file (ADMX
file)

Group Policy
preferences

Resultant Set of Policy
(RSOP)

The main interface where you can create Group Policy objects (GPOs). GPMC
creates the links defining what objects the GPO will target. There are three
main scopes managed in GPMC: sites, domains, and organizational units
(OUs).

Objects that contain all of the settings you want to apply to your users or
computers. GPOs are linked to organizational units.

Links a GPO to the portion of your AD environment where you want the GPO
to be applied. This is referred to as the scope. There are three main levels
you apply GPOs to: site, domain, and OU.

Defines the location of the settings and configuration on the local systems
and creates the interface you use to modify the settings in the Group Policy
Editor, which is the GUI for managing Group Policy.

Provide alternatives to working with companywide images to manage

settings previously not easily configured in Group Policy. The settings,

initially set by the administrator, reflect a default state of the operating
system and are not enforced.

RSOP is the set of policy settings applied after all the Group Policy process-
ing is complete. This could be a combination of many levels of Group Policy.

199

Managing Desktops
with PowerShell

n
X
=
o
—
m
=
©

200 CHAPTER 9 -

MANAGING DESKTOPS WITH POWERSHELL

Understand How Group Policy Works

TABLE 9.2

Effective AD design provides the basis of management of Group Policy. Group Policy
can be applied to the site, domain, or organizational unit level. Table 9.2 shows the
impact and recommendations for using the different levels with Group Policy.

Scopes of Group Policy management

Site All of the domains and Sites are useful when you are setting network security
the objects in the AD settings, such as proxy server or IPSec policies. You also
site. This is the largest need to be an enterprise administrator to create GPOs at
scope of impact. this level.

Domain All of the objectsinthe The domain scope is used for your password policies
chosen domain. (length, complexity, expiration, and so on) and other

security settings where you want consistent application.

Organizational ~ All of the objectsinthe This is the recommended scope for Group Policy applica-
unit chosen OU, as well as tion. OUs provide the easiest-to-manage location for all
any nested OUs and of your Group Policy needs.
their objects.

As stated in Table 9.2, organizational units are the recommended scope for group
policies. One of the benefits of having an effective OU design is that the design can
assist you in applying group policies. Using OUs can help you control the applica-
tion of Group Policy by allowing you to target the unique needs for the users and
computers in each OU.

When Group Policy is enforced on your systems, it modifies the registry of those
systems. The policies may persist in the registry or may be refreshed as the policy is
updated. If a user has the ability to make changes to settings you have modified with
Group Policy, background processing refreshes them. Policies are updated in the
background at various intervals, which are also configurable via Group Policy set-
tings. If the system is a domain controller, the policy is refreshed every five minutes
by default. On all other systems, the refresh interval is 90 minutes plus a random
interval of up to 30 minutes by default; so, a policy could take up to 2 hours before
the changes you made to the GPO are reflected on the target system. However, if
the system can be rebooted, this shortens that wait period, because group policies
targeting computers are always updated when a system starts. The refresh interval is
the same length for group policies targeting users; user policy updates are also run
at login, so logging out and back in can refresh a user’s group policies that target

MANAGE GROUP POLICY 201

the user. You can also manually update the Group Policy settings by running
gpupdate /force in a PowerShell session or in a command prompt.

GROUP POLICY REFRESH INTERVALS

As previously noted, group policies are refreshed at certain intervals that are configured
within their own policies. You can set these refresh intervals from 0 minutes to 45 days.
If you set the interval to 0 minutes, the system tries to update every seven seconds.
However, this causes a spike in network traffic and is typically not recommended.

Since this is set within a policy, this policy can be disabled. If the policy is disabled, the
group policies update at their normal interval — 5 minutes for domain controllers and
90 minutes for other systems. If you want to stop the refreshing of group policies, look
into the group policy called “Disable background refresh of Group Policy.”

Also note that the group policies for users, computers, and domain controllers can

a
be updated at different intervals. There are three policies for managing these refresh é 3
intervals: “Group Policy refresh interval for users,” “Group Policy refresh interval for é S
computers,” and “Group Policy refresh interval for domain controllers.” § E

n
X
=
o
—
m
=
-]

Manage Group Policy

Group Policy, like many other tools, has a dedicated module for storing all the
cmdlets you can use to manage Group Policy. However, the Group Policy module is
not available on all the systems that have PowerShell installed.

You can get the Group Policy module only if your system is one of the following:
» Domain controller

» A member server of the domain member with the Group Policy Management
Console (GPMC) installed

» Windows 7 with the Remote Server Administration Tools (RSAT) installed
To import the Group Policy module, run the following command:
Import-Module grouppolicy

If you try to import the Group Policy module on a system not meeting one of the
previous criteria, you will see a screen similar to Figure 9.1.

202 CHAPTER 9 * MANAGING DESKTOPS WITH POWERSHELL

FIGURE 9.1 Group Policy module error

ndows PowerShell

Users> Import—Module grouppolicy

PS C:sUsers>

After you have successfully imported the Group Policy module, you can see a list of
the cmdlets available by running this:

Get-Command -module grouppolicy

Your results will look similar to Figure 9.2.

FIGURE 9.2 Group Policy cmdlets

rator? Get—Command —Module grouppolicy

Backup—GPO

Gopy—GPO
Get—GPInheritance
Get—GPO

Get—GPOReport
Get—GPPermi: s
Get—GPPrefReqg rylalue
Get—GPRegistryllalue
Get—GPResultantSetO0fPolicy
Get—GPStarterGPO
Import—GPO

New-GPLink

New-GPO
Hew-GPStarterGPO
Remove-GPLink
Remove—GPO
Remove—GPPrefRegistrylalue
Remove—GPRegistrylalue
Rename—GPO

Restore—GPO
Set—GPInheritance
Set—GPLink

Set—GPPerni.
Set—GPPrefReg thUalue
Set—! GPRagldtlyUalua

Def1n1t10n

Back PO —Guid <Guid> —Path <Stein...

GCopy—GP0 —SourceGuid <Guid> -TargetN.
Get—GPInheritance [-Target] {String>
Get—-GP0 [-Guid] {Guid> [[-Domainl <
Get—GPOReport [-Guidl <{Guid> [-Repo
Get—GPPermi: s —Guid {Guid> [-Ta:

Get—GPPrefReqg ryllalue —Guid <Guid>...
Get—GPRegistrylalue —Guid <Guid> —Ke...

Get—GPResultantSet0fPolicy [-Compute.
Get—GPStarterGP0 —Guid <{Guid> [-Doma
Import—GPO —Backupld <{Guid> —Path
Hew—GPLink —Guid <{Guid> -Target <8¢
MNew—GPQ [-Mamel <{String> [-Comment <.

New—GPStarterGP0 [Namel {String> [—...
Remove—GPLink —Guid <Guid> -Target <...

Remove—GP0 —Guid <Guid> [-Domain <{§
Remove—GPPrefRegistryUalue [[—Serve
Remove—GPRegistrylalue [—Guidl {Gui
Rename—GP0 —Guid <Guid> -TargetName
Restore—GPO —Backupld <{Guid> —Path
Set—! GPInhelltance [Talget] <String>.

s —Guid <Guid> —Pern...
egistrylalue —Guid <Guid>...
Set—! GPRegldtlyUalue —Guid <Guid> -Ke...

PE C:xUserssAdministrator> _

When you work with Group Policy, you should perform common administrative
tasks, such as backup and recovery, on a regular basis. These tasks can be performed
through the GPMC, as well as in PowerShell. The most common administrative
task you will do with Group Policy is configure settings or preferences. Table 9.3
describes common cmdlets for working with Group Policy settings.

The Get-GPO cmdlet allows you to see the Group Policy objects (GPOs) in your
domain. To see all of the GPOs, run the following command. This command lists the
basic information (settings, status, name, and GUID) for the GPOs in your domain:

Get-GPO -All

MANAGE GROUP POLICY

TABLE 9.3

FIGURE 9.3

Policy and preferences cmdlets

maer———owpion

Get-GPO

New-GPO

New-GPLink

Set-GPRegistryValue

Set-GPPrefRegistryValue

Lists all the GPOs in the domain; you can list a specific GPO, or you
can list all of the GPOs for the domain.

Creates a new Group Policy object in your domain.
Creates a new Group Policy link for an existing GPO in your domain.

Sets a policy setting. For your Group Policy object to be effective
with this cmdlet, you need to know the location in the registry of
the GPO you want to modify.

Sets a preference setting. For your Group Policy object to be effec-
tive with this cmdlet, you need to know the location in the registry
of the GPO you want to modify.

Your results will look similar to Figure 9.3.

Get-GPO -All

Administrator:

PS C:\UsersNAdministrator> Get—GPO -A1l

Userlersion
ComputerlUersion
WmiFilter

Userlersion
ComputerUersion
MmiFiltew

DizplayMane
DomainMame
Ouner

GpoStatug
Description
Creationlime

Userlersion

ComputerUersion
MmiFilter

lows PowerShell

: Default Domain Policy

: contoso.com

: GONTOS0MDomain Admins

: 31b2f34A-BA16d-11d2-945f BBAcB4Fh?84F?
: All%ettingsEnabled

: 5,27,2018 9:21:
ModificationTime : H
: AD Version . 8ysUol Uersion: @
: AD Version: 3. Syslol UVersion: 3

: Default Domain Controllers Policy

i contoso.com

: CONTOSO~Domain Admil

: bacl?86c— 316f—11d2—945f—ﬂﬂc34f}1984f9
: AllSettingsEnabled

: 52772018
ModificationTime :
: AD Uersion
: AD Version: B,

: Mew Group Policy Ohject

: contoso.com

: CONTOSONDomain Adm

= 75891547—392a—4cd8—981c—f9e?deh6f5la
: AllSettingsEnabled

: 7,29.2810 1:
ModificationTime : a

H on:
: AD Version: B, Syslol Uersion: B

5/,27/2018 8:28

64,2010 7
SyslUol Version: B
SysUol Uersion: 8

SysUol Uersion: @

When you are working with GPOs in PowerShell, you can use either the display
name or the ID parameter. The ID is also used to help keep track of the GPOs when
they are replicated to other domain controllers. The Group Policy objects are stored
in $windir%\SYSVOL\domain\Policies. When you browse to the directory, you
will see each GPO ID has its own folder. The SYSVOL directory maintains a central

203

Managing Desktops
with PowerShell

N
==
>
)
-
m
=
O

204

CHAPTER 9

MANAGING DESKTOPS WITH POWERSHELL

location for the GPO files. Figure 9.4 shows an example of browsing to the Policies

directory.

FIGURE 9.4 GPOlistingin SYSVOL

inistrator: Windows PowerShell

puterlersion
Uanllte1

DlaplayName
Doma inName
Ouner
1d
GpoStatua
ription
ationTime

: AD Uersion: 3. SysUol Uersion: 3

: Default Domain GControllers Policy

: contoso.com

: CONTOSO0NDomain Admins

: 6acl?86c—B16f-11d2-945f -B0cB4f P B4ET
: AllSettingsEnabled

i 5,27,2010 9
e

C
ModificationTime : 6-4.2

UserUersion
ComputerlUersion
MniFilter

DisplayMame
DomainName
Ouner

1d

: Mew Group Policy Object

: contoso_com

: CONTOS0~Domain Admins

i 7a891547-e?2a-4cd8-98ic—fPePdebh6f5Ba

GpoStatus : AllSettingsEnabled

Description

: 7,29,2010 1:16:38 PM
e @12

Computerlersion : B, 8yslol Ue

UniFilter

PS C:xWindows \8¥SUOL~domain\Policies> dir

Directory: C:sWindows“8YSUOL“domain~Policies

La_‘ tiriteTime

Length Name

{31B2F34I B16D-11D2-945F-BACA4FBI 8 4F 2>
6AC1786C-A16F-11D2-945F-ABCA4f BIB4F9>
{7!189154'? E92A-4CD8-981C-F9EYDEBGFL0A>

5/27/2.13
5/27/2018
?,2%.,2018

9:21 AM
9:21 AM
1:16 PM

PS C:sWindows\SYSUOLNdomain“\Policies>

If you want to see just the settings of a particular GPO, you can use one of the fol-
lowing commands:

» Ifyou use the ID, use Get-GPO -ID <GUID of GPO>.

» Ifyou use the display name, use Get-GPO -DisplayName <Display name
of GPO>. Or, since display name is positional, use Get-GPO - <Display
name of GPO>.If the display name has spaces, place quotation marks (" ")
around the name.

Create Group Policy Objects

Creating a new GPO you will do two things, first you will create a GPO to store all
of your settings and then you will create a GPO link to associate it with a level of
management. See the “Understand Group Policy Order of Precedence” section later
in this chapter to understand the effect of placing a link.)

MANAGE GROUP POLICY 205

Creating a GPO in PowerShell involves combining the two cmdlets: New-GPO and
New-GPLink. For example, the following command would create a GPO called
RemoveRun linked to the marketing OU in the deploy.com domain:

New-GPO -Name RemoveRun | New-GPLink ¢

-target "ou=marketing,dc=deploy, dc=com"
Although you can create GPOs and not link them, you will normally create both
GPOs and Group Policy links at the same time so they take effect right away.

When you create and link a GPO, the default security is also set. The default secu-
rity is set to allow all the domain users group to apply GPO for the systems. Using
the Get-GPPermissions cmdlet, you can see the permissions for a given GPO.
This command lists permissions for a GPO called test:

Get-GPPermissions test -all

Your results will look similar to Figure 9.5.

FIGURE 9.5 Get-GPPermissions

B Administrator: Windows PowerShell
PS G:inlsersnAdministrator?> Get—GPPermissions test —all

Managing Desktops
with PowerShell

i Authenticated Users

= WellKnounGroup
= GpoApply

: False

n
X
>
o
—
m
=
-]

: Domain Admins

= Group
= GpoEditDeleteModif ySecurity
: False

= Enterprise Admins

= Group

= GpoEditDeleteModif ySecurity
= False

= ENTERPFRISE DOMAIN GOMTROLLERS
= WellKnounGroup

= GpoRead

: False

= SYSTEM

= WellKnounGroup

= GpoEditDeleteModif ySecurity
: False

PS C:vUserssAdministrator> _

You may also need to set security on the files so they can be used by users. There are
five levels of security you can set on a GPO using the Set-GPPermissions cmdlet.
Table 9.4 describes the five permission levels.

This command sets the permissions to GPOEdit level on the GPO called test for the
group called Test Administrators:

Set-GPPermissions -Name Test -TargetName
"Test Administrators" -TargetType Group

-PermissionLevel GpoEdit

206

CHAPTER 9 * MANAG

ING DESKTOPS WITH POWERSHELL

TABLE 9.4 Group

Policy permission levels

Read

Apply

Edit

GpoRead Basic permission allowing the read of the
GPO; mandatory to be able to apply the GPO

GpoApply Allows the GPO to be applied to the
targeted user or computer and includes
the read permission

GpoEdit Allows editing of the GPO settings

GPO Administrator =~ GpoEditDeleteModifySecurity Allows editing of the GPO settings and all

None

other administrative tasks, from deleting link
to delegating administrative permissions

None Removes permissions from the GPO

When you use the Set-GPPermissions cmdlet, by default it does not replace the
permissions on the GPO if they are currently higher than what you are trying to set.

If you want your permissions change to replace the existing level, you need to use

the -Replace switch. This command forces your security setting:

Set-GPPermissions -Name Test -TargetName 3

"Test Administrators" -TargetType Group

-PermissionLevel GpoEdit -Replace

Use Starter GPOs

In Group Policy there are several template files with preconfigured settings. There

are eight system starter GPOs that were introduced with Windows Server 2008
R2 and Windows 7 with Remote Server Administration Tools. The GPOs are for
Enterprise Client (EC) and Specialized Security Limited Functionality (SSLF)
systems. The standards and settings for EC and SSLF are defined in the security
guides for Windows Vista and Windows XP.

| 4

>

Windows Vista EC Computer Starter GPO
Windows Vista EC User Starter GPO
Windows Vista SSLF Computer Starter GPO
Windows Vista SSLF User Starter GPO
Windows XP SP2 EC Computer Starter GPO
Windows XP SP2 EC User Starter GPO
Windows XP SP2 SSLF Computer Starter GPO
Windows XP SP2 SSLF User Starter GPO

MANAGE GROUP POLICY

FIGURE 9.6

FIGURE 9.7

When you first work on your Windows Server 2008 R2 server, the starter GPOs are
not installed. The Get -GPStarterGPO -all command is used to show the starter
GPOs on the system. If you run the cmdlet and see the error in Figure 9.6, you need

to load the starter GPOs.

No starter GPOs

: The system cannot find the path specified. (Exception from HRESULI: Bx8087008

11]
+ Categorylnfo : NHotSpecified: ¢(:)> [Get—GPStarterGP0Ol. DirectoryNotFoundException|

+ FullyQualifiedErrorld : System.I0.DirectoryNotFoundException. Microsoft. GroupPolicy.Command

PS G:sUsers™Administrator>

To load the GPOs on the system, you can use the Group Policy Management
Console, or you can use New-GPStarterGPO. When you run the

New-StarterGPO cmdlet, you have to specify a name for the new starter GPO.

If you have not yet installed the system starter GPOs on the system when you
run the New-GPStarterGPO cmdlet, it creates the starter GPOs for you.
Figure 9.7 shows the results of Get-GPStarterGPO -all after you have the
starter GPOs installed.

Starter GPOs

Powershell
PS G:sUsers™Administrator?> Hew—GPStarterGPO

cmdlet Mew—GPStarterGPO at command pipeline position 1
Supply values for the following parameters:
Name: test

test
13df98a2-895e—41he—hB16—6b213h44bd8A
BUILTINSAdmin rators

12,15-2810 12 54 PM

32/15/2813 12 54 PM

CreationTine
ModificationT ime
UserlUersion
ComputerlUersion
StarterGpolersion
Star GpoT ype

AL i
Description

Gustom

PS C:\Users“Administrator> Get—GPStarterGPO -all

Windows XP SP2 SSLF User
B874086h—4ad8-4bh4d-2321—-dchaZaab9cBc
BUILTINsAdministrators

12-15-2018 12 52 PM

6-18-200% 12:44:82 PM

a
System
Mi.

soft

Cros
This Starter GPO contains the user Group Policy settings recommended for th
e Specialized Security Limited Functionality (SSLF> client environment desc
ribed in the Windows EP security guide.

For more information ahout each of these setting: see the Windouws EP Secur
ity Guide C(http:/rgo.microsoft.com fulink/?LinkID=121854>.

test
13df98a2-895e—41he—hB16—6b213h44bdBA
BUILTIN“Administrators

207

Managing Desktops
with PowerShell

N
=
>
)
-
m
=
i)

208

CHAPTER 9

MANAGING DESKTOPS WITH POWERSHELL

When you create a GPO, you can specify a starter GPO using the previous names
and the New-GPO cmdlet. For example, the following command will create a new
GPO called XpsSP2ss1fUser using the Windows XP SP2 SSLF User Starter GPO
linked to the XPDesktops organizational unit in deploy. com.

New-GPO -Name XpSP2sslfUser -StarterGPOName«d
"Windows XP SP2 SSLF User Starter GPO" &
| New-GPLink -target "ou=XPDesktops,dc=deploy, dc=com"

Work with Settings

You can also work with individual settings for GPOs in PowerShell. This can be
useful for modifying multiple GPOs at once. However, for one-off changes to GPOs,
although PowerShell can be used, you may prefer to use the Group Policy Editor.
The main reason why you would want to use the Group Policy Editor is you need to
know the registry locations as well the values needed in the registry, and the Group
Policy Editor provides a nice interface for seeing these locations. To use the follow-
ing PowerShell cmdlets, you may need to do some investigative work in the Group
Policy Editor prior to making changes in PowerShell.

To make changes in PowerShell to the settings in a GPO, you can use two cmdlets
— one for policies and the other for preferences:

Set-GPRegistryValue
Set-GPPrefRegistryValue

Both of these cmdlets can be used to modify the registry once you know the regis-
try locations and values. For example, this command enables the Run menu on the
Start menu of a Windows 7 client for the RunUsersRun GPO:

Set-GPRegistryValue -Name "RunUsersRun" -key¢3
"HKCU\Software\Microsoft\Windows\CurrentVersion\Policiese
\Explorer" -ValueName ForceRunOnStartMenu 3

-Type DWORD -value 1

The cmdlets work similarly; however, there is a difference between the two that
you need to understand. See “Understand the Difference Between Policies and
Preferences” later in this chapter.

You can also quickly look at the settings for any GPO with the Get-GPOReport
cmdlet, which creates an XML or HTML output file of all the settings in a particular
GPO. This cmdlet generates a report for the RunUsersRun GPO in HTML format:

Get-GPOReport -Name RunusersRun -ReportType 3
HTML -path c:\users\matt\desktop\runusersrun.html

MANAGE GROUP POLICY

Figure 9.8 shows an example of the HTML report.

FIGURE 9.8 HTMLreport

-iBix]
o = — T
ey IE, C:\UsersiMatt\Desktop yrunusersrun, html _j 'f?: A In‘_’ Bing |2 &
Th‘.\f Favorites @ RunUsersRun | | ﬁ - [E:! - Page - Safety - Tooks - @v Z

TITS TST Oy TCOUES NS 1T e UonTair Of e Or . T

The settings in this GPO can only apply to the following groups, users, and computers:

Name

NT AUTHORITAuthenticated Users

These groups and users have the specified permission for this GPO

Name Allowed Permissions Inherited

CONTOSO\Domain Admins Edit settings. delete, modify securty No

CONTOSO\Enterprise Admins Edit settings, delete, modify security No

NT AUTHORITY\Authenticated Users Read from Security Fittering) No

NT AUTHORITY\ENTERPRISE DOMAIN Read No

CONTROLLERS

NT AUTHORITYA\SYSTEM Edit settings, delete, modfy security No

Computer Configuration (Enabled)

T
=
o

Mo settings defined
User Configuration (Enabled) hide
Admiristrative: Temgh hide
Policy definitions (ADMX files) retrieved from the local machine
Start Menu and Taskbar hide
Policy Setting Comment
Add the Run command to the Start Menu Enabled |
[[[[[[Computer | Protected Mode: OFf Vav | ®m0% v

Depending on your browser, you may be prompted to enable ActiveX controls
before viewing the report. These allow for tab expansion to browse through the file
quickly. You can also use the -A11 parameter instead of a name of a specific GPO to
get a report for all the GPOs for your domain.

Understand the Difference Between Policies and
Preferences

Table 9.3 lists cmdlets to work with two different groups of settings in Group Policy:

» Polices

» Preferences

As you work with Group Policy settings, you need to know the difference between
them. Both policies and preferences can modify both user and computer objects;
however, they serve two different purposes. The main difference is enforcement;
policies are enforced, while preferences are not strictly enforced.

209

Managing Desktops
with PowerShell

N
X
>
)
—
m
=
©

210 CHAPTER 9 * MANAGING DESKTOPS WITH POWERSHELL

Policies

When you are working with policies, the settings and interface are based on
administrative templates. Policies make changes to the registry as directed by
the administrative template. There are special sections in the registry hives that
are controlled by Group Policy. The Group Policy settings stored in these loca-
tions are known as true policies.

Specifically, Group Policy works with these two locations for computer settings:

» HKEY LOCAL_MACHINE \SOFTWARE\policies (preferred location)

» HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Windows\
CurrentVersion\policies

For the user settings, Group Policy works with the following two locations:

» HKEY_CURRENT USER \SOFTWARE\policies (preferred location)

» HKEY_ CURRENT_USER \SOFTWARE\Microsoft\Windows\
CurrentVersion\policies

Every time a system processes Group Policy and gets the RSOP, these registry hives
(all the keys and values) are erased and rewritten with the new RSOP. This occurs
only as long as a valid Group Policy is still being applied to the computer or user.

Preferences

Introduced in Windows Server 2008, preferences provide an alternative to using
scripts to perform common tasks. These tasks were traditionally not done easily,

if at all, in Group Policy. Preferences allow you to modify local registry settings,
local users and groups, files and folders, printers, local services, mapped drives,
and many other local settings. Since preferences are not enforced on local systems,
users have the ability to make changes. Additionally, preferences are useful for
non-Group-Policy-aware applications and system settings. However, these changes
rarely occur because of the nature of preferences requiring some kind of adminis-
trative credentials.

You can also target individual preference items through Group Policy filtering. This
is very different from true policies, in that you cannot target individual settings
inside Group Policy true policies.

Work with Domain Password Policies

Working with domain password policies allows you to control the settings for
things such as password history, length, and complexity requirements for your

MANAGE GROUP POLICY 211

domain. These policy settings help keep your domain secure and your users’
passwords more secure. You can work with these policies in PowerShell; however,
for these policies, you use cmdlets from the Active Directory module rather than
the Group Policy module.

There are two main cmdlets you will use from the AD module to work directly with
password policies:

Get-ADDefaultDomainPasswordPolicy

Set-ADDefaul tDomainPasswordPolicy

To see the current password policy for the domain, run the following command:
Get-ADDefaultDomainPasswordPolicy -Identity contoso.com

Your results will look similar to Figure 9.9.

FIGURE 9.9 Default password policy

strator: Active Directory Module for Windows PowerShell
%> Get—ADDefaultDomainPa rdPolicy —identity contoso.com

Managing Desktops

with PowerShell

N
=
>
)
-
m
=
i)

ComplexityEnahled : True _
DistinguishedMame : DC=contoso.DC=com

LockoutDuration : BA:38:88

LockoutOhservationWindow : AA:38:88

: 8
: 42.P0:90:00
E %.BB:BB:BB

: {domainDNS>
: dB8cah?a8-d148-4h49-8555-d%hed?2c5h?f
PasswordHistoryCount

: 24
ReversibleEncryptionEnabled : False

PS C:n>

When setting the password policy, you need to know what parameters to change.
The main parameters are as follows:

» ComplexityEnabled: Canbe $true or $false and is used to enforce com-
plex passwords

» MaxPasswordAge: Defines how old a password can be before a user has to
change it

» MinPasswordAge: Defines how old a password has to be before a user can
change it

» MinPasswordLength: Defines the minimum length of characters for a password

» PasswordHistoryCount: Defines how many passwords AD will remember
until a user can reuse a former password

212

CHAPTER 9

MANAGING DESKTOPS WITH POWERSHELL

To set the password policy for the contoso. com domain to have passwords that
need to be changed every 50 days with a length of 15 characters, you would use the
following command:

Set-ADDefaultDomainPasswordPolicy -Identity contoso.comed
-MaxPasswordAge 50.00:00:00 -MinPasswordLength 15

There also three other parameters you can use with the
Set-ADDefaultDomainPasswordPolicy cmdlet that control the account lock-
out policy. The account lockout policy determines how tolerant AD is with failed
logon attempts.

» LockoutDuration: Defines how long an account will be locked out for when
the LockoutThreshold is reached.

» LockoutObservationWindow: Defines how long before the
LockoutThreshold counter is reset.

» LockoutThreshold: Defines how many failed logon attempts AD will allow
until the account becomes locked out. By default this value is set to 0, which
means the accounts will never be locked out.

If your domain is contoso. com and you want three failed logon attempts before
the account is locked out, with an account locked out for 45 minutes, run the
following command:

Set-ADDefaultDomainPasswordPolicy -Identity contoso.comed
-LockoutDuration 00:45:00 -LockoutThreshold 3

Understand Order of Precedence

When you create group policies, you are not limited to just one GPO or one scope of
management. By default, the RSOP is the culmination of all the scopes and all the
GPOs. In other words, the RSOP could be the combination of multiple GPOs from
multiple scopes. You could have an RSOP containing settings from the site, domain,
and OU scopes. Typically, there is little conflict when working with policies, and all
the settings apply as you go through the levels.

However, it is important you understand the default order of precedence. This
becomes important when you have two or more group policies having conflicting
settings. The rule of thumb when working with multiple GPOs is that the GPO
closest to the object (user or computer) wins.

MANAGE GROUP POLICY 213

The default order of precedence is as follows:

1. Local policies (while local policies are not GPOs, they live on the local
system and are applied first; the GPOs are applied after this and override the
local settings, including multiple local policies on Windows Vista systems
Or newer)

2. Site

3. Domain
4. Parent OU
5

. Child OU (if you have nested OUs, these are called child OUs, and they can
have separate settings as well)

For example, if you have a setting to remove the Run command at the domain scope
and a setting to enable the Run command at the OU level, the setting at the OU
level will “win,” and the Run command will be enabled by default.

Control Group Policy Order of Precedence

Managing Desktops
with PowerShell

With Group Policy, you also can have multiple GPOs per site, domain, or OU. When _
this happens, you need to understand link order. Link order determines the order

in which policies are applied. The link with the highest order, with 1 being the high-

est order, is applied last and therefore has the highest precedence for a given site,

domain, or organizational unit.

N
=
>
)
-
m
=
i)

You can view the link order for a particular OU using the Get- GPInheritance
cmdlet. For example, the following command displays the GPO links for the sales
OU in contoso. com:

Get-GPInheritance -target "ou=sales, dc=constoso, dc=com"

Your results will look similar to Figure 9.10.

FIGURE 9.10 Displaying link order

X Administrator: Windows PowerShell)
PS G:sUserssAdministrator?> Get—GPInheritance —target "0OU=Sales. DG=contoso. dc=com"

ContainerType b
Path : ou=sales. dc=contoso. dc=com
Gpulrllhe}-itanceBluckE(l i

HNo
GpoLinks : {RunUsersRun, LogoffinLogon?
InheritedGpoLinks i

PSS G:vUsersSAdministrator?> _

214

CHAPTER 9 -

MANAGING DESKTOPS WITH POWERSHELL

FIGURE 9.11

As shown in Figure 9.10, RunUsersRun is listed first in GpoLinks, and
LogoffinLogon is second. Therefore, RunUsersRun will be applied last. To change
the link order, use the Set-GPLink cmdlet. This command sets the Group Policy link
order for LogoffinLogon to link order position 1 for the sales OU in contoso . com.

Set-GPLink -name LogoffinLogon -target

"ou=sales, dc=constoso, dc=com" -order 1

Your results will look similar to Figure 9.11.

Setting link order

SAdministrator? Set—GPLink —displayname LogoffinLogon —target “ou=sales, dc=contoso, !

order
: BB670422-69%e—41lab—TFed2-ae2043355%941 I
: LogoffinLogon

ContainerType &

Path : ou-sales, de-contoso,. dec-com
GpoInheritanceBlocked = HNo

GpoLinks : {LogoffinLogon, RunUsersRunl}
InheritedGpoLinks B

PS C:xUserssAdministrator?> _

There are two other ways you can control how Group Policy is processed, and they
are block inheritance and enforce (known as “no override” in previous operating
systems).

Block inheritance prevents GPOs from higher scopes from being inherited, and thus
applied, by the child scopes further down the chain. The only exception is if the GPO
has been marked as enforced. Block inheritance is selected at either the domain or the
OU level. For example, if you did not want domain-wide policies applying to the child
OUs, you could block inheritance at the OU level, and the domain policies would

not be inherited. To block inheritance in PowerShell, use the Set-GPInheritance
cmdlet with the IsBlocked parameter, which can be Yes or No. The following com-
mand will block the inheritance for the marketing OU in deploy. com:

Set-GPinheritance -Target "ou=marketin,dc=deploy,dc=com"«d
-IsBlocked Yes

Enforce is applied to the Group Policy link and marks the GPO to be processed last
regardless of where the policy falls in the scope of management. In other words, an
enforced policy will always win unless another enforced policy is further down the
scope of management. To enforce a Group Policy link in PowerShell, use Set -GPLink

MANAGE GROUP POLICY

with the Enforced parameter, which can be Yes or No. The following command will
enforce the RunUserRun policy for the marketing OU in deploy . com:

Set-GPLink -Name RunUserRun -Target

"dc=marketing, dc=deploy, dc=com" -Enforced Yes

Work with RSOP

When you start to apply policies at many levels in a GPO, you need to know how to
work with the Resultant Set of Policy (RSOP). RSOP shows the end result when you
have multiple GPOs applied at multiple scopes of management. Essentially, with
RSOP, you see which policies won and were applied.

To view the RSOP after a user or computer has applied the policy, use the Get -
GPResultantSetofPolicy cmdlet. You can get the RSOP by specifying either the
user or the computer you want to view. For example, this command will show you
the RSOP policy for the user matt on the computer matt-pc.

Get-GPResultantSetofPolicy -user contoso\matted
-computer matt-pc -reporttype html -path c:\matt.html

You can see an example of an RSOP report in Figure 9.12.

FIGURE 9.12 RSOPreport

f_-: CONTOSO \matt - Windows Internet Explorer Tz ||:| 5'
@._ G |g, V\server 1\gpsettings\matt.html j 2| X If"'?-:; 2

.7 Favorites @ conTosOmatt | | 2 - - [g v Page~ Safety~ Tooks~ lé-v Z

Group Policy Resulls 1~

CONTOSO\matt
Data collected on: 12/15/2010 6:42:03 PM hide all
Summary

C C

- =N
B E
=

No data available.
User Configuration Summary
General

R
g
Ik

User name CONTOSO \matt
Dormain contoso.com
Last time Group Policy was processed 12/15/2010 6:40:11 PM

Group Policy Objects
Applied GPOs

=
=
i

T
G
o

Name Link Location Revision
RunUsersRun contoso.com AD (1), Sysval (1)
Default Domain Policy contoso.com AD (3). Sysvol (3)

Denied GPOs

=
=
i

MName Link Location Reason Denied
Local Group Policy Local Empty
Security Group Membership when Group Policy was applied
CONTOSO\Domain Users
Everyone
BUILTIN\Account Operators

BUILTIMN\Remote Deskiop Users
BUILTIN\Users i

[[[[[% localintranet | Protected Mode: OFF [a - [*= 0% ~

X
=8
@

215

Managing Desktops
with PowerShell

N
=
>
)
-
m
=
i)

216

CHAPTER 9 -

MANAGING DESKTOPS WITH POWERSHELL

When you remotely generate the RSOP report, you may receive an RCP server
unavailable error message. This error may occur depending on how your security
configuration is internally configured for the domain. You can change one Group
Policy setting to fix this error. To enable the ability to get RSOP from remote
systems, you need to enable the “Windows Firewall: Allow inbound remote admin-
istration exception” policy. This is located in the Computer Configuration \
Administrative Templates\Network \Network Connections\Windows
Firewall\ [Domain or Standard] Profile\ section of your GPO settings.
You could also run this command:

Set-GPRegistryValue -Name "RunUsersRun" -key 3
"HKLM\Software\Policies\Microsoft\WindowsFirewall\ e
DomainProfile\RemoteAdminSettings" -ValueName Enableded
-Type DWORD -value 1

Back Up and Restore Group Policy Objects

TABLE 9.5

You can back up and restore your GPOs in PowerShell. There are a few PowerShell
cmdlets to help you with this daily maintenance. Table 9.5 shows the PowerShell cmd-
lets to work with the backup and restoration of GPOs.

Backup and recovery cmdlets

(et oot ampe

Backup-GPO Backs up the GPOs you specify for This example backs up all the group poli-

your domain. You can back up a cies in the domain to \\server5\GPbackups:
specific GPO with the ID or name of Backup-GPO -all -path \\server5\
the GPO, or you can use the -A11 GPbackups

parameter to back up all the GPOs in

the domain.

Restore-GPO Restores the GPOs you specify for This example restores all the group policies
your domain. You can restore a in the domain from \\server5\GPbackups:
specific GPO with the ID or name of ~ Restore-GPO -all -path \\server5\
the GPO, or you can use the -A11 GPbackups

parameter to restore all the GPOs in
the backup directory.

Import-GPO Imports the settings from a GPO This example imports the settings from
backup into a target GPO. This allows = the RunUsersRun GPO located at \\
you to just import the settingsfora server5\GPbackups to the NewRunUsers
particular GPO into a new GPO. GPO: Import-GPO -BackupGpoName
RunusersRun -TargetName
NewRunUsers -path \\server5\
GPbackups

MANAGE APPLOCKER 217

Manage AppLocker

The ability to control what applications a user can run on their desktop has been

in Group Policy via software restriction policies. These have been around for years,
and they can be a bit challenging. With Windows 7 (Ultimate or Enterprise
editions) and Windows Server 2008 R2, a new ability called AppLocker provides an
easier way to control applications on a user’s desktop. Before you apply AppLocker
to your corporate environment, make sure you know the application needs of your
users. This lets you design an effective policy that enables your users to maintain
their effectiveness in their jobs.

AppLocker is important for tackling some of the security risks you face in desktop
administration. Your users may be able to install nonstandard (to your business)
applications. Even standard users can install some types of software on their desk-

tops. These can cause security vulnerabilities or incompatibilities with your stan- é‘" _
2=
dard desktop applications. g %
£
AppLocker makes it easier for you to eliminate unwanted, unknown applications g <
in your network and infrastructure. More importantly, AppLocker allows you as 25

n
X
>
o
—
m
=
-]

an administrator to enforce application standardization within your organization. _
AppLocker policies are easy to create and manage through Group Policy. More
importantly, you can manage this in PowerShell.

This section gives a brief introduction to AppLocker and how to use PowerShell
to manage AppLocker policies. If you want to know more about AppLocker, refer to
the AppLocker Step-by-Step Guide located here:

http://technet.microsoft.com/en-us/library/dd723686 (WS.10) .aspx

Understand AppLocker

AppLocker is available only for Windows 7 and Windows Server 2008 R2 systems.
To control applications on previous versions of Windows, use the software restric-
tion policies. AppLocker helps reduce administrative overhead that was entailed

in software restriction policies. AppLocker helps administrators control how users
access and use files, including . exe files, scripts, Windows Installer files (.msi and
.msp files), and DLLs.

AppLocker allows you to create rules for a specific product name, such as “Allow
Adobe Acrobat version greater than 7.0 to run.” With this type of rule, there is no

218

CHAPTER 9

MANAGING DESKTOPS WITH POWERSHELL

need to change the software restriction hash rule. With the hash rules, you would
have to change the policy with every application update or verify the path of the
executable right or the access right of someone to write to that path. This type of
rule can be general or specific, depending on the criteria that you select: publisher,
product name, filename, or version. The information that the rule is based on is
gathered from the digital signature of the application.

AppLocker can help organizations that want to limit the number and type of files
that are allowed to run by preventing unlicensed or malicious software from run-
ning. It can reduce the total cost of ownership by ensuring that workstations are
homogeneous across the enterprise and that users are running only the software
and applications that are approved by the enterprise. It can also reduce the possibil-
ity of information leaks from unauthorized software.

Working with AppLocker is a two-step process:
1. Enable the Application Identity Service on the Windows 7 or Windows Server
2008 R2 systems you want to enforce your AppLocker policies on.
2. Configure the AppLocker policy.

The Application Identity Service helps determine and verify the identity of applica-
tions. By default, this service is stopped and is set to manual start. The identity of
the applications is crucial to how AppLocker works on the clients.

You can use the Start-Service cmdlet from an administrative PowerShell
session. This command will start the service:

Start-Service AppIDSvc

You will also want to set the service to automatic. This command will set the service
to automatic startup:

Set-Service AppIDSvc -StartupType Automatic

After you have started the service, any AppLocker policy you configure will now be
processed by the Application Identity Service.

Understand AppLocker Policy

An AppLocker policy works with collections. In creating a policy, the first deci-
sion to make is whether you are going to allow or deny applications to run. After
you determine that, determine what type of executables or collections you want

MANAGE APPLOCKER 219

the rule to apply to. With AppLocker, you can allow or deny rules for these types of
collections:

» Executable files: . exe and . com

» Windows Installer files: .msi and .msp

» Scripts: .psl, .bat, .cmd, .vbs,and .Jjs
» DLLs: .dll and .ocx

After you determine the rules, then determine the conditions in which AppLocker
will be applied. The conditions help determine the scope of the policy. There are
three main conditions:

» Publisher
» Path
» File hash

The publisher condition leverages digital signatures from applications’ manufactur-
ers. This rule condition works only if the applications have a digital signature from
the publisher. You can work with the entire scope of the publisher, allowing all
applications published by a specific publisher to run. You can also specify all appli- _
cations with a minimum file version number or greater to run. You can even specify

the product name or the actual filename (word. exe) to run.

Managing Desktops

with PowerShell

n
X
>
o
—
m
=
-]

The path condition allows you to specify the file path location for the programs

you want to manage. This also includes the subdirectories by default. You can also
choose to explicitly exclude the directories. For example, you can specify all applica-
tions in the $windir%\system32 directory except the Games directory.

The file hash condition allows you to use the unique file hash assigned to each file.
This condition uses the hash to work with the application. If the application is
updated, you also need to update the rule.

Configure AppLocker

Working with AppLocker in PowerShell simply requires loading the AppLocker
module with the following command:

Import-Module AppLocker

After you have loaded the AppLocker module, you can view the cmdlets by running
the following command:

Get-Command -module AppLocker

220

CHAPTER 9

MANAGING DESKTOPS WITH POWERSHELL

Your results will look similar to Figure 9.13.

FIGURE 9.13 Get AppLocker commands

TABLE 9.6

ows PowerShell

m32> import-module applocker
m32> get—command —module applocker

Get—AppLockerFilelnformation
Get—AppLockerPolicy Get—AppLockerPolicy —Local [-¥mll [

Hew—fAppLockerPolicy HNew—AppLockerPolicy [-FileInformatio. i
Set—AppLockerPolicy Set—AppLockerPolicy [-EmlPolicyl <St...
Test—AppLockerPolicy Test—AppLockerPolicy [-HmlPolicyl <{S...

PS GC:sWindowssystem32>

The PowerShell cmdlets provide a lot of control of AppLocker, even though there
are only a few of them. Table 9.6 lists the AppLocker cmdlets.

AppLocker cmdlets

Get-AppLockerFileInformation Shows you the file hash, publisher information, and
version for a specified directory. This cmdlet, when piped into
other cmdlets, is key to working quickly in PowerShell with
AppLocker policies.

Get-AppLockerPolicy Shows the AppLocker policy. Depending on the context, this
may be the local, domain, or effective AppLocker policy for
the system you ran it on.

New-AppLockerPolicy Creates an AppLocker policy. You will typically use this cmdlet
to create an XML file that you import with the
Set-AppLockerPolicy cmdlet.

Set-AppLockerPolicy Applies the AppLocker policy to a specified GPO.

Test-AppLockerPolicy Tests an AppLocker policy to verify it has the desired effects.
This allows you to tune your policy before you place it into
production.

One of the keys to using AppLocker is knowing the publisher information, file hash,
or even directory the applications are located in. Although knowing the file direc-
tory is straightforward, the publisher and file hash may not be as evident. With

the Get-AppLockerFileInformation cmdlet, you can quickly parse through a
directory. This command gets the information for all the . exe files in the Microsoft
Games directory:

Get-AppLockerFileInformation -directoryed
"c:\Program Files\Microsoft Games" -recurse

-filetype exe

MANAGE APPLOCKER

Although the results in a PowerShell session may not be easy to read, using the
Out-Gridview cmdlet makes the results easier to work with. So if you pipe the
previous command to Out-Gridview, your results will look similar to Figure 9.14.

As you can see, there is a lot of information that you can leverage in AppLocker
with the Get-AppLockerFileInformation cmdlet. This is the information you
need to use in the New-AppLockerPolicy cmdlet, and you can combine the cmd-
lets to create an AppLocker policy. This command makes a publisher rule for the
.exe filesin the c: \program files\microsoft games directory. It will also
create an XML file of the policy. One good switch is the optimize switch to auto-
matically reduce the number of AppLocker policies by grouping similar AppLocker
policies together if possible.

FIGURE 9.14 Get-AppLockerFileInformation

& Add critenia >

4 Get-ApplockerFilelnformation -Directory "C:\Program Files\Microsoft Games" -Recurse -FileType Exe [Out-Gridview

Path Publisher

%PROGRAMFILES\MICROSOFT GAMES\SPIDERSOLITAIRE\SPIDERSOLITAIREEXE O=MICROSOFT CORPORATION, L=REDMOND, S=WAS
56PROGRAMFILES3\MICROSOFT GAMES\SOLITAIRE\SOLITAIRE.EXE O=MICROSOFT CORPORATION, L=REDMOND, S=WAS
3PROGRAMFILES%\MICROSOFT GAMES\PURBLE PLACE\PURBLEPLACE.EXE O=MICROSCFT CORPORATION, L=REDMOND, S=WAZ

FPROGRAMFILEST\MICROSOFT GAMES\MULTIPLAYER\SPADES\SHVLZM.EXE O=MICROSCFT CORPORATION, L=REDMOND, S=WAZ
%PROGRAMFILES3%\MICROSOFT GAMES\MULTIPLAYERVCHECKERS\CHKRZM.EXE O=MICROSOFT CORPORATION, L=REDMOND, S=WAS
%PROGRAMFILES%\MICROSOFT GAMES\WMULTIPLAYER\BACKGAMMOMN\BCKG... ~ O=MICROSOFT CORPORATION, L=REDMOND, 5=WAS

9%PROGRAMFILES#\MICROSOFT GAMES\MINESWEEPER\MINESWEEPER.EXE O=MICROSOFT CORPORATION, L=REDMOND, 5=WAZ
%PROGRAMFILES CROSOFT GAMES\MAHJONG\MAHIONG .EXE O=MICROSCFT CORPORATION, L=REDMOND, S=WAZ
%PROGRAMFILES%:\MICROSOFT GAMES\HEARTS\HEARTS.EXE O=MICROSOFT CORPORATION, L=REDMOND, S=WAZ
5PROGRAMFILES#\MICROSOFT GAMES\FREECELL\FREECELLEXE O=MICROSOFT CORPORATION, L=REDMOND, 5=WAS

SPROGRAMFILES3%\MICROSOFT GAMES\CHESS\CHESS.EXE O=MICROSCFT CORPORATION, L=REDMOND, S=WAZ

m ¥

Get-AppLockerFileInformation -directory €

"c:\program files\microsoft games" -recurse

-Filetype exe | New-AppLockerPolicy -RuleType Publishered
-user everyone -RuleNamePrefix Games

-Optimize -XML > c:\applocker\games.xml

One last function you can work with on AppLocker policies is to test to make sure
your policy has the desired outcome. With the Test-AppLockerPolicy cmdlet,

221

Managing Desktops
with PowerShell

N
=
>
)
-
m
=
i)

222 CHAPTER 9 * MANAGING DESKTOPS WITH POWERSHELL

you can take a look at the results of a AppLocker policy. This command checks to see
the effects of the AppLocker policy from the games . xm1 file for solitaire.exe:

Test-AppLockerPolicy c:\applocker\games.xmled
-path "c:\program files\microsoft games\e3

solitaire\solitaire.exe" -user everyone

Your results will look similar to Figure 9.15.

FIGURE 9.15 Test-AppLockerPolicy

&5 Windows PowerShell == >

neshsolitairersolitaire.exe" —user everyone

PolicyDecision MatchingRule

C:\progran files\microsoft... AllowedByDefault

PS Cin>

EXERCISE 9: TURN OFF THE DISPLAY CONTROL PANEL IN GROUP POLICY
WITH POWERSHELL

Use PowerShell to create a new Group Policy object linked to an OU that turns off the
display control panel for the users in the Executive OU.

CHAPTER

Managing 1IS Web Server
with PowerShell

IN THIS CHAPTER, YOU WILL LEARN TO:

> USE POWERSHELL AND IIS 224
Work with ConfigurationFilescooiviiin.t. 225
Back Up and Recover IIS Configuration 229

> DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL

DIRECTORIES WITH POWERSHELL 231
Manage Sites with PowerShell ...t 231
Work with Web Application Pools........................... 236

Work with Virtual Directoriescoovviiiiininnnnn... 240

Ol 411dVH)

anaging your web servers and web farms is an ideal scenario for PowerShell. With
PowerShell you can configure IIS as well as manage applications, sites, application
pools, and many other aspects of IIS.

Managing the core server configuration of IIS is one key aspect of working with
IIS. Another scenario is working with the websites themselves, including the sites,
directories, and web applications on the server. From working with your server
configuration to deploying your applications, PowerShell can help you accomplish
this in a scalable, automated, and consistent fashion.

This chapter highlights working with PowerShell and the many aspects of IIS.

Use PowerShell and IIS

FIGURE 10.1

You need to load the WebAdministration module from an administrative
PowerShell session or with an account that has administrative rights to manage
Internet Information Services (IIS). If you do not have administrative access and try to
import the WebAdministration module, you will see an error similar to Figure 10.1.

Importing WebAdministration: access denied

& Windows PowerShell

PS C:uUsers.Matt?> Import—Module Webadministration

PSS C:oxUserssMatt)> _

From an administrative PowerShell session, run the following command:
Import-Module WebAdministration

To see the list of commands for the WebAdministration module, run the
following command:

Get-Command -module WebAdministration

Your results will look similar to Figure 10.2.

USE POWERSHELL AND IIS

FIGURE 10.2

IIS cmdlets

rator: Windows PowerShell

Hindows PouerShell
Copyright (C> 2889 Microsoft Corporation. All rights reserved.

PS C:xMindowsssystem32?> Import—-Module WebAdministration

PS CizWindowshsystem32> Get—-Command —module WebAdministration

CommandT ype

Add—WebConf iguration
Add-WebConf igurationLock
Add—-WebConf igurationProperty
Backup—YehConf iquration

Begil bCommitDelay

Clea hConf iguration

Clear—WebRequestTracingSettings

GConvertTo-WebApplication
Disahle-WehGlobalModule
Disable—-WebRequestTracing
Enable-WehGlobalModule
Enable-YebReguestTracing
End-WebCommitDelay
Get—WebAppDomain
Get—Webfpplication
Get—WebAppPoolState
Get—WebBinding
Get-WehConfigFile
Get—WebConf iguration
Get—WehConf igurationBackup
Get—WebConf igurationLocation
Get—-WebhConf igurationLoc
Get—WebConf igurationProperty
Get-WehFilePath
Get—WebGlohalModule
Get—WebHandler
Get-WehltemState
Get—WebManagedModule
Get—WehRequest

Get—-Website
Get-WehsiteState
Get—WebURL
Get—-WebUirtualDirectory

New:uehﬂ lication

Deflnltlun

Hdd WebConf iguration [-Filterl <{Stri...

Add-WebConf igurationLock [-Filterl <
Add—WebConf igurationProperty [-Filte

Backup—YebhConf iguration [-Namel <Str...

Staw ehCommitDelay

Clea ehConf iguration [-Filterl <St
Clear—WebRegquestTracingSettings [[-N
GConvertTo-WebApplication [[-PSPathl

Disahle-WehGlobalModule [-Mamel {Str

Disable—WebRequestTracing [[-Hamel <.

Enable-WehGlohalModule [-Namel <{Stri

Enable-YebRequestIracing [[-Mamel <5...

Stop—HebCommitDelay

Get—WebAppDomain [—InputObJect {P80b...

Get—Webflpplication [[-Mamel <{String>
Get—WebAppPool8tate [[Mamel <{String
Get—WebBinding [[-MNamel <String>1 [—
Get—WebConfigFile [[-PSPathl <{String
Get—WebConfiguration [-Filterl <Stri
Get—UWebConf igurationBackup [[—HNamel

Get—WebConfigurationLocation [[-PSPa
Get—WebConf igurationLock [-Filter] <
Get—WebConf igurationProperty [-Filte
Get—WebFilePath [[-PSPathl {Stringl]
Get—WebGlobalModule [[—Hamel <{String

Get—WebHandler [[-MNamel <String>] [L.

Get-WebltemState [[-PSPathl <{Stringl
Get—WebManagedModule [[-Namel {Strin
Get—WebRequest [-InputObject {PSOhje
Get—-Website [[-Hamel <{String>]1 [—Ver
Get—VUebsiteState [[-Mamel <{String>]

Get—WebURL [[-PSPathl <Stringl[l1>]1 [-

Get—-WebUirtualDirectory [[-NHamel <St...

set—location

New-WehA llcatlnn [-HName]l {String> ...

Work with Configuration Files

In IIS 7.0 and IIS 7.5, configuration is stored in XML files. (In prior versions, the
configurations were stored in a location called the metabase.) These XML files can
be stored in a centralized location and are much easier to work with compared to

the metabase. This enables a shared configuration for all your web servers.

Three main files make up the IIS manager configuration. The files are by default
located in your Windows directory in the System32\Inetsrv\Config folder:

administration.config This configuration file contains all the management

settings for your IIS server and your management console.

applicationhost.config This stores all the settings for the websites located

on your web server.

redirection.config This file allows you to have centralized settings. You can
use the redirection.config file to redirect the IIS server’s configuration to a

central server location.

225

Managing IS Web
Server with PowerShell

(o)
X
>
]
—
m
=
—
o

226 CHAPTER 10 °

MANAGING IIS WEB SERVER WITH POWERSHELL

TABLE 10.1

These files set the main default settings for your web server. To learn more about
the shared configuration files, see http://learn.iis.net/page.aspx/264/
shared-configuration/.

You can use PowerShell to work with these configuration files as well. Several
cmdlets allow you to work with the configuration files, as described in Table 10.1.

IIS configuration cmdlets

Get-WebConfigFile Displays the location of the web configuration file on your server
(applicationhost.config). You need to know this location to

be able to view or modify settings.

Add-WebConfiguration Allows you to add a section to the web configuration file.

Get-WebConfiguration Allows you to locate the various values of the web configuration to

take a look at the sections of the web configuration.

Clear-WebConfiguration Clears a section out of the configuration file. With the configuration
file being shared centrally and inherited, this lets you clear certain

sections for specific websites.

Get-
WebConfigurationProperty

Displays the property value from a specific section in the configura-
tion file. This lets you see how the website is configured.

Set-
WebConfigurationProperty

Lets you configure a specific property in a web configuration
section.

Remove-
WebconfigurationProperty

Clears a property of a specific section in the web configuration files.

Backup-WebConfiguration Backs up the web configuration files on your IIS server. This backs

up all three web configuration files.

You can use the Get-WebConfigFile cmdlet to look at the configuration files
of an IIS server. With this cmdlet, you can also look at the configuration of a
specific website. This command gets the configuration file for a website called
MyCompanySite:

Get-WebConfigFile 'IIS:\sites\MyCompanySite
Your results will look similar to Figure 10.3.

You can view what sections are in the web configuration file by running the
following command:

Get-WebConfiguration system.webserver

USE POWERSHELL AND IIS

FIGURE 10.3 Get-WebConfigFile

12-29-,2018 2:26 AM

PS C:xinetpub?

44766 applicationHost.config

Although the previous command shows you the available sections for the central con-
figuration, you can also target specific sites. For example, if you want to see all the sec-
tions of the configuration file for the site MyCompanySite, use the following command:

Get-WebConfiguration system.webserver/*

iis:\sites\MyCompanySite |Format-Table

-property sectionpath

Your results will look similar to Figure 10.4.

FIGURE 10.4 Web configuration sections

PS C:isinetpub? get—wehconfiguration system.webserverrs* i
roperty sectionpath

m.weh8erver/httpProtocol
m.wehServer/httpErrors
m.wvehServer/httpRedirect
m.vehServer/globalModules
m.wvebh8erver/cgi

m. uehSePueP/ﬂeruerRuntlme
m.-uwehServer/directoryBr
m.wehServer/urlCompr
m.weh8erver/httpLlogg
m.uehServer/modules

m. uehSeluel/ndthngglﬂg

m.wehServer/httplracing
m.uwehServer/staticContent
m.wehServer/isapiFilters
m.-uehServer/defaultDocument
m.vehServers/asp
m.wvehServer/ht tpCompression
m.uwehServer/serverSidelnclude
en.wehServer/caching

PS C:sinetpub?>

~sitessMyCompanySite [format—table *pu

Once you know what sections are available, you can change or view the
specific properties with the Get-WebConfigurationProperty or
Set-WebConfigurationProperty cmdlet.

227

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

228

CHAPTER 10

MANAGING IIS WEB SERVER WITH POWERSHELL

For example, to see the ASP section of the configuration file for the website
MyCompanySite, run the following command:

Get-WebConfiguration system.webserver/asp/*

iis:/sites/mycompanysite

Your results will look similar to Figure 10.5.

FIGURE 10.5 ASP configuration

strator: Windows Powershell
PS C:ninetpub?> Get—WebConfiguration system.wehserversasp/* iis:/sites/mycompanysite

ionState : True

True
: 4294967295
3 S2@:

onldSecure

: BA:2@:
: MACHINEAWEBROOT ~APFHOST MyGompanySite

Conf igurationPathIype : Location

ItemdPath : s/system.webServersaspssession

Attributes : {allowSessionState. keepSessionldSecure. max. timeout?
ChildElements R &

ElementTagHame session

Methods E

Schema : Microsoft.IIs.PowerShell.Framework.ConfigurationElementSchema

appServiceFlags

: APNPARAB-ANAA-ANAR-PARD-AEANARARABED
: False

: False
: HACHINE-WEBROOT ~AFFHOST ~MyCompanySite

: Location
: ssystem.webServersasps/comPlus
: {appBerviceFlags. sxsMame. partitionId. trackThreadingModel...>

>
: comPlus
; Microsoft.IIs.PowerShell.Framework.ConfigurationElementSchema

TemplateCacheDirectory : inetpubstempsASP Compiled Templates
maxDiskTemplateCacheFiles L5}

iptFileCacheSize
scriptEngineCacheMax
enableT ype libCache : True
PSPath : MACHINE-WEBROOT ~APPHOST ~MyGompanySite
Location H

To see just a specific property, you need to know its name. Then you can reference
it to either view it or change it. For example, if you wanted to look at the
scriptFileCacheSize property for the site MyCompanySite, you would run the
following command:

Get-WebConfigurationProperty system.webserver/asp/*el

iis:/sites/mycompanysite -name scriptfilecachesize

Your results will look similar to Figure 10.6.

FIGURE 10.6 Scriptfile cachesize

dows PowerShell

inetpub? Get—WebhConfigurationproperty system.webserversa: sites/mycompanysite —nam!
e scriptfilecachesize

ItenmiPath : ssystem.webServersaspscache
IsInheritedFromDefaultUalue : True
IsProtected : False
H riptFileCacheSize
en.Int64

a0 5
= Ezgvnsoft.IIs.PDuePShell.Fpamewnrk.CunfiguratiunﬂttrihuteSchena
IsExtended : False

PS C:winetpub?> _

USE POWERSHELL AND IIS 229

You can set the value of the scriptFileCacheSize property with the following
command:

Set-WebConfigurationproperty system.webserver/asp/cacheed
iis:/sites/mycompanysite -name 3

scriptfilecachesize -value 600

When you are working with the configuration files, you may run into sections that
are locked, as shown in Figure 10.7.

FIGURE 10.7 Locked configuration section

rator: Windows PowerShell

ERS tpub> Set-UWehConfigurationproperty system. ueb_.e}uel/a_‘p/cache iis:rsites/mycompanysite u
—name scriptfilecachesize —value 6BB

PS G:\inetpub>

This can occur when you are working with a section that is inherited from a central

configuration file. You can work around this by using the PSPath and Location
parameters:

Set-WebConfigurationproperty system.webserver/asp/cachee
-name scriptfilecachesize -value 600

-pspath iis:\ -location mycompanysite

Server with PowerShell

Managing IS Web

Working with the configuration files can take some time and investigative work at
first, but PowerShell can ease the process of managing these configuration files for _

your entire web farm.

(o)
X
>
]
—
m
=
—
o

Back Up and Recover IIS Configuration

Making sure your IIS configuration is properly backed up is an essential part

of administering a web server. Fortunately, with IIS you get some help from the
Application Host Helper Service (AppHostSvc). By default, AppHostSve checks
for changes in the ApplicationHost.config file every two minutes. If the ser-

vice detects a change, it will create a backup automatically. This feature, introduced
with IIS 7.0, is called IIS Configuration History.

The backup is stored in the $system drive%\inetpub\history directory. The
file has a default name beginning with CFGHISTORY_ and a 10-digit serial number.
To view the current backups of your IIS configuration, run the following command:

Get-WebConfigurationBackup

230 CHAPTER 10 * MANAGING IIS WEB SERVER WITH POWERSHELL

Your results will look similar to Figure 10.8.

FIGURE 10.8 Currentweb backups

PS C:-~inetpubshistory? Get—WebConf igurationBackup

LETT Greation Date
CFGHISTORY _G0O@
CFGHISTORY
CFGHISTORY
CFGHISTORY
CFGHISTORY
GFGHISTORY @ ? /92010
CFGHISTORY _@AAA 18-5-2018
[o]5 5] ? 12/24-2018 1:19:49 PN
CFGHISTORY | 12-24,2818 9:47:49 PH
GFGHISTORY_@ 12-24-2818 9:53:49 PN

PS C:-xinetpubshistoryr

You can also create your own manual backups using PowerShell. To create a backup
called WebConfigBackup, run the following command:

Backup-WebConfiguration -name WebConfigBackup

Your results will look similar to Figure 10.9.

FIGURE 10.9 Backed-up web configuration

GCreation Date

WehConf igBackup 12-24-2010 12:00:08 AW

P8 C:-~inetpubShistoryl

APPSVCHOST BACKUPS

The AppSvcHost backups are a bit different from the Backup-WebConfiguration
backups. The directory for Backup-WebConfiguration is different for the AppSvcHost
backup folder. AppSvcHost stores its backup information in %windir%\System32\
inetsrv\backup. In addition to being stored in different locations, they back up differ-
ent files. For example, AppSvcHost backs up £tp_schema and DAV_schema, whereas
Backup-WebConfiguration does not. However, Backup-WebConfiguration
backs up more than just the application config files. It also includes the metabase files
and redirection.config file. So, AppSvcHost does a little more than just 1IS, and
Backup-WebConfigurationis purely IIS. These differences explain issues you may see
when trying to restore from the AppSvcHost backups.

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 231

If you need to recover your web configuration files, you can do so with the Restore-
WebConfiguration cmdlet. You need to know the name of the backup you want to
restore, which you can obtain with the Get-WebConfigurationBackup cmdlet.

To restore a web configuration backup called WebConf igBackup, run the following
command:

Restore-WebConfiguration -name WebConfigBackup

One special note for the Restore-WebConfiguration cmdlet: it cannot be used
to restore the backups created by AppSvcHost; those backups need to be restored

manually. You can do so by copying the configuration files from the backup direc-
tory to the configuration directory.

Deploy Websites, Application Pools, and Virtual
Directories with PowerShell

As you begin to manage websites in IIS, you need to understand how three compo-
nents work together for a website. The three components are as follows:

» Websites
» Web applications

» Virtual directories

Websites are the location where you store your web documents. These contain at least
one web application. Websites are the core building block to the web infrastructure.
Web applications are the second building block, and the nature of web applications _
can vary dramatically — from web applications accomplishing collaboration to

expense reporting, marketing products, and services to customer relationship man-

agement. The possibilities for applications in IIS are endless, and they fill a variety of

business needs. Virtual directories map to a physical directory on a local or remote

server. Web applications use virtual directories to reference data for the application.

Virtual directories, although helpful, are not mandatory for a website unless your

infrastructure requires it. All three components can work together for a website. In

this section, you will see how to work with all three components in PowerShell.

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

Manage Sites with PowerShell

You can create new websites or manage existing ones via PowerShell. With the
New-Website cmdlet, you can create a new website with any settings.

232 CHAPTER 10 * MANAGING IIS WEB SERVER WITH POWERSHELL

To create a new website called Company Portal on port 8080 with the website stored
onthe f£:\cp drive location, you would run the following PowerShell command:

new-website "Company Portal" -port 8080 -physicalpath "f:\cp"

Your results will look similar to Figure 10.10.

FIGURE 10.10 New website created

/& Administrator: Windows PowerShell
PS C:ninetpub? new—website "Company portal" —port BABA —physicalpath "f:xcp"

Bindi

Company portal E http =*:3080:

PS C:oxinetpub?> _

When you create a new website with a specific path, make sure the directory exists;
otherwise, you will see an error similar to Figure 10.11.

FIGURE 10.11 New website error

& Administrator: Windows PowerShell
PS C:\inetpub> NewWebSite —Mame TestSite3d —Port 88 —PhysicalPath “c:Ninetpubhtestsited"

PS C:zwinetpub> _

Depending on your current server and how the website was created, it may not be
started by default. You can start the website after you have created the site with
the Start-Website cmdlet. For example, this command would start the website
called Company Portal:

Start-Website 'Company Portal'
You could also pipe the New-Website cmdlet into the Start-Website cmdlet to
create a new website and start it:

new-website "Company Portal" -port 8080 &

-physicalpath "F:\CP" |Start-Website
If you do not want have the website started or you want to stop the website, you can
use the Stop-Website cmdlet.

Working with Bindings

When setting up websites, you need to understand how to work with web bindings.
Bindings for your websites control how your server responds to requests for websites
from users. Bindings also allow you to provide security to your websites with SSL.

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 233

Although site visitors will use something like www . companyportal . com, behind
the scenes that is being sent to a server binding. A server binding consists of three
components: IP address, port, and host header. Host headers are useful because they
allow multiple websites with the same port to share the same IP address. The bind-
ing for a particular site has to be unique for your website or the website will not start.
Figure 10.12 shows an example of a website failing to start because of a port conflict.

FIGURE 10.12 Portconflict error

B Administrator: Windows PowerShell
PS C:Ninetpub)> Start-Website testsited

P8 C:sinetpubl

When you work with websites in PowerShell, you can control the bindings to avoid
conflicts and add security. The default website binding in IIS is set to * : 80 : *. This
sends all web requests to the default site.

To see what bindings are currently used on your server, run the following
command:

Get-WebBinding

Your results will look similar to Figure 10.13.

FIGURE 10.13 IISserver web bindings _

/& Administrator: Windows PowerShell
P8 C:\inetpub) Get-WehBinding

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

bindingInformation

*:8@:uuwu.internal.com
*:8A80:
*:443:

PS G:Ninetpub>

When you want to add a binding to a website, use the New-WebBinding cmdlet.
The following command adds the HTTPS protocol for all IP addresses over port 443
for the MyCompanySite website:

New-WebBinding -Name "MyCompanySite" -IP "*" -Port 443 -Protocol https

234

CHAPTER 10 * MANAGING IIS WEB SERVER WITH POWERSHELL

In the previous example, the HTTPS protocol was assigned for the Company Portal
site. Although this enables the port for secure communication, it does not secure
the communication for the website. To finish configuring the SSL binding for the
site, you will need to work with the IIS provider.

Working with the IIS Provider

In addition to using the WebAdministration cmdlets, you can use the IIS
provider to access the web server configuration. To access the IIS configuration, you
can use the built-in function IIS:. This takes you directly to the IIS configuration
and website locations.

When using the IIS provider, you can navigate to three locations. You can navigate
to application pools, sites, and SSL bindings. Figure 10.14 shows the IIS provider.

FIGURE 10.14 IS configuration

& Administrator: Windows PowerShell

E=1Bindings

PS IIS8:%>

You can view any of those areas by using directory navigation commands such as
cd and dir to view the information. With the simple dir command, you can see
the following:

» Website name

» Website path for the physical files for the website

» Status, if the website is started or stopped

» Bindings for ports and protocols of the different sites on the server
Figure 10.15 shows an example of the sites on an IIS server.

FIGURE 10.15 SitesonanllSserver

Bindings

http =:88:

net.tcp 808 :=

net.pipe %

net.msmg localhost

msmg . formatname localhost
MyCompanySite 2 Started C:“MyCompany8ite http =:3080:

PS8 IIS:“sites>

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 235

You can also get the same results in with the Get -Website cmdlet. When you run
the Get-Website cmdlet, it displays the same information you saw when you
ran the dir command with the IIS provider.

You can also navigate to the Ss1Bindings directory to work with security certifi-

cates on your server and add them with the HTTPS bindings on your server. If you
have certificates already installed on your server, you can leverage them, or you can
use a self-signed certificate for testing purposes.

To be able to add a certificate to a binding, you need to know the certificate hash.
You can browse the certificate store to find the hash. Figure 10.16 shows listings for
the self-signed certificate on the local machine.

FIGURE 10.16 Local machine certificate

rator: Windows PowerShell
PS IIS:\sslhindings> dir cert:\localmachinemy

Directory: Microsoft.PouwerShell.Security\Certificate::localmachinemy

Thumbprint Subject

161F4EE304196D3C84FDA3CDCBAGCIDEICEB61EE CH-mt400

PS 118:\sslhindings> _

After you know the hash, you can then use the following command to install the
certificate and bind it for SSL to work properly. 0.0.0.0 is used to reference all IP

addresses on the server. You can use specific addresses as well if you need to have
SSL assigned to a particular IP.

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

Get-Item cert:\LocalMachine\my\e3
161F4EB304196D3C84FDA3CDCOA6CIDB3C6861ES |
New-Item 0.0.0.0!443

Your results will look similar to Figure 10.17.

FIGURE 10.17 Certificate bound to all IP addresses on port 443

hindings> Get-Item cert:“\LocalMachine\my\161F4EB384196D3C84FDA3CDCOAGCIDBIC6B61ER |
ew—Iten B.0.0.0%443

Port Store

Default Weh Site
MyCompanySite

PS 1I8:\sslhindings>

236 CHAPTER 10 * MANAGING IIS WEB SERVER WITH POWERSHELL

You can run the dir command to be able to see all the existing certificate bindings
on the server while you are in the SsIBindings location of the IIS provider.

Work with Web Application Pools

Your websites may contain some type of dynamic content generated from an appli-
cation on your web server. One of the areas you need to understand is how IIS
works with web applications. Specifically, you need to understand the nature of
application pools and how they work with websites.

Application pools allow you to separate running applications on your web server.
If one application crashes on your server, it should not affect any other applications
currently running on your web server. Working with application pools also lets you
configure how applications are run on your server. However, working with applica-
tion pools means you need to understand how the applications need to run on your
server. You may need to speak to a website developer to make sure you provide the
proper support for the application.

When you create an application pool, you need to know a couple of aspects about the
application you are going to support. First, if the application is using managed code,

it means the application requires the NET Framework to properly run. Second, you
need to know how the application pipe will be managed, either integrated or classic.
Classic is provided for backward compatibility for application support and means IIS
does not use the IIS integrated pipeline for managed code. Again, it is worth your time
for a quick conversation to help provide adequate support to your web developers.

Application pools let you work with the access not only to your web server but
potentially to databases and other servers on your network. An application pool
has an identity associated with it. This identity is used to connect to a database
with Security Support Provider Interface (SSPI) and is also used to access the file
system. Application pools allow you to control and work with the identity for these
applications.

To look at application pools currently on your server, use the IIS provider. When
you access the IIS provider, you can access the AppPools directory. To see the
application pools on your server, use dir. This command will show you the name of
each application pool, its state, and the applications associated with the application
pool. Figure 10.18 shows an example.

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 237

FIGURE 10.18 Web application pools

B Administrator: Windows PowerShell
PS IIS:~AppPools> dir
Applications

DefaultAppPool Started Default Web Site
Company portal

MyCompanySite Started MyCompanySite

PS I1S:“\AppPools>

Working with application pools and web applications is a two-step process.
Normally you create the application pool, and then you associate the web application
to the pool. You also associate the web application with the website or websites that
leverage the application. Both of these can be created in PowerShell. The following
command creates and starts a new application pool called MyPoo1l:

New-WebAppPool MyPool

After you have created the application pool, you can then assign a web application
to the pool. When you first create a web application, you are just creating a direc-
tory that will hold all the files necessary to run the application. To create a new web
application called MyApp for the MyCompanySite website stored on the

f : \MyApp directory associated with the MyPool application pool, run the follow-
ing command:

New-WebApplication -Name MyApp -Site 'MyCompanySite'«ed
-PhysicalPath f:\MyApp -ApplicationPool MyPool

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

Your results will look similar to Figure 10.19.

FIGURE 10.19 New web application

& Administrator: Windows PowerShell

PS C:xinetpub?> Hew—UebfApplication —Mame MyfAipp —-Site *MyCompanySite’ —PhysicalPath f:“\MyvApp —Appl
icationPool MyPool

Application pool Protocols Physical Path

MyPool

PS C:sinetpub?>

238

CHAPTER 10

MANAGING IIS WEB SERVER WITH POWERSHELL

You can use the Get-WebConfiguration cmdlet to view the settings of an applica-
tion pool. The following command will show you the settings for the MyPool pool:

get-webconfiguration "/system.applicationHost/e3
applicationPools/add[@name="'MyPool']//." -PSPath iis:\e

| foreach { $_.attributes | select name,value }

Your results will look similar to Figure 10.20.

FIGURE 10.20 Application pool properties

ndows PowerShell
IIS ppools > ge beonf iguration tem.applicationHost/applicationPools/add[Bname= ’HyPu!
ol’ 1/, B —PSPath iis foreach ¢ % _.attributes | select name.value >

Ualue

.a
|Jeheng1ne4 dll
rue
B

AnonymousToken True

..ta} rtMode a

state i

applicationPoolSid 5-1-5-82-7918%7238-1A7438A942-3395453A091 277 .
4

manualGroupMembership
idleTimeout

maxProce s
shutdounTimeLimit
startupTimeLimit
pingingEnabled

pingInterval

pingResponsel ime
disallowOverlappingRotation
disallowRotationOnConf igChange
logEventOnRecycle

me Moy

privateMemory

reguests

time
loadBalancerCapabilities
orphanWorkerProcess
orphanfActionExe

m-phan Rct ionParams

rapidFailProtectionInterval

rapidFailProtect ionMaxCrashes

autoShutdownExe

autoShutdownParams q
B

]
9E: 65 : 08
False
orAffinityMask 4294967295
»AffinityMask2 4294967295

PS IIS:“apppools>

When you work with application pools, you may need to change the identity the
application pool uses to access resources on the server as well as remote servers. You
can configure the properties including the identity for the application pool by using
the Set-ItemProperty cmdlet. The following command would change

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 239

the identity for the MyPool application pool to PoolUser with the password of
pass@wordl:

Set-ItemProperty iis:\apppools\MyPool -name processModel«d

-value @{userName="PoolUser";password="pass@wordl";identitytype=3}

The last parameter identitytype specifies the type of account you are using; the
values can be as follows:

» 0: Local system
» 1: Local service
» 2: Network service
» 3: Specific user

In Chapter 8, you saw how to use managed service accounts. Managed service
accounts can be assigned to application pools. This offers the same benefits of
security for service accounts with automatic password management. After you
have installed the managed service account on your server, you then can assign
the account to your application pool. When you assign the account, make sure you
end the account name with a $, leave the password blank, and set identitytype
to 3. The following command assigns the managed service account Contoso\

3

WebServer to the web application pool MyPool: %
g ¢

= o

Set-ItemProperty iis:\apppools\MyPool -name processModel«el v <

o =

-value @{userName="Contoso\WebServers";identitytype=3} £ ;
S

After you assign the managed service account, use the Stop-WebAppPool and =4

(o)
X
>
]
—
m
=
—
o

Start-WebAppPool cmdlets to stop and start the application pool you modified. _

Although managed service accounts are useful, you may recall from Chapter 8
that managed service accounts are server-specific and are really good for a
scenario where you have your websites on only one server. This may not work
for your environment if you scale your web servers to multiple servers. In that
case, you would need to use a common identity across the servers to make it easy

to debug and develop, and you would normally create a separate dedicated user
account for this.

One last task you may need to perform from time to time is recycling your applica-
tion pool. This helps free up resources on your web server in case an application
encounters an error. Recycling your application pools periodically lets you maintain

240

CHAPTER 10

MANAGING IIS WEB SERVER WITH POWERSHELL

your applications and keep them running smoothly. When you recycle an applica-
tion pool, you essentially clear up system resources and system state information.
This could negatively impact users of your website, so you need to try to recycle the
applications in off-hours. To recycle the web application pool called MyPool, you
would run the following command:

Restart-WebAppPool MyPool

Work with Virtual Directories

Virtual directories can be an invaluable component to your websites. They allow
you to keep files stored on separate directory locations so you do not have to move
or use multiple copies of the same files. This lets you store files such as pictures on
separate servers and distribute the workload.

Virtual directories can also add a small measure of security through obscurity.
Because it is really not security, you will want to make sure you do have other
security layers in place. Using virtual directory names that differ from the actual
physical directories obscures the original directory location. Virtual directory
names are displayed in the URL path of the web request.

To see the virtual directories for a particular site, you can run use the
Get-WebVirtualDirectory cmdlet. The following command displays the virtual
directories for the MyCompanySite website:

Get-WebVirtualDirectory -site MyCompanySite

Your results will look similar to Figure 10.21.

FIGURE 10.21 Virtual directories

& Administrator: Windows PowerShell
PS C:sinetpub?> Get—WehUirtualDirectory —site MyCompanySite

Physical Path

Myl irDir Frsmyuirdir
RemotelirDir Ssnt 488\ remotevirdir

PS C:Ninetpub> _

DEPLOY WEBSITES, APPLICATION POOLS, AND VIRTUAL DIRECTORIES WITH POWERSHELL 241

The following command creates a virtual directory called MyVirDir for the
MyCompanySite website directory that is physically at £: \myvirdir. You can also
use UNC path names for the PhysicalPath parameter as well.

New-WebVirtualDirectory -site "MyCompanySite" 3
-name MyVirDir -PhysicalPath f:\myvirdir

If you wanted to map to a virtual directory to a share called rvdir on server5, the
command would be the following:

New-WebVirtualDirectory -site "MyCompanySite" 3
-name MySharedvVirDir -PhysicalPath \\server5\rvdir

EXERCISE 10: CREATE A WEBSITE WITH POWERSHELL

Write a PowerShell script that creates a website called MySite. The site will have an
application called App1 with the application pool called Pool1 assigned to MySite.
Pooll will have the user named WebApp. You will also need to create a virtual direc-

tory for pictures stored on a separate server. After you have created the site, create a
backup of the configuration files.

Server with PowerShell

Managing IS Web

(o)
X
>
]
—
m
=
—
o

CHAPTER

PowerShell and
Deployment Services

IN THIS CHAPTER, YOU WILL LEARN TO:

> WORK WITH WINDOWS DEPLOYMENT SERVICES 244
Understand WDScooiiiiiii i 245
Install WDSo 246
Work with WDS in PowerShell ..., 247
USEWDSUTIL . .. vee ettt e 248

> WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 253

Understand the MDT........oooiiiiiiiii e 253
Deploy with Windows Imaging Format...................... 254
INStall MDT ... e 256
Work with MDT in PowerShellcoooiiiiina... 257

Putlt All Together........ooiiiiii e 265

LL 4311dVH)

fyou have ever been asked to deploy an operating system, such as Windows 7, for
your business, you have probably asked a few questions. You may have had some
concerns about how to accomplish this task in the easiest fashion. You most likely
looked at a centralized imaging solution (such as Symantec Ghost) to accomplish
the deployment with the least amount of work to be done on the client.

Being able to deploy desktops in a centralized fashion can save you time and offer
your users a consistent experience. Windows Server 2008 R2 servers, combined
with some free tools, have the ability to deploy operating systems and applica-
tions in a standard image. This chapter focuses on two tools to create a centralized
deployment environment using PowerShell: Windows Deployment Services (WDS)
and Microsoft Deployment Toolkit (MDT).

WDS is a built-in role on your Windows Server 2008 R2 servers. WDS responds to
Preboot Execution Environment (PXE) boots or booting across the network. With
a PXE boot, WDS can forward the request to the centralized image store to deploy
the desktop to the requesting system.

MDT is a free downloadable tool that provides similar capabilities. The toolkit
allows you to automate the deployment of computers in your organization. It also
lets you deploy custom drivers and set up a workflow. MDT directly supports
PowerShell. The bottom line is that you can deploy faster and more easily with
MDT 2010.

Although the tools by themselves are very useful, when combined, they become
invaluable to working with your environment. Adding the ability to create
PowerShell scripts to maintain the environment makes this a nice addition to your
IT tool belt.

Work with Windows Deployment Services

One of the core roles you can install on your Windows Server 2008 R2 servers

is Windows Deployment Services. Although this service does not have specific
PowerShell cmdlets, you can work with WDS inside PowerShell either with a script
or via the Windows Deployment Server COM.

To leverage WDS with PowerShell scripts, it is essential you understand this core
service and how it works. This will help you understand the working relationship
between WDS and MDT and how it provides a robust deployment environment.

WORK WITH WINDOWS DEPLOYMENT SERVICES 245

Understand WDS

WDS is built on the former deployment tool set known as Remote Installation Services
(RIS). WDS now replaces RIS and provides deployment services for your Windows
Server 2008 R2 environment. WDS allows you to create a network installation and
avoid going to each client system with a DVD or CD to deploy an operating system.

WDS leverages PXE boot systems as well as provides a location to store your instal-
lation files, with its centralized image repository. The repository contains boot
images, install images, and files that you need specifically for network booting. In
addition to the PXE environment over TFTP, there is a multicast component to help
WDS scale.

WDS has two components that make up the server role:
» Deployment server
» Transport server

The deployment server is the main component that provides all the necessary services
for a network boot environment. The PXE listener gives WDS and MDT the ability to
handle network requests. The deployment server also provides a WDS image server,
which supports booting and standard corporate images. When a PXE request is
picked up by the WDS server, it gives the user the choice of images to use to continue
the boot process. This role also supports both unicasting and multicasting, although
using the transport server role for multicasting is recommended.

UNICAST VS. MULTICAST

The main difference between unicast and multicast is the number of connections and
streams of data the server sends to the clients. In unicast, the server sends a single
dedicated stream of data to each client requesting the data. The server has a one-to-one
relationship with each of the requesting clients.

PowerShell and
Deployment Services

With multicasting, the server sends a single stream of data to a multicast address. The
clients subscribe or connect to this address, and they all share and receive the stream _
of data. The server has a one-to-many relationship with the clients being provisioned

by the server.

[a}
I
>
)
-
m
=
)
—

In general, if you are a large organization with bandwidth restrictions and large amount
of deployments, you should consider multicasting. This can really help reduce network
load since the deployment image is sent out just once. If you just have a few clients
and no bandwidth restrictions, unicast is the way to go.

246

CHAPTER 11 °* POWERSHELL AND DEPLOYMENT SERVICES

The main role the transport server provides for WDS is multicasting support.
Although the transport server does not need other servers in the environment, it is
also used only in multicast scenarios. Basically this allows you to have a stand-alone
server to support multicasting protocols without all the other WDS components.

WDS gets involved in the process when you have a PXE client. After the client gets an
IP address from DHCP, the PXE listener on the server picks up the request and pres-
ents the client a boot menu. You can see an example of the boot menu in Figure 11.1.

FIGURE 11.1 WDSboot menu

Windows Boot Manager (Server IP: 192.168.100.001)

Choose an operating system to start:
(Use the arrow keys to highlight your choice, then press ENTER.)

jcrosoft wWindows Setup (x64)

Lite Touch windows PE (x64)

To specify an advanced option for this choice, press F8.

After the client makes their selection, WDS provides the necessary boot files from
the image store, and the deployment to the client begins.

Install WDS

To install WDS, you have to be a member of the local administrators group and the
domain users group for the domain. You also need to make sure your server and
network meet the following prerequisites:

» Active Directory domain member or domain controller
» DHCP server to respond to PXE requests

» DNS

» NTES volume for WDS image store

You can install WDS on your Windows Server 2008 R2 server using the
Add-WindowsFeature cmdlet inside the ServerManager module. As you learned

WORK WITH WINDOWS DEPLOYMENT SERVICES 247

in Chapter 7, you can import the ServerManager module with the following
command:

Import-Module ServerManager

After you have loaded the ServerManager module, install WDS by running the
following command:

Add-WindowsFeature WDS

Your results will look similar to Figure 11.2.

FIGURE 11.2 Installing WDS

= Administrator: Windows PowerShell

Success {Iransport Server, Deployment Server}

The WDS server installs the two service roles, the deployment server and the
transport server, by default. You have two options when you install WDS: you can
either install both services or install just the transport server. You can install the
individual components.

If you just want to install one server role over the other, you can do so with the fol-
lowing commands.

To install just the deployment server, run this command:
Add-WindowsFeature WDS-Deployment

To install just the transport server, run this command:

PowerShell and
Deployment Services

Add-WindowsFeature WDS-Transport

Work with WDS in PowerShell

There are two ways to work directly with WDS in a PowerShell session. You can
use the command prompt tool WDSUTIL, or you can load the WDS COM object.
In this section, you will see how to work with both. However, the focus will be
on WDSUTIL, because this tool provides an easier way to incorporate MDT into
PowerShell scripts.

248

CHAPTER 11

POWERSHELL AND DEPLOYMENT SERVICES

Working with COM objects in PowerShell requires some exposure to the program-
matic side of PowerShell. Having a developer background here will assist you in
working with this area of PowerShell.

The COM object you need for WDS is WdsMgmt . WdsManager. You can access
the COM object easily by setting a variable for the COM object with the following
command:

SWDScom = New-Object -ComObject WdsMgmt.WdsManager

Use the Get-Member cmdlet to see what methods work with the COM Object.
Using the previous variable, run this command:

$WDScom | Get-Member *

Your results will look similar to Figure 11.3.

FIGURE 11.3 Get-Member for WDS

trator? SUDScom = New-Object —ComObject WdsMgnt.WdsManager
trator> SUDScom | Get—Memher =

TypeHame: System._ ComObject#{68c7a?2bh-231c—46ch-a?20-23%c2e?a57963

MemberType Definition

GetDeviceManager Method IWdsDeviceManager GetDeviceManager (string)
GetDeviceManagerFromDn HMethod IUdsDeviceManager GetDeviceManagerFromDn {string)
i Method IWdsDeviceManager GetDeviceManagerFromLdapServ
Method IWdsForestDeviceManager GetForestDeviceManager
Method IWds ImageProcessor GetImageProce r (D
Method IWdsCollection GetMNewCollection (GUID>
Method IWdsValidator GetUalidator <O
GetWdsServer Method IWdsServer GetWdsServer <(string?
GetWdsServers Method IWdsGollection GetWdsServers (bool?

P§ G:sUsersAdministrator?

After you have loaded the WDS object, you can then access the different methods to
work with the COM object. For more information on working with COM objects,
seehttp://msdn.microsoft.com/en-us/library/ms680573 (v=vs.85)
.aspx. Also, Ravikanth Chaganti discusses this on his blog at www . ravichaganti
.com/blog/?p=1561.

Use WDSUTIL

Although working with the COM object provides access in PowerShell, leveraging
WDSUTIL is a little more intuitive. This is installed when you install the WDS role

WORK WITH WINDOWS DEPLOYMENT SERVICES

FIGURE 11.4

on your Windows Server 2008 R2 server. More importantly, this tool is designed to

specifically work with WDS on your server.

To see a list some of the switches available for WDSUTIL, run the following

command:

WDSUTIL /2

Running /? shows some of the switches for WDSUTIL. It mainly shows the prefixes
for all the commands. One of the switches you may have noticed is the /A11Help
switch. When you run the following command, you will see some interesting

switches:

WDSUTIL /AllHelp

Your results will look similar to Figure 11.4.

Using WDSUTIL

rator> WDSUTIL ~AllHelp

Windows Deployment Services Management Utility [Uersion 6.1.7680.163851
GCopyright <G> Microsoft Gorporation. All rights reserved.

#Get—AllDevices
~Get— ﬁllDPerPGPOuD“

/Approve—AutoAddDevices
~Re ject—AutoAddDevices
#Get—AutoAddDevices
#Delete—AutoAddDevices
/New—Capturemage

#Disconnect—Client
/New—DiscoverImage

#Add-Device
sGet—Device
~Bet—Device
/Add—DriverGroup
#Copy—DriverGroup
~Get— DPerPGPDup
~Remove—Dri

Remove—DriverGroupPackages

/Add—DriverPackage
#Get—DriverPackage
~Remove—DriverPackage
~Remove—-DriverPackages

/Set—DriverPackage
#Get—DriverPackageFile

Displays information on all prestaged devices.

infopmation on all driver groups.
the driver packages from a folder.
information on all driver packages.
information on all image groups.
information on all images.
the attributes of all transmi.
the attributes of all namespal
information for all WDS serve
pending Auto—Add devic
Rejects pending Auto—Add devic
Displays the Auto—Add devices on serve
Deletes devices in the Auto—Add datahase.
Cleateo a WinPE image used for creating an
image of a reference computer.
s a client from a multicast
ission or namespace.
a WinPE image used for computers that
capahle of booting to PEE.
a prestaged device to Active Directory.

ays the atteributes of a prestaged device.

Changes the attributes of a prestaged device.
Ad, a driver group to the server.
Copies a driver group.
Displays infopmation about a deiver group.
river group from the server.
e attributes of a driver group.
river package to a driver group.
ver packages to a driver group.
a driver package from a driver group.
driver packages from a driver group.
Adds a driver package to the server.
Displays information about a deiver package.
Removes a driver package from the server.
Removes multiple driver packages from
the server.
e attributes of a driver package.
information about the files

WDS does not have native support for PowerShell, but the commands do share
some of the syntax of PowerShell. Table 11.1 describes some of the common

switches used with WDSUTTIL.

249

PowerShell and
Deployment Services

n
X
>
o
—
m
=
—
=

CHAPTER 11 -

POWERSHELL AND DEPLOYMENT SERVICES

TABLE 11.1

WDSUTIL common switches

Swicn—oerpion—————Juampe

Initialize-

Server

Add-Image

Update-
Serverfiles

Set-Server

Get-Server

Used to perform the initial configura-
tion of the server to enable the image
share and the remote installation
directories.

Allows you to add images to your WDS
share for either boot systems or oper-
ating systems.

Ensures the validity of your remote
installation directory. Any time you
make a change to your server's share or
remote installation directory, you need
to make sure the directory configura-
tion is still valid.

Used to configure the WDS server.

Used in a variety of ways to learn the
current configuration of the WDS
server.

This example initializes WDS on Server1
and configures the remote installa-

tion directory to be located at d: \
RemoteInstall:/Server:Serverl /
RemInst:"d:\RemoteInstall".

This example adds an install named
corpimage.wimfrom the D: \MDT
directory to the current server: WDSUTIL
/ImageFile: "D:\MDT\corpimage
.wim" /ImageType:Install.

This example updates the current server:
WDSUTIL /Update-ServerFiles.You
can also designate a specific server with
the /server switch.

This example turns on the architecture
autodiscovery method for the WDS;
this specifically helps when X64 clients
do not properly report their architec-
ture: WDSUTIL /Set-Server /
ArchitectureDiscovery:Yes.

This example shows the current
images configured on the current WDS
server: WDSUTIL /Get-Server /
Show: Images.

One of the switches mentioned in Table 11.1 was the Get -Server switch. With this
switch you can view the configuration of the server. You can view just the informa-

tion of the images or of the server or the information for both. For example, if you

want to see the entire configuration for the current server, you run this command:

WDSUTIL /Get-Server /Show:All

Your results will look similar to Figure 11.5.

A key switch when you are combining WDS and MDT is the Add-Image switch.

With this switch, you can copy images into the remote installation directory of

WORK WITH WINDOWS DEPLOYMENT SERVICES

your WDS server. In MDT, when you create your images and shares, files you create
include boot images to direct you to the proper configuration on your MDT server.
These boot images need to be copied into the WDS server so the PXE requests can
be handled correctly. More importantly, once the boot image is loaded, then the
server will access the MDT configurations.

FIGURE 11.5 WDS configuration

ndows PowerShell
rator> WDSUTIL /Get—Server /Show:All

Windows Deployment Services Management Utility [Uersion 6.1.7688.163851
Copyright <G> Microsoft Gorporation. All rights reserved.

%ETUP INFORMATION FOR SERUER

-1
WDS operational mode: MHative

Installation State:
Remotelnstall locatio d:“RemoteInstall
Remotelnstall share —to—date: Yes
Boot files installed:
x86
x64 - Yes
iab4 — Ho

Server Authorization:
Authorization state: Authorized

fAnswer Policy:
s clients: Yes
only known clients: Mo
se delay: @ seconds

Prestage dew s using MAC: Mo
Mew computer namin: licy: x6llsernamexit

This command copies a boot image file named MDTboot . wim in the d: \mdt direc-
tory to your WDS server:

WDSUTIL /Add-Image /ImageFile:"D:\MDT\Boot.wim"«
/ImageType:Boot

While you are working with WDSUTIL, the tool’s switches may not seem relevant
for PowerShell. In the “Put It All Together” section of this chapter, you will see

how it all comes together by combining WDSUTIL and your PowerShell scripts for
deployment.

251

PowerShell and
Deployment Services

n
X
>
o
—
m
=
—
—

252 CHAPTER 11 * POWERSHELL AND DEPLOYMENT SERVICES

A WORD ABOUT /VERBOSE AND /PROGRESS

Often when you are working with the WDS you are going to be working with a lot of
output and large files. Image files can be several gigabytes in size, and sometimes the
tasks you have WDSUTIL perform can take some time. The two switches /verbose and
/progress can give you feedback on the commands you run with WDSUTIL.

These two switches can be used with any of the other WDSUTIL commands. These
commands also have to be used directly after WDSUTIL. For example, this command
shows the progress of copying the 1itetouchPE_x86.wim boot image file from
d:\deploymentshare to the server:

WDSUTIL /verbose /progress /Add-Image
/ImageFile:"D:\Deploymentshare\Boot\LiteTouchPE_x86.wim"

/ImageType:Boot

Your results will look like this.

rator: Windows PowerShell

Ps C S\Admis rator> WDSUTIL suerhose sprogress InageFile : "D:\Deploymentshare By
Boot \LiteTouchPE x86 . wim'" ~ImageType:Boot

Windows Deployment Services Management Utility [Version 6.1.7688.163851
Copyright (C> Microsoft Corporation. All rights reserved.

Verifying the integrity of the data in image file "D:\Deploymentshare~Boot\LiteTouchPE_x86.uwim".
Adding hoot image "Lite Touch Windows PE (x86>" to the xB6 the image store...

Updating image metadata...

The command completed successfully.
PS C:\Userssidministratord> _

Without these two switches, you would not see an indicator that the command was
running until the command completed. Using these two switches with your longer
operations involving larger files is a good idea so that you can see the progress of
your operations.

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 253

Work with the Microsoft Deployment Toolkit

The MDT allows you to create a custom image file for deployment in your infra-
structure. The custom image not only contains a preconfigured operating system
but can also contain custom drivers, update packages, language packages, and
applications. This lets you fully deploy a desktop and all the components necessary
for your users’ desktops.

MDT 2010 supports the deployment of Windows 7 and Windows Server 2008 R2,
in addition to the deployment of Windows Vista, Windows Server 2008, Windows
Server 2003, and Windows XP. This section outlines how the MDT works, how to
install it, and how to configure it to perform custom image deployments for your
infrastructure.

Understand the MDT

Three terms for deploying software with Microsoft technologies indicate how much
work you have to do on the client:

» High-touch
» Light-touch
» Zero-touch

High-touch installations usually involve doing a lot of work with the client system
you are deploying to. There is no automation during the installation, and you have
to perform the steps by hand. The most basic form of high-touch installations is
placing a DVD or CD in the drive and stepping through the installation wizard.

Light-touch installations normally automate the majority of the installation
process. You need to do some minimal work on the client systems you want to
deploy to. This may involve starting a PXE boot on the client system (by pressing
a function key like F12). You then need to make a selection from the MDT menu

PowerShell and
Deployment Services

n
X
>
o
—
m
=
—
=

254 CHAPTER 11 * POWERSHELL AND DEPLOYMENT SERVICES

to choose your deployment option. Figure 11.6 shows an example of the Windows
Deployment Wizard for MDT.

FIGURE 11.6 Windows Deployment Wizard for MDT

=
Select a task sequence to execute on this computer.

The following task sequences are available.

 EDeploy Windows 7 to Reference Computer
This will deploy Win 7 and drivers to the Reference Computer
' EDeploy Captured Image to Target Computer
Deploy Winodws 7 sysprepped image to Target PC

Mext | Cancel |

With light-touch installations, you have to do a little work to pull the installation
down to the client system. After you make your selection, you can then step away
from the system.

Zero-touch, as the name implies, allows you as the administrator to push the instal-
lation to the system, with no direct interaction on the client system. The MDT can
be used to perform zero-touch installations; however, to accomplish zero-touch, you
also need to have System Center Configuration Manager (SCCM) installed in your
environment. This section focuses on light-touch installations involved in

custom image deployment. To learn more about zero-touch, take a look at this arti-
cle on zero-touch, high-volume deployment: http://technet .microsoft.com/
en-us/library/dd919178 (WS.10) .aspx.

Deploy with Windows Imaging Format

Although MDT may seem similar to other imaging tools such as Symantec Ghost,
it is quite different. Other imaging tools lay down a copy of a standard desktop to

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT

FIGURE 11.7

new systems, but MDT actually installs a new copy of the operating system and any
other components you have in place for your standard desktops.

The key technology to the centralized deployment of Microsoft platforms is a file
format for images called the Windows Imaging Format (WIM). The WIM format
is also heavily utilized by the MDT tool. MDT creates both the boot WIM files for
booting to the preinstallation environment and the custom desktop images.

WIM is a file-based image format that was introduced with the Systems Management
Server (SMS) 2003 OSD feature pack. The WIM format lets you store multiple OS
images in one file. With Windows 7, all the DVDs shipped are WIM files that have
been prepared with Sysprep for a fresh installation of Windows 7. Windows 7 has two
WIM files, boot .wimand install.wim, as shown in Figure 11.7.

Windows 7 WIM files

/& Administrator: Windows PowerShell
PS D:sdeploymentsharesOperating SystemsWindows 7 x64sources? dir *.uwin

Directory: D:NdeploymentsharenOperating Systems:Windows 7 x64xsources
LastWriteTime Length Hame

2-14-200% 2:29 AM 167815678 hoot.wim
/14,2009 2:29 AM 2860840523 install.wim

PS D:sdeploymentsharexOperating SystemssWindows 7 x64~sources> _

What happens when you install Windows 7 from a DVD in a high-touch fashion is
that you are building the answer file as you go through the installation wizard. With
MDT, when deploying the custom WIM file, you are also deploying an answer file
(Unattend.XML), which creates the custom installation.

You could have one image for your marketing desktops and another image for your
accounting desktops all stored in a single WIM file. This makes it easy to store

and work with your images. The WIM file also supports compression and single
instancing to help keep the size of the file at a minimum. Although the files can be
2GB-3GB in size on average, the WIM file is an efficient file format.

When a WIM file is applied to a system, it actually performs an installation, and
this allows the WIM file to be hardware-agnostic. The WIM file relies on the driver
detection of the installation process to make sure the system gets installed properly.
This also has the added benefit that you can deploy WIM files to systems whose
hard drives are of a different size than the WIM file being used. As long as the hard

255

PowerShell and
Deployment Services

n
X
>
o
—
m
=
—
—

256 CHAPTER 11 * POWERSHELL AND DEPLOYMENT SERVICES

drive is big enough to hold all the data in the WIM file, you will be able to use this
added flexibility.

This is important because regardless of the hardware platform you are installing to,
you can use one WIM file for them all. This is different from traditional imaging
systems in that they normally would require a separate image for each hardware
platform. The one exception is 32-bit vs. 64-bit architecture. Although there are
some ways to combine the two architectures in the same file, it is not recommended.

Lastly, the WIM files can be serviced and maintained offline. This allows you to
modify individual files in the WIM file or add additional files, such as DLL files, to
make sure the WIM file is up-to-date with corporate standards. With other tradi-
tional imaging formats, if anything changed, even if it was a 1KB change, you would
have to re-create the image.

Install MDT

To install MDT, you first need to download the tool, which is about 10MB. There are
32-bit and 64-bit versions of the tool. You can download MDT at www.microsoft
.com/downloads/en/details.aspx?familyid=3bd8561f-77ac-4400-
alcl-fe871c46laB89&displaylang=en&tm.

After you download MDT, step through the installation wizard. This installs the
deployment workbench (GUT) and the PowerShell snap-in.

In addition to MDT, you also need to download and install the Windows
Automated Installation Kit (WAIK). The WAIK is approximately 1.7GB in
size, so you may need to plan for the download depending on the bandwidth
of your network. You can download the WAIK at www.microsoft.com/
downloads/en/details.aspx?FamilyID=696dd665-9f76-4177-a811-
39¢c26d3b3b34&displaylang=en.

The file is in ISO format, so you have to burn a DVD, or you can use a free
utility called Virtual CloneDrive (located at www.slysoft.com/en/virtual-
clonedrive.html) with the WAIK files. When you load the DVD and insert it
into your drive, you will see a screen similar to Figure 11.8.

To install the WAIK, make sure you select Windows AIK setup in the menu on the
left. There are two main tools that are installed as part of the WAIK that you need to
know about. First, the Windows System Image Manager is the component that
provides the answer files for the customized image.

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 257

The second tool is ImageX, which is the utility that allows you to work directly with
WIM files. ImageX allows you to capture, mount, and apply WIM files. MDT uses

it under the covers to work with the WIM files, and it is the main component apply-
ing your custom images. ImageX primarily runs in the Windows PE, which is the
primary installation environment used as a bootable tool that provides OS features
for installation, troubleshooting, and recovery. Windows PE is a minimal operating
system built from Windows components to help complete the installation. If you
have ever installed Windows 7 from a boot DVD, you were working in Windows PE.

FIGURE 11.8 WAIKDVD autorun screen

[® Welcome to Windows Automated Installation Kit | (O] =

#. Windows 7

Welcome to Windows Automated Installation Kit

The Windows® Automated Installation Kit (wWindows AIK) helps you to
customize, configure, and deploy the Windows® 7 and Windows
Server(® 2008 R2 operating systems.,

To run the Windows AIK, your technidan computer must use the
Windows Server® 2003 SP1, Windows Vista® SP1, Windows Server
2008, Windows 7, or Windows Server 2008 R2 operating system.

e .
Work with MDT in PowerShell -
Creating a light-touch installation point involves several steps. The MDT helps organize E g
those steps to create your custom image. The overall steps for MDT are the following:)
e a
1. Create a deployment share.

2. Add your OS, applications, packages, and drivers to the share.
3. Create a task sequence to perform the installation.

4. Build the image.
5.

Deploy the image.

258 CHAPTER 11 -

POWERSHELL AND DEPLOYMENT SERVICES

This section shows how to use PowerShell to accomplish these steps.

To work with the MDT in PowerShell, you need to load the MDT snap-ins. For more

information on the differences between snap-ins and modules, see Appendix E.

You can view which snap-ins are currently loaded in your PowerShell session by

running the following command:

Get-PSSnapin

Your results will look similar to Figure 11.9.

FIGURE 11.9 Current PowerShell snap-ins

Windows PowerShell

dous

PowerShell

Copyright (C> 2882 Microsoft Corporation. All rights reserved.

PS8 C:-S\UserssMatt> Get—PS88napin

Hame
PSlersion

Name
PSUersion

Description @

Hame
PSlersion

Description :

Name
PSlersion

Description :

Description

Hame
PSlersion

Description :

Description @

: Microsoft.PowerShell.Diagnostics
: 2.8
Description :

This Windows PowerShell snap—in contains
cmdlets

: Microsoft.USMan.Management

This Windows PowerShell snap—in contains

Windows Eventing and Performance Counter

cmidlets (such as Get—WSManInstance and S

et—-W8HanInstance} that are used by the Windows PouwerShell host to manage WSMan op

erations.

: Microsoft._PowerShell.Core
2 B

T Windows PowerShell snap—in contains

dows PowerShell.

: Microsoft.PowerShell.Utility

Tﬂis Windows PowerShell snap—in contains

: Microsoft.PowerShell.Host

; Tﬂis Windows PowerShell snap—in contains

op-Transcript? that are provided for use

posoft . PowerShell.Management

Windows PowerShell snap—in contains
components.

: Microsoft.PowerShell.Security

Windows PowerShell snap—in contains

cmdlets used to manage components of Win

utility Cmdlets used to manipulate data.

cmdlets (such as Start—Transcript and St

with the Windous PowerShell console host

management cmdlets used to manage Window

cmdlets to manage Windows PowerShell sec

To load the MDT snap-in, run the following command:

Add-PSSnapin Microsoft.BDD.PSSnapin

To see a list of the MDT cmdlets, run the following command:

Get-Command -module Microsoft.BDD.PSSnapin

Your results will look similar to Figure 11.10.

One way to learn the cmdlets for MDT is to use the tool. Almost all the tasks you

perform in MDT give you a chance to see the script that was created to perform

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT

FIGURE 11.10

FIGURE 11.11

the task. As you can see in Figure 11.11, which is the screen you get after adding an
application to the deployment share, there is a button labeled View Script. Clicking

this button shows you the underlying PowerShell script that performed the

command. This provides another way to learn the PowerShell commands for MDT.

MDT cmdlets

ndows PowerShell
PS G:islUserssMatt? get—command —module microsoft.hdd.pssnapin

dT

DTPersistentDrive

Get—MDIOperatingSystenCatalog

Get—MDTPersistentDrive
rt—MDTApplication
—MDTDriver
—MDITOperatingSystem
—MDTPackage
port—MDITaskSeguence
Neu MDTDatabase
Remove—MDIPersistentDrive

Restore—MDTPersistentDrive

Test—MDIDeploymentShare
Update—MDIDatahaseSchema
Update—MDIDeploymentShare
Update—MDTLinkedDS
Update—MDIMedia

NlUserssMatt>

MDT view script

New Application Wizard

ersistentDrive [-Mamel <{Stri
Get—MDIOperatingSystemCatalog [-Imag
Get-MDIPersistentDrive [-Uerbosel [-
Import—MDTApplication [-Path <{String
Import—MDIDriver [[-SourcePathl {Stp»
Impn) —MDIOperatingSystem [—Path <S5t
port—MDTPackage [[-SourcePathl <8t
Impnrt MDITask8egquence [[-Templatel
Mew—MDIDatabase [-Path <{String>] [-F
Remove-MDIPersistentDrive [—Mamel (8
Restore—MDTPersistentDrive [-Forcel
Test—MDIDeploymentShare [[-SourcePat
Update-MDIDatabaseSchema —-SQLServer
Update—MDIDeploymentShare [-Path <85t
Update—MDTLinkedDS [-Pathl <String>
Update—MDIMedia [-Pathl <String> [-U

gg Confirmation

Application Type
Details

Source
Destination
Command Details
Summary
Progress

"0' The process completed successfully.

Save Output . |

Perfoming operation “import” on Tanget " Application™.

Beginning application import

Copying application source files from D-\snagit to C:\Deployment Sharetest'\Applications'enagit camtasia
Creating new tem named snagit camtasia at DS002 \Applications

Impart processing finished

259

PowerShell and
Deployment Services

CHAPTER 11

260 CHAPTER 11 * POWERSHELL AND DEPLOYMENT SERVICES

Along with cmdlets in the snap-in, you can work directly with the PowerShell pro-
vider for MDT. The provider for the MDT is named MDTProvider.

Working with a Deployment Share

The first task you need to do is create a deployment share. A deployment share is not
created by default. After you have created the deployment share, you are then able to
create all the necessary components to set up your centralized deployment.

The following command creates a deployment share with a name of MDT0land
a description of My MDT Share; it’s located at d: \MyMDTShare with the share
UNC name \\2008R2DEP\MyMDTShare$. The $ makes the share hidden.
Add-MDTPersistentDrive allows you to make the drive available and persis-
tent so it can be reused.

New-PSDrive -Name "MDT01" -PSProvider "MDTProvider" 3
-Root "d:\MyMDTShare" -Description "My MDT Share"«3
-NetworkPath "\\2008R2DEP\MyMDTShare$" -Verbose

| add-MDTPersistentDrive -Verbose

Your results will look similar to Figure 11.12.

FIGURE 11.12 C(Creating a deployment share

MAdministrator Windows PowerShell

SDrive —Name "MDTO. PSProvider “"MDIProvider —Ruut d: \HyHDTShme —Description "u
Hy HDT Shale —HetworkPath "~ 2DEP\HyHDTShale$" Uerh: add-MDIPersistentDrive —Uerhose
BOSE: Performing operation ew Drive' on Target "Mame: DTI1 Provider:
-BDD. PSSnapIn\HDTPlnuldel Rnnt d: \HyﬂDTS]\ale"
nyg operation "new" on Target "deployment share".

ng a new deployment share
ng scripts and tnnl=‘
operation "open' on Target "deployment share'.

: Deployment share at ’d:“MyMDIShare’ opened successfully.

: Adding MDT drive MDTB1 to the persisted drive list.

Used <(GB> Free (GB> Provider Root Curren
tLocat

MDIProvider MyMDIShare
: Successfully added MDT drive MDTB1 to the p sted drive list.

As you work with MDT and create multiple deployment shares, you can access
them in PowerShell. Before you can access them in a PowerShell session, you need
to run the following command:

Restore-MDTPersistentDrive

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 261

To see what persistent drives are available to you in your PowerShell session, run the
following command:

Get-MDTPersistentDrive

Your results will look similar to Figure 11.13.

FIGURE 11.13 Deploymentshares

& Administrator: Windows PowerShell
PS5 GisllsersnAdministrator? Get-MDTPersistentDrive

Description

D:\Deploymentshare MDT Deployment Share
C:N\DeploymentSharetest MDT Deployment Share

d:\MyMDTS hare Hy MDT Sharve

PS C:\Users“\Administrator>

With the MDT provider you can access the shares directly in PowerShell by typing
in the name of the deployment share. For example, if you wanted to see the contents
of the deployment share called MDT01, you would type in the following:

cd MDTOL1:

You can then work with the provider like any other providers. You will be able to use
dir, cd, and many other commands to access the deployment share. Figure 11.14
shows the dir command run in the MDTO01 share.

FIGURE 11.14 Deployment share contents

X Administrator: Windows PowerShell
istrator> cd MDT@1:

Applications

Operating Systems
Out—of-Box Drivers
Packages

Task Sequences

Selection Profiles
Linked Deployment Shares
Media

PowerShell and
Deployment Services

PS MDTB1:%3> _

n
X
>
o
—
m
=
—
=

After you create the deployment share, you then can add all the components from
operating systems, applications, drivers, and packages. The PowerShell commands

262

CHAPTER 11 -

POWERSHELL AND DEPLOYMENT SERVICES

FIGURE 11.15

to add these different components to your deployment share all follow a similar
pattern. Before you begin managing your deployment share directory, you need to
make sure your MDT persistent drives have been loaded. You can load the drives
directly via the provider with a command similar to this one:

New-PSDrive -Name "MDT01l" -PSProvider "MDTProvider" 3
-Root "d:\MyMDTShare"

Alternatively, you can load all the drives with the Restore-MDTPersistentDrive
mentioned earlier.

The following command copies the Windows 7 operating system from D: \ source\
Windows7 to the operating systems folder on the MDT01 share:

Import-MDTOperatingSystem -path "MDTO01l:\Operating Systems"«e
-SourcePath "D:\Source\Windows7" -DestinationFolder "Windows 7" &3

-Verbose

Your results will look similar to Figure 11.15.

Importing the OS

inistrator? Import—MHDIOper ngSystem —path "MDITBA1 :“Operating Systems" —Suu}-cel’atu
arcesWindows?" —DeﬁtlnatlnnFoldeP lindows 7' -Uerh
UERBOSE: Performing operation "import™ on Target "Opelatlng systen
UERBOSE: Creating new item named Windows 7 HOMEBASIC in Windows 7 1n.,ta11 win at
MDIB1 =“\Operating Systems.

LEUT

Windows 7 HOMEBASIC in Windows 7 install.

UERBOSE: Creating new item named Windows 7 HOHEPREHIUH in Windows 7 install.wim at
MDTAL =~0Operating Systems.

Windows 7 HOMEPREMIUM in Windows 7 install.w

UERBOSE: Cxeatlng new 1tem named Windows 7 PROFESSIONHL in Windows 7 install.wim at
MDTB1 -“Operating Syste

Windows 7 PROFESSIONRL in Windows 7 install.uim

UERBOSE: Cleatlng new item named Windows 7 ULTIMATE in Windows 7 install.wim at

MDIB1 =“Operating Systems.
Windows 7 ULTIMATE in Windows 7 install.wim
UERBOSE: Import processing finished.

PS8 C:-\UsersSAdministrator> _

In Figure 11.15, you see a list of four different operating systems — Home Basic,
Home Premium, Professional, and Ultimate — stored in a Windows 7 WIM file.

The CommandLine switch configures the installation of the application. To make
the installation as silent as possible, you will have to research how to install each
application silently. For example, this command silently installs Adobe Reader:

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 263

AdbeRdr930_en_US.exe /sAll /rs /1 /msi"/gb-!
/norestart ALLUSERS=1 EULA_ACCEPT=YES DISABLE_AIR&
_SHARE=1 SUPPRESS_APP_LAUNCH=YES"

This command imports the application Snaglt from D: \source\snagit to
the applications folder on the MDT01 share and installs it, despite not having the
silent switch:

Import-MDTApplication -path "MDTOl:\Applications"e
-enable "True" -Name "Camtasia Snagit" -ShortNameed
"snagit" -Version "" -Publisher "camtasia" 3

-Language "" -CommandLine "snagit.exe" 3

-WorkingDirectory ".\Applications\snagit" 3

-ApplicationSourcePath "D:\source\snagit" 3

-DestinationFolder "snagit" -Verbose

The following command imports the drivers from D: \source\drivers to the
Out-of-Box drivers folder on the MDT01 share. The ImportDuplicates
switch allows your driver to be used over the Windows driver if one exists.

Import-MDTDriver -path "MDTO01:\Out-of-Box Drivers" 3
-SourcePath "D:\source\drivers\" -ImportDuplicates
-Verbose

This imports the Dutch language pack from d: \source\dutch to the packages
folder on the MDT01 share:

Import-MDTPackage -path "MDTO01l:\packages" 3

-SourcePath "D:\source\dutch\" -Verbose

Creating a Task Sequence

After importing all the files necessary for your standard desktop, you can create
a task sequence. The task sequence controls the order and process of your custom
image deployment. In MDT, you have six XML templates you can use to create a
task sequence and a custom XML template for your installation. The templates are

located in the $SystemDrive%\Program Files\Microsoft Deployment
Toolkit\Templates directory. Table 11.2 describes the templates and the

filenames you would use in the MDT script.

PowerShell and
Deployment Services

CHAPTER 11 -

POWERSHELL AND DEPLOYMENT SERVICES

TABLE 11.2 Tasksequence templates

Sysprep and Capture

Standard Client Task
Sequence

Standard Client Replace
Task Sequence

Litetouch OEM Task
Sequence

Standard Server Task
Sequence

Post OS Installation Task
Sequence

Custom Task Sequence

Prepares a client machine by using a utility called
Sysprep. When sysprep is run on a client machine
it removes the unique properties of the system.
After sysprep is run then this task sequence will
capture the desktop in a WIM file and places it on
the MDT deployment share.

Standard desktop deployment including OS, appli-
cations, and drivers. This sequence could include
user state migration and replacement.

Captures the state of the client system and then
cleans the client system for replacement.

Deployment option for OEM computer providers.

Allows you to also deploy server roles as part of
your deployment process. MDT can also deploy
servers in your environment.

Allows you to perform tasks that occur after the
0S is already deployed. This sequence could help
cover anything you could not deploy as part of the
standard deployment process.

Sequence to utilize the custom tasks. MDT allows
you to create custom tasks.

Docpion———————rierame

CaptureOnly.xml

Client.xml

ClientReplace
.xml

LTIOEM

Server

StateRestore

Custom.xml

The following command creates a task sequence using the standard client template

and deploying Windows 7 Professional with a username of Desktop User and the

IE home page of www.bing. com.

Import-MDTTaskSequence -path "MDTO01:\Task Sequences"ed

-Name "Deploy Windows 7" -Template "Client.xml" 3

-Comments "Select this task Sequence to deploy the

standard Windows 7 desktop" -ID "DepWin7" -Version &3

"1.0" -OperatingSystemPath "MDTO01:\Operating Systemse3
\Windows 7 PROFESSIONAL in Windows 7 x64 install.wim"«ed

WORK WITH THE MICROSOFT DEPLOYMENT TOOLKIT 265

-FullName "Desktop User" -OrgName "deploy.com"¢3

-HomePage "www.bing.com" -Verbose

Your results will look similar to Figure 11.16.

FIGURE 11.16 Importing a task sequence

nce —path "MDIBL:N\Task Sequences' —Name "Deploy Wil
11 deploy the standard Windows ? desktop" I

~Operating Systems\Windows 7 PROFESSIONAL
rgHame 'deploy.com' —HomePage "wuw.bing.com®

&1

WERBOSE: Performing cperation "import" on Target "Task sequence'.

UERBOSE: Beginning task sequence import

WERBOSE: Creating new item named Deploy Windows 7 at MDTBA1:-Task Sequences.

Deploy Windows 7
UWERBOSE: Inmport processing finished.

PS C:sUsersSAdministrator? _

With the task sequence, you also control what the menu item looks like on the client
system you are deploying to. Whatever text you place in the -comments parameter
will be displayed on the client side. This is your opportunity to provide guidance

to the user or administrator performing the installation to make sure they make a

proper choice. So, make sure you provide descriptive documentation to help ensure
a successful deployment.

Put It All Together

After you have created the task sequence, the last step is to update the deployment
share. Updating the deployment share ties together all of your work. This updates
the configuration and generates custom versions of the Windows PE environ-
ment. Specifically, the update process creates the LiteTouchPE_x86.1iso and
LiteTouchPE_x86.wim files for 32-bit target computers or LiteTouchPE_x64
.isoand LiteTouchPE_x64.wim files for 64-bit target computers in the Boot
folder of your deployment share.

PowerShell and
Deployment Services

Updating the deployment share can take several minutes depending on your server con-
figuration. To update a deployment share named MDT01, run the following command: _

n
X
>
o
—
m
=
—
—

Update-MDTDeploymentShare -path "MDT01l: " -Verbose

266 CHAPTER 11 * POWERSHELL AND DEPLOYMENT SERVICES

Your results will look similar to Figure 11.17.

FIGURE 11.17 Updated deployment share

tor> Update—-MDTDeploymentShare —path "MDIB1:" —Uerh
re the deployment share has the latest x86 tools

ing LiteTouchPE (x86) bnot image ===
2 Building regquested boot image profile.
= Detelmlnlng if any changes have heen made in the hoot image conflgulatlon.
: Mo existing boot image profile found for platform xB6 so a new image will he created.
Calculating hashes for }Equegted content .
hanges have been made,. hoot image will be updated.
ndows PE WIM G:“\Program FilessWindows AIK~Tools“PETools‘\xB6 \winpe.wim will be used.
M file mounted
: Set Windows PE
: Set Windows PE
: Added component winpe-—.
: Added component winpe—:
: Added component winpe-—
: Added component winpe—-mdac
: Copy: d:<\MyMDIShare-Control:Bootstrap.ini to
ADMINI l\ﬁppData\Local\Tenp MDIUpdate .4568\Mount \Deploy~Scripts\Bootstrap.-ini
Copy: C:5\Pro Fil Mi ft Deployment Toolkit\TemplatesSUnattend PE_xB6.xml to
ﬂDHINI"l\nppData\Loc TUpdate .456@~Mount~Unattend.xnl
y: C:Program Files“\Microsoft Deployment Toolkit\Templates“winpeshl.ini to
HDHINI”1\prData\Lucal\TEmp\HDTUpdatE 456 @“Mount“Hindowsssystem32\winpeshl.ini
Copy: d:“MyMDISharexScriptssLiteTouch.usf to
C:sUsersSADMINI “1sApplatasLocalsIempsMDIUpdate . 4568 \Mount \Deploy~ScriptssLiteTouch.usf
Copy: d:\MyMDISharesScripts \ZTIUtility.ubs to
ADMINI"1“AppDatasLocals\Ienp \MDIlUpdate . 4568 \Mount \Deploy\Scripts\ZIIUtility.uhs
Copy: d:“MyMDTShare~Scripts~ZIIBCDUtility.vhs to
ADMINI 1\prData\Local\TBnp\HDTUpdate 4568\Hount\Deplny\Scl1ptg\ZTIBCDUt111ty vhs

J\Huunt\Depluy\Scl1pt“\ZTIDataﬂcce uhs
Co HyHDTShaPe\ScPlpt“\ZTIConflgFlle vhs to
HDHINI"l\ﬂppData\Lnnal\Temp\HDTUpdate 456@~Mount~Deploy Scripts~ZTIConfigFile .ubhs
Copy: d:“MyMDISharesScripts“ZII1Gather.usf to
RDHINI"1\RppData\Lucal\Temp\HDTUpdate 456 8-Mount~Deploy Scripts\EZTIGather.wsf
Copy: d:“\MyMDIShare~Scripts~ZIIGather.xml to
C:sUsers~ADMINI“1~ApplatasLocalsTempsMDTUpdate . 4568 \Mount Deploy Scripts \ZTIGather.xml
Copy: d:“MyMDISharesScripts\Wizard.hta to
ADMINI™" \nppData\Local\Tenp\HDTUpdate 456 @~Mount~Deploy\Scripts Wizard.hta
Copy: d: EMU.xml to
ADMINI"1“AppDatasLocals\TempsMDITUpdate EE\Hnunt\Deplny\Scl1ptﬂ\Credent1al* ENU - xm1
C: : d:\MyMDIShare\ScriptssCredentia

The boot directory on the MDT share includes WIM files and ISO files. You can
take the ISO files and burn them to DVDs, and if you boot the client system to the
DVD, this is the same as if they made a selection from a PXE boot.

To tie together MDT and WDS, add the light-touch WIM boot file to the WDS
boot images. This creates the choice in the PXE boot menu of the client for the
light-touch image you added. After the MDT option is selected from the PXE menu,
the request will then be handled by the MDT process. The architecture of the cli-
ent, 32-bit or 64-bit, determines which file to copy — LiteTouchPE_x86 .wim or
LiteTouchPE_x64.wim, respectively.

The following command adds the 64-bit light-touch file to the WDS boot images:

WDSUTIL /verbose /progress /Add-Image
/ImageFile: "D:\Deploymentshare\Boot\LiteTouchPE_x64.wim" 3
/ImageType:Boot

EXERCISE 11: CREATE A DEPLOYMENT SHARE

Create a deployment share called win?7 that will deploy Windows 7 Ultimate.

Optionally, if you have WDS, you can add the 32-bit boot image to the WDS boot images.

CHAPTER

PowerShell and
Virtualization

IN THIS CHAPTER, YOU WILL LEARN TO:

> INSTALL AND ACCESS HYPER-V 268
Install Hyper-V. ... 269
Access Hyper-Vin PowerShell................ooooiiiiint 270

> WORK WITH HYPER-V 276
Work with Virtual Networks ..., 276
Configure Virtual Machines.............coooiiiiiiiinion.. 278
Connect to Virtual Machines.cooviiiiiiinan. 283

Work with Snapshotscooiiiiiiiiiii i, 285

(L 411dVH)

irtualization technologies are common in today’s IT environments. Being able

to effectively work with and configure your virtual servers is key to successfully
maintaining a proper virtual environment. Microsoft’s Hyper-V platform lets you
virtualize a wide variety of environments. In fact, a majority of the examples and
samples used in this book were done in a Hyper-V environment.

You can use PowerShell with Hyper-V to configure, provision, and maintain your
virtualization environment. PowerShell provides the necessary tool set to quickly
work with your virtual infrastructure.

This chapter shows how to install Hyper-V with PowerShell for Windows Server
2008 R2 servers. The main focus of the chapter is how to work with virtual servers,
from creating the virtual networks to connecting your servers to maintaining the

virtual servers.

The chapter touches briefly on Windows Management Instrumentation (WMI).
You may be familiar with using WMI to manage virtual servers. However, you will
also see a new tool set used to manage the virtual environment from PowerShell
cmdlets.

Install and Access Hyper-V

Hyper-V is Microsoft’s virtualization technology for Windows Server 2008 R2 serv-
ers. Hyper-V allows you to run virtual guest operating systems on your host server.
This provides an environment to help you consolidate and fully utilize your existing
hardware. Hyper-V also provides a platform for testing and developing future appli-
cations for the business.

Currently in its second version, Hyper-V provides support for virtualization of
many operating systems, including Windows Server 2003 through the current ver-
sion of Windows servers and some versions of Linux distributions including SUSE
and Red Hat. With such a wide variety of client support, you can build production
and test environments off a single server. This helps you avoid server sprawl and
improve your IT infrastructure.

The systems you create with Hyper-V are fully functional systems in your infra-
structure; the only difference is they are virtual and do not have their own hardware.
This means you need to install, configure, back up, and maintain these servers like
full-fledged members of your network. Before you can begin working with Hyper-V,
you need to install it.

INSTALL AND ACCESS HYPER-V 269

Install Hyper-V

Hyper-V is an installable role on Windows Server 2008 R2 servers. Hyper-V can be
installed on the Standard, Enterprise, or Datacenter versions of Windows Server
2008 R2. You can also install Hyper-V on Windows Server 2008 R2 Server Core
installations.

Hyper-V has specific hardware requirements:

» The system needs to be 64-bit. The system must support hardware-assisted
virtualization. Specifically, the processors need to support Intel VT or
AMD-V technology.

» Hardware-assisted virtualization also needs to be enabled in the BIOS.
Normally this is not enabled by default.

» The processors also must have hardware-enforced data execution prevention
(DEP), which is enabled in BIOS as well. This is normally enabled by default.

To install Hyper-V with PowerShell, import the Server Manager module. After you
have imported the Server Manager module, you can then run the following com-
mand to install Hyper-V on either full or core versions of Windows Server 2008 R2:

Import-Module ServerManager

Add-WindowsFeature Hyper-V

Your results will look similar to Figure 12.1.

FIGURE 12.1 Installing Hyper-V

& Administrator: Windows PowerShell

Windows PowerShell
Copyright <C> 2089 Microsoft Corporation. All rights reserved.

PE C:\WindowsNsystem32> import-module servermanager
PSS C:sWindowsssystem32> Add-WindowsFeature hyper—u

Success Restart Needed Exit Code Feature Result

NoChan...

PES C:Windowsssystem32>

When you run the Add-WindowsFeature cmdlet, you may see a screen similar to

Figure 12.2. | CHAPTER12.

PowerShell and
Virtualization

n
I
=
)
1
m
=
—
N

270

CHAPTER 12

POWERSHELL AND VIRTUALIZATION

FIGURE 12.2 Wrong processor

=] Administrator: C:\Windows\system32\cmd.exe - powershell
ystem32> Add—WindowsFeature hyper-v

This indicates the processor you currently have installed on your Windows Server
2008 R2 server does not have hardware-assisted virtualization. An error similar to
this could also indicate you have not enabled the hardware-assisted virtualization in
the BIOS of your system. You need to install Hyper-V on another server.

Access Hyper-V in PowerShell

After you install Hyper-V, you can begin working with virtual servers. There are
two methods you can use in working with PowerShell and Hyper-V. The first lever-
ages the ability of PowerShell to work directly with the Windows Management
Instrumentation (WMI) provider. The second method uses a free, downloadable
Hyper-V module built after Windows Server 2008 R2 was launched.

Take a Quick Look at WMI

WMI is a key management technology for Windows systems. WMI essentially pro-
vides a logical data structure of information describing the various aspects of your
server. This data structure contains all aspects of the server you want to manage and
maintain. This data structure is referred to as a namespace. Namespaces are made up
of classes and instances. Classes and instances help define the various aspects of the
system you can manage. Classes can also be organized into subclasses. When you are
working with WMI, you will do a majority of your configuration in the classes.

WML is one of the first tools scripters used to manipulate and manage systems with
scripts prior to PowerShell. WMI allows you to manage local settings and remote
computers. Before you can start to dig into the various classes you can mange with
WMI via PowerShell, you will want to know what namespaces you can work with

INSTALL AND ACCESS HYPER-V 271

on your system. To view the namespaces on your server, you can run the following
command:

Get-WmiObject -namespace "root" -class "__ Namespace" | Select Name

Your results will look similar to Figure 12.3.

FIGURE 12.3 Namespaces

ndows PowerShell
ystem32> Get-—UWmiObject —namespace "root" —class “_ Mamespace" | Sel’
=

WebAdninistration
WHMI

directory

Policy
virtualization

PS C:\Windows\system32>

These namespaces all have the prefix of root, and when you want to reference them
in your PowerShell commands, you need to use root\ before each WMI namespace
you want to access. For example, if you wanted to use the virtualization
namespace, you would use root\virtualization. Likewise, if you wanted to see
the WebAdministration namespace, you would use root \webadministration.

Each namespace contains all the classes and instances under the hood, allowing you
to manage and maintain the various aspects of your system. The default and most
common namespace is root \cimv2. This contains the main classes for your server,
from hardware to BIOS settings.

Access the different WMI classes in PowerShell with the Get-WmiObject cmdlet.
To see a list of the available aspects in the default namespace (root\cimv2) you
can access in WMI, use the following command:

=]
Get-WmiObject -List 5 5
33
If you want to see just the classes used for Hyper-V, run the following command: ‘*f‘.;-, s
3 E
. a >
Get-WmiObject -Namespace root\virtualization -List CHAPTER 12

Your results will look similar to Figure 12.4.

272

CHAPTER 12

POWERSHELL AND VIRTUALIZATION

FIGURE 12.4 Hyper-Vclassesin WMI

PS C:sWindowsssystem32> Get—WmiObject —namespace root™wirtuwalization —List

MameSpace: ROOTwirtualization

Mame Methods Properties

_ SystemClass <>

__thisNAMESPACE {SECURITY_DESCRIPTOR>
__Provider {Name>

__ Win32Provider {ClientLoadableCLSID...
__ProviderRegistration {providery
EventProviderRegistration {EventQueryList. pm
ObjectProviderRegistration {InteractionType. p
ClassProviderRegistration {CacheRefreshlnterva...
InstanceProviderRegistration {InteractionType, pr...
MethodProviderRegistration {provider>
PropertyProviderRegistration {provider, SupportsG...
EventConsumerProviderRegistration {ConsumerClassNames ., ...
NAMESPACE { {Name>
IndicationRelated >

EventFilter {CreatorSID. EventAc...
EventConsumer {Creator8ID., Machine.
FilterToConsumerBinding {Consumer, CreatorSI.
__AggregateEvent {HumberO0fEvents,. Rep.

_ TimerNextFiring {NextEvent64BitTime ., .
__Event {SECURITY_DESCRIPTOR.
InstanceQperationEvent {SECURITY_DESCRIPTOR.
InstanceCreationEvent {SECURITY_DESCRIPTOR.
InstanceDeletionEvent {SECURITY_DESCRIFTOR.
InstanceModificationEvent {PreviousInstance, S.
MethodInvocationEvent {Method,. Parameters..

_ ClassOperationEvent {SECURITY_DESCRIFTOR.
__GClassDeletionEvent <{SECURITY_DESCRIPTOR.
__ClassModificationEvent {PreviousClass, SECU.
__ClassCreationEvent {SECURITY_DESCRIPTOR.
__MamespaceOperationEvent {SECURITY_DESCRIPTOR.
__MamespaceModif icationEvent {PreviousNamespace, ...
__HNamespaceDeletionEvent {SECURITY_DESCRIFTOR. ..

To access any of the aspects of Hyper-V with WMI, you have to know the name of
the class and instance you want to modify. Although this can be extremely powerful
and detailed, digging into WMI can take some time.

Appendix F touches on some of the Win32 classes in WMI. You can also find a
more detailed look at all the classes available for Hyper-V. Check out the Hyper-V
provider reference here:

http://msdn.microsoft.com/en-us/library/ccl36992 (v=VS.85) .aspx

Use the Hyper-V Module

WML is a tool you can use in PowerShell to access components with no built-in
cmdlets, but working with the WMI provider can sometimes be daunting.
Fortunately, for managing Hyper-V, the IT pros at Microsoft made a Hyper-V mod-
ule. This provides access to your Hyper-V environment using PowerShell cmdlets
without having to dig deep into WMI. The rest of this chapter focuses on using these
cmdlets to manage your Hyper-V environment.

The Hyper-V module is located in the PowerShell Management Library for Hyper-V
located on CodePlex and is free. You can download the management library from
http://pshyperv.codeplex.com/.

INSTALL AND ACCESS HYPER-V

The file is in ZIP format. You may need to unblock the file so it can install properly.
Before you extract the ZIP file, go to the properties of the file and click Unblock, as

shown in Figure 12.5.

FIGURE 12.5 Unblocking the download

‘ HyperV_Install.zip Properties

General |Sec|.|nty| Details I Previous Versions I

P
H Il-hrper\-"_lnsta\l.zip

Type of file: Compressed (zipped) Folder { zip)

Opens with = Windows Explorer Change... |

Location: C:\Users\Matt\Downloads
Size: 142 KB (145,971 bytes)

Size on disk: 144 KB (147 456 bytes)

Created: Today, January 20, 2011, 10:44:44 AM
Modified: Today, January 20, 2011, 10:44:45 AM

Arccessed: Today, January 20, 2011, 10:44:45 AM

Attributes: I” Readonly [Hidden
Security: This file came from another

help protect this computer.

Advanced... |
computer and might be blocked to Unblock |

ok | Cancel |

Apply

If you do not unblock the file, you will see an error message similar to Figure 12.6.

FIGURE 12.6 Security error

& Administrator: C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe

PS C:\HyperU_Install> _

Even though the error message indicates the certificate-signing issue, you will still
see the error regardless of your remote execution policy level.

After you have unblocked and extracted the files, you can then install the module.
The developers created an install.cmd to step through the configuration of

273

PowerShell and
Virtualization

CHAPTER 12

274

CHAPTER 12

POWERSHELL AND VIRTUALIZATION

FIGURE 12.7

the tool set. From an administrative PowerShell session, navigate to the extracted
directory, and perform the following procedure:

1. Run .\install.cmd from the directory. Remember that when you run a
command from PowerShell, you have to include the . \ to represent the direc-
tory you are currently located in. After you run the command, you will see a
screen similar to Figure 12.7.

Installing the PowerShell Management Library for Hyper-V

Ensuring that .Met Framework 2 and Windows PowerShell are installed
Press [ctrllic] to abort op
Press any key to continue . . .

2. Press any key to continue the installation process.

3. After the installation verifies the prerequisites, review the results, and then
press any key to continue to extract the modules and support files. Your
screen will look similar to Figure 12.8.

FIGURE 12.8 Extracting the management library

The DISM log file can be found at C::\Windows“Logs“\DISM:dizm.log

About to create folder and copy Powershell module.
Press [ctrllic] to abort or
Press any key to continue . . .
A subdirectory or file C:“Program Files‘modules“Hyperl already exists.
C:shyperviinstall.cmds. . L} izk.psl
C:“hypervsinstall.cmds. . _install\En—us.psl
C:shypervsinstall.cmds. . stallshelper.psi

szhypervsinstall.cmds. . stallshyperv.format.psixml
C:vhypervsinstall.cmds. . stallsHyperl . psdl
C:shypervsinstall.cmds. . stallslink.ps1l
C:“hypervsinstall.cmds. . stallsMaml-Helper.HHL
C:xhyperviinstall .emds. . stallsmaml-um.xml
C:“hypervsinstall.cmds. . nstallsmaml-vmconfig.xml
C:xhypervsinstall.cmds. . stallsmaml-umDisk.xml
C:“hypervsinstall.cmds. . _install\MAHML-UMNetwork.XHL
C:shypervsinstall.cmds. . install\MAML-UMSnapshot.8ML
C:“hypervsinstall.cmds. . nstallsmenu.psi

~hypervsinstall.cmds. . nstall\Network.psl
C:shypervsinstall .cmds. . nstall\PEH-Help.xsn
C:“hypervsinstall.cmds. . _installssnapshot.psl
C:shypervsinstall .cmds. - _installswiCompatability.p=s1
C:“hypervsinstall.cmds. . install\um.psl
C:shyperviinstall.cmds. . U_dinstall\UMConfig.psl

19 file<s> copied.

to set registry entries for PowerShell script execution. module path and co
settings
[ctrllic] to abort or

Press any key to continue . . .

INSTALL AND ACCESS HYPER-V 275

4. Press any key to continue. The installation process makes changes to the
registry. You will see a warning similar to Figure 12.9. Click Yes to continue.

FIGURE 12.9 Registry warning

Registry Editor

l Adding information can unintentionally change or delete values and cause components to stop working
. correctly. If you do not trust the source of this information in PS_Console REG, do not add it to the
registry.

Are you sure you want to continue?

Yes No |

5. After the changes have been made, click OK, and return to the PowerShell
session you started the installation from. Press any key. This launches a
PowerShell session with the Hyper-V module loaded.

After you have successfully installed the PowerShell Management Library for
Hyper-V, you can work with the Hyper-V cmdlets. If you close the PowerShell
session and you want to use the cmdlets again, you can always import them with
the following command:

Import-Module HyperV

After you have loaded the module, you can then see all the cmdlets in this module
by running the following command:

Get-Command -module hyperv

Your results will look similar to Figure 12.10.

As you can see from the extensive list of cmdlets, the developers of the
PowerShell Management Library for Hyper-V did a thorough job to include the
necessary cmdlets to manage Hyper-V. Make sure you check back regularly at
http://pshyperv.codeplex.com/ to see whether they have made any addi-
tions to the library.

PowerShell and
Virtualization

n
I
>
)
1
m
=
—
N

276 CHAPTER 12

POWERSHELL AND VIRTUALIZATION

FIGURE 12.10 Hyper-Vcmdlets

PS C:sWindowsssystem32?> import-module hyperu
PS C:sWindowsssystem32> get—command —module hyperv

Function

Add—NewUMHardDisk
Add—UMDisk
Add-UMDrive
Add-UMFloppyDisk
Add-UMKUP
Add—-UMNewHardDisk
Add-UMNIC
Add-UHPassThrough
Add—UMRASD
Add—-UMSCSIController
Add-EIPContent
Apply—Snapshot
Choose—List
Choose-Tree
Choose—UM
Choose—UMExternalEthernet
Choose—UMNIC
Choose—UMPhysicalDisk
Choose—-UMSnapshot
Choose—UMSwitch
compact—UHD
Compress—UHD
Connect—UHDParent
Convert—DiskIDtoDrive
ConvertTo—Enum
Convert—UHD
Convert—UNMState
Copy—ZipContent
Dismount—UHD
Expand—UHD

Export-UM
Get—FirstAvailableDrivelLetter
Get—UHD
Get—UhdDefaultPath
Get—UHDInfo
Get—UHDMountPoint
Get—UM
Get—UMBuildScript
Get—UMByMACAddress
Get—-UMClusterGroup
Get—UMCPUCount
Get—UMDisk
Get—UMDiskByDrive

Definition
Add-UMNewHardDisk
-ExternallHelp
.ExternallHelp
-ExternalHelp
.ExternallHelp
.ExternallHelp
-ExternalHelpn
.ExternallHelp
-ExternallHelp
.ExternallHelp

MAML-UMDisk. ..

2888288288

Restom Mznapzhot
Select-List

Select-Tree

Select-UM
Select—UMExternalEthernet
Select—UMNIC
Select—-UMPhysicallisk
Select—UMEnapshot
Select—UMSwitch
Compress—UHD

.ExternalHelp

.ExternalHelp

.ExternalHelp

MAML-UMDisk...
MAML-UMDisk
Maml-Helpe...

#i _Externallelp MAML-UMDisk...

<H...

.ExternalHelp

.ExternallHelp

.ExternalHelp

.ExternalHelp al
.ExternalHelp HMA
_ExternalHelp
.ExternallHelp
.ExternalHelp
.ExternallHelp
.ExternalHelp
.ExternalHelp MAML—UMNetw...
MAML-UMConf ...
MAML-UMDisk
MAML—UMDisk. . .

ﬁ-:ExternalHelp
.ExternallHelp
_Externallel

Work with Hyper-V

Once you have the PowerShell Management Library for Hyper-V, you can then
directly manage your virtual environment using the Hyper-V cmdlets. From work-
ing with virtual networks to connecting to running virtual systems, this can all be
done in PowerShell. This section focuses on the basic concepts of Hyper-V and how
to access them in a PowerShell session.

Work with Virtual Networks

One of the first concepts in working with virtual systems is connecting them with
other systems in your infrastructure. Normally, prior to creating virtual systems,
you need to create virtual networks. This allows you to connect your virtual servers
to keep them up-to-date and even isolate and sandbox your servers.

WORK WITH HYPER-V 277

In Hyper-V, you can create three types of virtual networks:

External This type of virtual network binds the physical adapter on the host
system so the virtual systems can access your physical network. This network allows
your virtual systems to access your production infrastructure.

Internal This type of virtual network allows only the virtual systems to communi-
cate with other virtual systems on the local Hyper-V server. This network also allows
communication with the local host.

Private This type of virtual network allows only the virtual systems to communi-
cate with the other virtual systems on the local Hyper-V server. This network does
not allow communication with the local host. This network is ideal for sandboxing
your virtual servers for testing to keep them from communicating with your
production environment.

When you create virtual servers, it is not uncommon for a virtual server to have net-
work adapters assigned to different virtual networks. There are three cmdlets to help you
create these virtual networks: New-VMExternalSwitch, New-VMKInternalSwitch,
and New-VMPrivateSwitch.

The following command creates an external virtual network called External Network
bound to a physical adapter with a name beginning with Intel on the server MT400:

New-VMExternalSwitch -VirtualSwitchName "External Network"e3
-ext "Intel" -Server MT400

You will be prompted for confirmation. Your results will look similar to Figure 12.11.
FIGURE 12.11 HyperVcmdlets

= Hyper-V Management E

PS C:\Windowsssystem32> New—UMExternalSwitch —-UirtualSwitchMame "External Netum-ku
" —ext "Intel" —Server MT488 [

Conf irm

Are you sure you want to perform this action?

Performing operation "Use Host network card for an external virtual network" on
Target “Intel(R> 82567LM Gigahit Metwork Connection'.

[Y] Yes [A] Yes to A1l [N]1 Ho [L]1 Ho to A1l [51 Suspend [?]1 Help

(default is "YW">:_

After you have created the virtual network, you can then assign the network adapter
to a virtual server. The following command sets the virtual switch for the virtual
server pshellR2 to the privatel virtual network:

Set-VMNICSwitch -NIC (Get-VMNIC pshellr2) -VirtualSwitched

"Privatel"

Your results will look similar to Figure 12.12. ICEARIE]

PowerShell and
Virtualization

n
I
>
0
1
m
=
—
N

278 CHAPTER 12 * POWERSHELL AND VIRTUALIZATION

FIGURE 12.12 Settinga virtual network

Hyper-V Management

PS C:sWindowsssystem32> Set—UMNICSwitch —NIC (Get-UMNIC pshellr2> —-UirtualSwitch !’
Yprivatel I

WARMING: 4 columnz do not fit into the display and were removed.

UHE1mentMame Element Mame Type Suwitch

Metwork Adapter Synthetic privatel

PS C:sMindowshsystem322> _

You can add one or multiple network adapters to either support cluster configura-
tions or support other multiple NIC scenarios. You also have the choice to create

a native network adapter or a legacy adapter. The legacy adapter is used mainly to
perform PXE booting for network-based installations. The following command
adds a legacy virtual network adapter to the virtual machine pshellR2 and lets you
choose the virtual network to connect to the virtual NIC:

Add-VMNIC "pshellR2" -virtualSwitch (select-VMSwitch) e
-legacy

Your results will look similar to Figure 12.13.

FIGURE 12.13 Addinga virtual NIC
B
1

Internal
internet
External Network
privatel
Which one 7: B
WARMING: 4 columnz do not fit into the display and were removed.

UHEImentMName Element Mame Switch

Legacy Metwork Adapter Emulated Internal

PS C:sWindowshsystem32> _

Configure Virtual Machines

Creating virtual machines and working with them involves a few steps. You first
need to add the virtual machine to the Hyper-V server. The virtual machine you
create consists of several components that are similar to a real server. You need to
work with two main things when creating a virtual machine — the settings and
the virtual hard drives. When you configure the virtual machine settings, you are

WORK WITH HYPER-V 279

basically configuring the BIOS settings for the server. The settings include the
configuration for RAM, processors, hard drive controllers (Virtual SCSI and IDE
are available), and network adapters. When you configure the virtual hard drives,
you are configuring the storage location as well as the hard drives that will be pres-
ent inside the virtual machine.

To create a new virtual machine called PShellVM on a server called MT400, type
the following command:

New-VM -Name PShellVM -Server MT400

Your results will look similar to Figure 12.14.

FIGURE 12.14 C(reatingaVM

= Administrator: Windows PowerShell i
PS C:xMindowsssystem32> New—UM —-Name PShellUM —-Server MI488

UMElementMame

PEhe11UM Stopped

PS C:xMindowsssystem32> _

This creates a default virtual machine with 512MB of RAM, one processor, and two
IDE controllers. This system does not have any hard drives attached to the system.

Understand Virtual Hard Drives

A virtual hard drive for your virtual server is a physical file with the . vhd file
extension. This file is the storage location for your virtual machine and also the
hard drive or drives appearing in your virtual server. You can create three main
virtual hard drives in a virtual server:

Dynamically Expanding VHD This is the default VHD file format. As the name
suggests, it grows to meet the needs of your virtual machine. This file starts out
small and increases as you use your virtual machine. Whenever you install new
programs, add files, or work with the virtual machine, this file expands to meet the
needs of the virtual machine until the limit of the VHD is met.

Fixed Size VHD This is a VHD of a specific size. The VHD does not grow dynam-
ically. No matter how much data or how many programs you add to the virtual

PowerShell and
Virtualization

machine, this file remains the same size you created it. This also means when you
create a VHD of 300GB, you need that much free space on your host system to hold _
the file.

n
I
>
)
1
m
=
—
N

280 CHAPTER 12 * POWERSHELL AND VIRTUALIZATION

Differencing VHD This VHD allows you to create changes to a parent VHD
drive without changing the parent VHD. All of the changes you make are stored in
the differencing disk. The differencing disks help keep the need for storage space
of the VHD to a minimum. The differencing VHDs are normally much smaller
than the parent VHD from which they are created.

You can create a VHD as part of the creation of a new virtual machine. You can also
connect an existing VHD file to a new or existing virtual machine. The following
command creates a dynamically expanding VHD called pshellvm.vhd in the
F:\pshellvm directory with a maximum size of 150GB. If you wanted to make a
fixed size VHD, you would add the -Fixed switch to the command.

New-VHD F:\pshellvm\pshellvm.vhd -Size 150GB

Use the Get-VHDInfo cmdlet to see information for an existing VHD. When

you use the Get -VHDInfo cmdlet on a dynamically expanding file, note the actual
file size. It will be quite a bit less than the size presented in the virtual machine. The
following command gets the information for the pshellvm.vhd file in the
F:\pshellvmdirectory:

Get-VHDInfo f:\pshellvm\pshellvm.vhd
Your results will look similar to Figure 12.15.

Note that the actual file size is about 309KB.

FIGURE 12.15 VHD information

PS il H spshellvm.vhd ize 158GB !
'.JRRNING The .]oh to Create UHD F:spshellumspshellum.vhd is still running in the @
hackground.

You can check its progress with Test—wnidob or Test—wmidJoh —statusOnly using

the following jobh id:

~SMI488N\root wirtualization:Msvn_Storagedob.InstancelD="'3h3b?248-AA18-4818-9eA1—
a?19869bh2h26*

PS C:sWindowsssystem32> Get—UHDInfo f:“pshellvmspshellum.vhd

: F:spshellumspshellum.vhd
: 399248
: FALSE

: FALSE
: 161861273608

i3
: Dynamic

PS C:s\MWindowsssystem32>

After you have created the VHD you want to use for an existing virtual machine,
you can connect it to the virtual machine. The following command connects the

WORK WITH HYPER-V 281

pshellvm.vhd file in the F: \pshellvm directory to PShellVM on the 0 hard
drive controller and the 0 drive:

Add-VmDisk -VM PShellVvM 0 0 -path F:\pshellvm\pshellvm.vhd

The developers of the PowerShell Management Library for Hyper-V also included the
Add-NewVMHardDisk alias that combines the creation and connection of a VHD
to an existing virtual machine. This command creates a new virtual hard drive
called PShelldata.vhd in the F: \pshellvm directory. The drive is a dynamically
expanding drive of 100GB on the 0 controller and the 1 drive.

Add-NewVMHardDisk -VM PshellVM 0 1 -VHDPath &3
f:\pshellvm\pshelldata.vhd -size 100GB

Your results will look similar to Figure 12.16.

FIGURE 12.16 VHD information

& Administrator: Windows PowerShell

PE C:=\Windouw tem32> Add-MewUMHardDisk —UM PchellUM @ 1 —-UHDPath f:\pshellun\p!
shelldata.vh =ze 1BBGB

LastUriteTime Length Name
1-22,2811 3:32 PHM 286848 pshelldata.vhd

UARNING: column “Connection" does not fit into the display and was removed.

UMElementMame Element Mame Resource Sub type

Hard Drive Hicrosoft Synth...

WARNING: column "Connection" does not fit into the display and was removed.
Element Mame Resource Sub type

Hard Disk Image Microsoft Uirtu...

PS C:sWindowsssystem32>

Work with the Virtual Machine Settings

After you have created the virtual machine, you can then configure all the
settings to meet the needs of your infrastructure. There are several cmdlets for
modifying the existing settings, including Set-VMMemory to configure the
RAM for the virtual machine and Set-VMCPUCount to add CPUs to an existing
VM. However, there is an easier way. There is a special function called
Show-VMMenu that provides a PowerShell console to make it easy to see and
configure the settings for a virtual server.

PowerShell and
Virtualization

n
I
=
)
1
m
=
—
N

282

CHAPTER 12

POWERSHELL AND VIRTUALIZATION

The following command displays the PowerShell console for the virtual machine
PShellVM:

Show-VMMenu PShellVm

The menu will look similar to Figure 12.17.

FIGURE 12.17 Virtual machine menu

ndows PowerShell

Configuring UM : PShellUM on server MI488

Change UM State Stopped
21 Renane PShellUM
31 Boot order CD,. IDE. NEI. Floppy
4] Notes

51 Recovery and 5 On service fail:Restart
» On Host shutdown:SaveState
Startup options On Host hoot sRestartOnly
- Delay B seconds
61 Snapshots

71 Export UM

81 Delete UM

21 Integration Components 5/5% Enabled
1

[181 CrU H 1 Processor{s? Reserve: B-186868608 — Limit
: 1AAAEA./18AERE — Weight 1688 1

[11]1 Memory L12ZMB 1

[12]1 SCSI Controllers B Present

[13]1 IDE and SCSI Disks
IDE Controller B LUN:8 Hard Drive: F:spshellumspzhellum.vhd

IDE Controller @ LUN:1 Hard Drive: [f:“pshellumspshelldata.vhd
[141 Floppy Dizk Image:= [
[151 COM 1 Connection: [
[161 GOM 2 Connection:
[19?]1 Add Hetwork interface
[48]1 Refresh data
[991 Exit this menu

Enter a selection: _

USING THE MENUS

Another way to manage the Hyper-V environment with the management library is a
series of menus created in PowerShell. These PowerShell menus allow you to work
directly with Hyper-V without having to use the cmdlets directly. These menus are
intuitive and show the ability in PowerShell to make user-friendly interfaces. You can
see how to create a GUIl in PowerShell in Appendix F.

In the library, there are four functions to access the menus to manage Hyper-V:

Show-HyperVMenu With Show-HyperVMenu, you can manage a local or remote Hyper-V
server. From this menu, you can manage your virtual networks and create and import
virtual machines. You also can access the virtual machines on the local Hyper-V server.

WORK WITH HYPER-V 283

Show-VHDMenu This allows you to manage the VHD files located on the current
server. You can edit and inspect individual VHD files. By default, the menu is con-
figured to work in the %¥system Drive%\users\public\documents\Hyper-V\
Virtual Hard Disks directory. This is the default directory where Hyper-V stores
the VHD files. In the menu, you can change the directory to look at other directories.

Show-VMDiskMenu This allows you to work with an individual virtual machine’s
hard drives.

Show-VMMenu This menu allows you to work with a specific VM. This is the menu
mentioned earlier in this chapter with which you can configure all the settings for a
specific virtual machine.

Even though you can call the individual menus, the best menu option is
Show-HyperVMenu. This is the master menu option that calls the other menus as you
move through the various configurations.

[1] Select a different Server
[21 Hanage Server settings
MAC address wrange BA1550816D88 — BE155D816DAA
1

Default UM folder C:nProgramDatasMicrosof txWindows~Hyper—
u 1

Default UHD folder C:islUserssPublicSDocuments Hyper—UsUirtu

al Hard Disks 1
[31 Manage HNetwork settings
Virtual Network Internal
1

1

Uirtual Network internet

Manage Uirtual Disk files

Create Uirtual Machine
Import Uirtual Machine

Manage Uirtual Machines ...

DeployDC Suspended
pshellR2 Stopped
pswin? Stopped
pExp Suspended
pxehoot Stopped
Serverd Suspended
Server Suspended
Serverd Suspended

Exit this menu

Please enter a selection:

Connect to Virtual Machines

After you create and configure virtual machines, you need to boot the systems to
install an operating system and programs. To start a virtual machine, you can use

PowerShell and
Virtualization

the Start-vM cmdlet. The following cmdlet starts the PShellVm virtual machine: [cHaPTER 12

n
I
>
)
1
m
=
—
N

Start-vM PShellVM

284

CHAPTER 12

POWERSHELL AND VIRTUALIZATION

You can also connect to a virtual machine with the New-VMConnectSession
cmdlet. This starts a GUI remote session into the specified VM. The following
command opens a virtual machine connection to the DeployDC server:

New-VMConnectSession DeployDC

There are three cmdlets to turn off a virtual machine and have different results and
impact on your virtual machine:

Stop-VM This turns off the virtual machine in an unclean fashion. This is akin to
hitting the power button on a system.

ShutDown-VM This issues a shutdown command to the virtual machine so it
performs a clean shutdown of the operating system loaded in the virtual server.
Then the virtual machine will be turned off.

Save-VM This suspends the VM in its current configuration. If you perform a
stop-VM command to a virtual machine in a save state, the save state information
is deleted. Essentially, the server is in a hibernated state waiting to be turned on to
continue from the point where you turned it off.

To see the overall state of all the virtual machines on your Hyper-V server, you can
run the following command:

Get-VMState |Format—List VMElementName, EnabledState

Your results will look similar to Figure 12.18.

FIGURE 12.18 Virtual machine state

UMElementName
EnahledState

: pswin?
: Stopped

UMElementName
EnahledState

: Serverl
: Suspended

UMElementName
EnahledState

: Serverd
: Suspended

UMElementName
EnahledState

: Serverl
: Suspended

: PShellUM
: Stopped

UMElementMame
EnahledState

UMElementName
EnahledState

: pshellR2
: Stopped

UMElementMame : psxp
EnabledState : Suspended

: DeployDC
: Running

UMElementName
EnahledState

UMElementName
EnahledState

: pxeboot
: Stopped

PS C:sMWindowsssystem32>

WORK WITH HYPER-V 285

Work with Snapshots

A snapshot is a point-in-time picture of the server. Snapshots provide a way to set
points of recovery in virtual machines. For example, you just finished building

and properly configuring a new server. This is a perfect time to take a snapshot of
the server. With a snapshot in hand, you can then begin to install the programs or
modify other settings to allow this server to go into production. If the installation of
the new applications causes issues in the server, you can revert to the previous build
of the server stored in that snapshot.

Snapshots are stored in files with an . avhd file extension. You are allowed to have
multiple snapshots of a virtual machine, essentially allowing you take the system
back to any point in time you have saved. However, when you do revert to a snap-
shot, this takes a system completely back to the time of creation of the snapshot.
This is important to note because any data created after the snapshot is created
will be deleted when you revert to a previous snapshot. This includes all user data,
security patches, and settings; it is just like stepping into a time machine for your
server, taking it directly back to the day and time you created the snapshot. This
also means snapshots are good for reverting an entire server to a point in time, but
you still need to perform regular backups of your virtual machines if they are in
production.

To take a snapshot of a virtual machine, use the New-VMSnapshot cmdlet. Taking
a snapshot does not turn off a virtual machine if it is currently running. During the
process, you should not perform any actions on the server. The following command
will start the process to take a snapshot of the DeployDC and prompt the user for
confirmation:

New-VMSnapshot DeployDc

Your results will look similar to Figure 12.19.

FIGURE 12.19 Taking a virtual machine snapshot

/& Administrator: Windows PowerShell
PS C:sWindowshsystem32> New-UMSnapzhot DeployDc

Conf irm

fire you sure you want to perform this action?

Performing operation 'Create Snapshot " on Target "DeployDC".

[¥1 Yes [A] Yes to A1l [W]1 No [L] No to All [51 Suspend [?71 Help

(default is "¥">:¥

WARNING: The job to Create Snapshot DeployDC iz still running in the background.

You can check its progress with Test—wmidob or Test—wmnidob —statusOnly using
the following jobh id:
“SMT488srootswirtualization:Msvm_Concretedob.InstancelD="4A6DEA11-A9F6—-4B?D-857B

PE C:sWindowsNsystem32>

PowerShell and
Virtualization

n
I
>
)
1
m
=
—
N

286 CHAPTER 12 * POWERSHELL AND VIRTUALIZATION

To list the snapshots of a current server, you can use either Get -VMSnapshot or
Get-VMSnapshotTree. In Figure 12.20, you can see an example of both the
cmdlets for the DeployDC virtual machine.

FIGURE 12.20 Virtual machine snapshots

PS C:MWindowsssystemd2> Get—UMSnapshot DeployDc
column "Motes' does not fit into the display and was removed.
UMElementName order Created

DeployDC End of Step 3-5 Upda.. Floppy» 2,2,2010
DeployDC End of Step 2 MDT an. Floppy? 2,2-,20018
DeployDC Step 4-1 Reference C. Floppy? 2,2,2810
DeployDC Demo Complete— <27/, Floppy? 2,.7-,.2018
DeployDC End of Step 3-2 Wind.. Floppy» 2,2,2010
DeployDC — <5-18.-2818 built AD Floppy> 2,7-2818
prexpupgrade Floppy» 2,2,2010
DeployDC Demo Reset — (2-/7-28.. Floppy? 2,2-,2018
Snapshot DeployDC Step 4-1 Reference C.. Floppy? 2,.2-.20018

PS C:\Windowsssystem32> Get—UMSnapshotTree DeployDc
+DeployDC Demo Reset — (2/7-2818 — 1:82:29 PM>
—+DeployDC End of Step 2 MDI and WAIK Installed- (272818 — 1:12:36 PM>
i—+DeployDC End of Step 3-2 Windows 7 08 Files added to Deployment Share—
/2313 — 1:28:12 PM>
i—+DeployDC End of Step 3-5 Updated Deployment Share — (2-7-2018 — 2:85:12 P

DeployDC Step 4-1 Reference Computer Deployed— <2/7-2818 - =27 PM>
+DeployDC Step 4-1 Reference Computer Captured — (2-7-2018 - 5:84:86 P

—+DeployDC Demo Complete— (2/7-2818 — 6:35:21 PH>
—+DeployDC — (5/18,2818 built AD
I—prexpupgrade

To revert to a snapshot, you need these two cmdlets: Select-VMSnapshot and
Restore-VMSnapshot. The Select-VMSnapshot cmdlet allows you to choose
the snapshot to be used if there is more than one for the virtual machine. If there is
only one snapshot, it will be used. You can pipe the Select-VMSnapshot output
into the Restore-VMSnapshot cmdlet to revert the virtual machine to a
particular snapshot. The following command allows you to choose a snapshot to be
restored on the DeployDC virtual machine:

Select-VMSnapshot DeployDC | Restore-VMSnapshot

WORK WITH HYPER-V 287

Your results will look similar to Figure 12.21.

FIGURE 12.21 Restoringasnapshot

% C:sWindowsNsystem32> Select-UMSnapshot DeployDC | Restore—UMSnapshot
+DeployDC Demo Reset — (272818 - 1:82:29 PM>
i +Dep10yDC End of Step 2 MDT and WAIK Installed— <2-7/2818 - 1:12:36 PM>
i | +DeployDC End of Step 3-2 Windows 7 05 Files added to Deployment Share—
(2/7/2313 - 1:28:12 PM>
i +DeployDC End of Step 3-5 Updated Deployment Share - (2772018 — 2:85
12 PH)

i tDeployDC Step 4-1 Reference Computer Deployed— (2-7-2818 — 2:49:27

o]
= 4
b

i | #+DeployDC Step 4-1 Reference Computer Captured — (2-7-2018 — 5:04

+DeployDC Demo Complete— <2./7/2818 — 6 35:21 PM>
i—DeployDC — <1-22-2811 — ?:16:81 PM
+DepluyDC — (57182818 built AD
H i | i—prexpupgrade
Yhich one 2R
UARNING: UM DeployDC iz currently Suspended and needs to he stopped

P
Li]
1
2
3
4
5
6
?
8
2

Conf irm

fire you sure you want to perform this action?

Performing operation '"Change state to Stopped" on Target "DeployDC'.
[¥1 Yes [A]l Yes to A1l [H]1 Ho I[L]1 No to A1l [81 Suspend [?1 Help
(default is "¥'>

During the restoration of a snapshot, your virtual machine will be suspended or
turned off if it is not turned off before starting the process.

EXERCISE 12: CREATE A VIRTUAL MACHINE AND TAKE A SNAPSHOT

Create a new virtual server with Internet connectivity and with a 200GB fixed size
virtual hard drive. When you make the drive, make sure you have 200GB free space
to perform the lab. If you do not have 200GB available, reduce the example size to
20GB. After you create the virtual machine, take a snapshot. For the purpose of the
exercise, the virtual machine will be called VM2K8R2 and will leverage the PowerShell
Management Library for Hyper-V.

PowerShell and
Virtualization

n
I
=
0
1
m
=
—
N

APPENDIX

Solutions to Exercises

IN THIS APPENDIX, YOU WILL LEARN TO:

> SOLUTION 1 : INVENTORY YOUR SCRIPTS 290
> SOLUTION 2: INSTALL POWERSHELL 290
> SOLUTION 3: CREATE A POWERSHELL PROFILE 290
> SOLUTION 4: CREATE YOUR OWN ALIAS 291

> SOLUTION 5: CREATE A SCRIPT TO FIND STARTUP
PROGRAMS 292

> SOLUTION 6: SET UP A REMOTE POWERSHELL SESSION 292

> SOLUTION 7: CREATE A SCHEDULED BACKUP WITH
POWERSHELL 293

> SOLUTION 8: POPULATE AN ACTIVE DIRECTORY TEST
ENVIRONMENT 293

> SOLUTION 9: TURN OFF THE DISPLAY CONTROL PANEL IN
GROUP POLICY WITH POWERSHELL 295

> SOLUTION 10: CREATE A WEBSITE WITH POWERSHELL 296
> SOLUTION 11: CREATE A DEPLOYMENT SHARE 296

> SOLUTION 12: CREATE A VIRTUAL MACHINE AND TAKE
A SNAPSHOT 297

V XIAN3iddV

Solution 1 : Inventory Your Scripts

This is one exercise for which you will not have a clear-cut solution. However, taking
the time to look at your current scripts will allow you to gain a better understanding
of your environment and where PowerShell is the best fit to help accomplish your
tasks easier.

Solution 2: Install PowerShell

The great thing about XP mode is that it is a full 32-bit version of Windows XP
running in your Windows 7 environment. Just like other operating systems, you
can install PowerShell in XP mode by downloading and installing the necessary
components.

1. On your Windows 7 system, start your XP mode virtual system.

2. Click Start > All Programs > Windows Virtual PC > Select Virtual
Windows XP.

3. Once your Virtual Windows XP loads, then you can install the components
to make PowerShell work.

4. Download and install the 32-bit version .NET Framework version you want to
install on XP.

5. Download and install the 32-bit version of the Windows Management
Framework.

After you have completed this, you will have PowerShell installed on your XP mode
system.

Solution 3: Create a PowerShell Profile

In this exercise, first you make a profile and then you add commands to the profile:
1. Create a profile:
New-Item -Path S$Sprofile -ItemType File -force
2. Open the profile you just created:

notepad S$profile

CREATE YOUR OWN ALIAS

3. Type the two following commands to load the proper modules for IIS and
Active Directory on your server. If you do not have those roles installed, load
another role of your choosing. If you are not sure which modules to load, use
Get-Module -ListAvailable to show you a list of modules available

to you.

Import-Module -Name ActiveDirectory
Import-Module -Name WebAdministration

4. Save the profile in Notepad: select File > Save, and then close Notepad.

5. Exit your existing PowerShell session.

6. Start PowerShell, and run the following to verify the modules loaded

correctly:
Get-Module

Ultimately when you are working with profiles, their effectiveness will be based on
what tools and settings you want to use most frequently. Make profiles your own,

and customize them to fit your needs.

Solution 4: Create Your Own Alias

This combines several techniques covered in Chapter 4 as well as Chapter 3.

The script can be done a number of ways.

You can pipe two Where-Object clauses together into one command line as

follows:

Get-Service | Where-Object {$_.status -eq "running"} |
Where-Object {$_.DependentServices} |
Format-Table -property status, servicename, dependentservices |«3

Out-File c:\users\matt\depends.txt

You could also use the -and operator in the initial Where-Object cmdlet to
combine the two, shortening the command line:

Get-Service | Where-Object {$_.status -eqg "running" -anded
S_.DependentServices} |Format—Tab1e -property 3
status, servicename, dependentservices |«3

Out-File c:\users\matt\depends.txt

291

Solutions to
Exercises

APPENDIX A

292 APPENDIX A * SOLUTIONS TO EXERCISES

If you wanted to make a function out of this command, simply place this script in
the script block of the function command, as shown in the following code:

Function Get-Depend { Get-Service | Where-Object 3
{$_.status -eq "running" -and$_.DependentServices} \«3
Format-Table -property status, servicename, dependentservices |+3

Out-File c:\users\matt\depends.txt

If you wanted to make this an alias, you would to first need to create the function
and then create an alias for the function. Using the previous function Get-Depend,
the command would look like this:

New-Alias gds Get-Depend

Solution 5: Create a Script to Find Startup Programs

Here are the commands you would need to put into a PowerShell script file:

Write-Host {Here are the programs in the Run Registry}
Write-Host

Get-ItemProperty -path 3

HKLM: \SOFTWARE\Microsoft\Windows\CurrentVersion\run
Write-Host {Here are the programs in the RunOnce Registry:}
Write-Host

Get-ItemProperty -path <3

HKLM: \SOFTWARE\Microsoft\Windows\CurrentVersion\runOnce

Solution 6: Set Up a Remote PowerShell Session

This exercise is all about leveraging the power of profiles, which you learned about
in Chapter 3. You can place the New-PSSession cmdlets for the servers inside the
profile.

1. Open PowerShell, make sure you have created a local profile, and set your
remote execution policy to RemoteSigned.

2. Enter Notepad $profile.

3. Use the New-PSSession cmdlet followed by the server names you want to
manage. If you wanted to connect remotely to Server2 and Server3, for exam-
ple, the cmdlet would look as follows:

New-PSSession Server2, Server3

POPULATE AN ACTIVE DIRECTORY TEST ENVIRONMENT

4. Save the profile in Notepad.
5. Close the existing PowerShell session.

6. Reopen the PowerShell session, and verify the remote sessions are created.
You can verify the sessions with the Get-PSSession cmdlet.

Solution 7: Create a Scheduled Backup with
PowerShell

1. Create the following PowerShell script:

Spolicy New-WBPolicy
Svolume = get-WBVolume -VolumePath c:

Add-WBVolume -Policy S$policy -volume S$volume
Add-WBSystemState -Policy S$Spolicy

Starget = New-WBBackupTarget -VolumePath Z:
Add-WBBackuptarget -Policy S$policy -target Starget
Start-WBBackup -Policy S$policy

2. Give the script a name like backupl .ps1.

3. Create a Task Scheduler task to run backupl.ps1l. The full command line
would look like this if the script was stored in the scripts directory:

powershell -noninteractive c:\scripts\backupl.psl

Solution 8: Populate an Active Directory Test
Environment

Creating the users is straightforward, but you also have to remember the order of
operations for this. Create the OU first, and then add the users. Also key to the suc-
cess of this exercise is making sure you enable the recycle bin before deleting your
users. Here is one example of the PowerShell commands you could run to perform
the exercise. For this exercise, I used a Windows Server 2008 R2 native forest; you
would replace the deploy . com with the domain you are working with:

1. Create the OU test:

New-ADOrganizationalUnit -Name "Test" -Path

"DC=deploy,DC=com"

293

Solutions to
Exercises

APPENDIXA

294

APPENDIX A * SOLUTIONS TO EXERCISES

2. Create the users:

New-ADuser chrissmith -GivenName "Smith" - Surnamee3
"Chris" -Displayname "Chris Smith" -Path 3
'OU=test, DC=deploy, DC=com'

New-ADuser sarahsmith -GivenName "Smith" - Surname¢3
"Sarah" -Displayname "Sarah Smith" -Path
'OU=test, DC=deploy, DC=com'

New-ADuser kevinsmith -GivenName "Smith" - Surnamee3
"Kevin" -Displayname "Kevin Smith" -Path <3
'OU=test,DC=deploy,DC=com'

New-ADuser debsmith -GivenName "Smith" - Surnamee3
"Deb" -Displayname "Deb Smith" -Path &
'OU=test,DC=deploy,DC=com'

New-ADuser caitlinsmith -GivenName "Smith" - Surnameed
"Caitlin" -Displayname "Caitlin Smith" -Path 3
'OU=test,DC=deploy, DC=com'

New-ADuser mitchellsmith -GivenName "Smith" - Surname¢
"Mitchell" -Displayname "Mitchell Smith" -Path &
'OU=test, DC=deploy, DC=com'

New-ADuser nicolesmith -GivenName "Smith" - Surnameed
"Nicole" -Displayname "Nicole Smith" -Path 3
'OU=test, DC=deploy, DC=com'

New-ADuser mattsmith -GivenName "Smith" - Surname¢3
"Matt" -Displayname "Matt Smith" -Path <3
'OU=test, DC=deploy, DC=com'

New-ADuser billsmith -GivenName "Smith" - Surname¢3
"Bill" -Displayname "Bill Smith" -Path &
'OU=test,DC=deploy,DC=com'

3. For the purpose of this exercise, you can choose to enable the accounts. When
you first create the accounts, they are not enabled by default, and they do not

TURN OFF THE DISPLAY CONTROL PANEL

have passwords set. When you enable each account, you also need to make
sure the new passwords are set and they meet your domain’s policy. To enable
accounts, use a command similar to the following one for each of your user

objects:
Enable-ADAccount -Identity kevinsmith
4. To set passwords, run a similar command for all your users:

Set-adaccountpassword --identity sarahsmith -reset
-newpassword (ConvertTo-SecureString -AsPlainTexted

"p@sswlOrd" -force)

5. Enable the recycle bin (depending on your environment you may need to

prepare your domain):

Enable-ADOptionalFeature "Recycle Bin Feature" -Scopee?

ForestorConfigurationSet -Target 'your domain name'
6. Delete the users in the Test OU:

Get-ADUser -Filter * -SearchBase "OU=test,DC=deploy,DC=com" 3

| Remove-ADUser

. After the users have been deleted, run the following:

N

Get-ADObject -SearchBase "CN=Deleted Objects,
DC=deploy,DC=Com" -Filter {lastKnownParent 3
-eq "OU=test,DC=deploy,dc=com"} -includeDeletedObjectsed

| Restore-ADObject

Solution 9: Turn Off the Display Control Panel in
Group Policy with PowerShell

This PowerShell command is a matter of piping three cmdlets together:
» New-GPO
» New-GPLink
» Set-GPRegistryValue

Order also matters. When you run the following command, you create the GPO
first, set the values second, and then link it last. The following example will create a

295

Solutions to
Exercises

APPENDIX A

296 APPENDIX A * SOLUTIONS TO EXERCISES

new GPO called NoDisplay with the Display Control Panel disabled and linked to
the Executives OU in sample.com:

New-GPO NoDisplay | Set-GPRegistryValue -keye?
"HKCU\Software\Microsoft\Windows\CurrentVersion\Policiese3
\System" -ValueName NoDispCPL -Type DWORD -value 163

| New-GPLink -target "ou=executive,dc=sample,dc=com"

Solution 10: Create a Website with PowerShell

This exercise combines all the techniques presented in this chapter to create the
structure for a website:

New-WebSite -Name MySite -Port 80 -HostHeader MySite &3

-PhysicalPath "c:\mysite"

New-WebAppPool Pooll
Set-ItemProperty iis:\apppools\Pooll -name processModeled
-value @{userName="WebApp";password="pass@

wordl";identitytype=3}

New-WebApplication -Name Appl -Site 'MySite <3
-PhysicalPath c:\MyApp -ApplicationPool Pooll

New-WebVirtualDirectory -site "MySite" -name PictureVirDired

-PhysicalPath \\serverl\images

Backup-WebConfiguration -Name MySiteBackup

Solution 11: Create a Deployment Share

This exercise will require you to have the source file for Windows 7 on your server.
You will also need to have downloaded and installed the MDT and WAIK tools. The
exercise is then just applying what you saw in this chapter.

This creates the share:

CREATE A VIRTUAL MACHINE AND TAKE A SNAPSHOT

New-PSDrive -Name "Win701" -PSProvider "MDTProvider"
-Root "d:\win7" -Description "My Windows 7 Share" Share"3
-NetworkPath "\\<yourserver>\Win7$" -Verbose &

| add-MDTPersistentDrive -Verbose
This copies the Windows 7 files to your deployment share.

Import-MDTOperatingSystem -path "Win701:\Operating Systems"e
-SourcePath "<Source files for Win7>" -DestinationFolder
"Windows 7"

-Verbose
This creates the task sequence:

Import-MDTTaskSequence -path "Win701:\Task Sequences"¢3
-Name "Deploy Windows 7" -Template "Client.xml" 3
-Comments "Select this task Sequence to deploy the &
standard Windows 7 desktop" -ID "DepWin7" -Version ¢
"1.0" -OperatingSystemPath "Win701:\Operating Systemse?
\Windows 7 PROFESSIONAL in Windows 7 x64 install.wim"e3
-FullName "Desktop User" -OrgName "deploy.com"«3

-HomePage "www.bing.com" -Verbose
This updates the deployment share:
Update-MDTDeploymentShare -path "Win701:" -Verbose

To add the image to WDS if you have it installed, the command would be nearly
identical (except the path for the light-to\uch file) to what you saw in this chapter:

WDSUTIL /verbose /progress /Add-Image
/ImageFile: "D:\win7\Boot\LiteTouchPE_x64.wim"«3
/ImageType:Boot

Solution 12: Create a Virtual Machine and Take a
Snapshot

The first step is to create the virtual machine:

New-VM -Name VM2K8R2 -Server Hypervl

297

Solutions to
Exercises

APPENDIX A

298

APPENDIX A

SOLUTIONS TO EXERCISES

Then you will create the external virtual machine switch and associate the new
switch with the virtual machine. The first command creates the switch based on
whether your NIC for your host starts with Intel on a server called Hypervl.

New-VMExternalSwitch -VirtualSwitchName "External Network"«3

-ext "Intel" -Server Hypervl

Then you will add the virtual NIC to the virtual machine and associate it with the
virtual machine:

Add-VMNIC " VM2K8R2" -virtualSwitch "External Network"
Then you will create the fixed size hard drive, if you store your hard drives on drive d:.

Add-NewVMHardDisk -VM PshellVM 0 1 -VHDPath
d:\VM2K8R2\VM2K8R2.vhd -size 200GB -Fixed

Lastly, you will take a snapshot of the virtual machine:

New-VMSnapshot VM2K8R2

APPENDIX

Developing at a Command
Prompt

IN THIS APPENDIX, YOU WILL LEARN TO:

> CHOOSE BETWEEN THE ISE AND

THE COMMAND PROMPT 300
Write Code at a Command Prompt................ccoevennt 301
Write ScriptsintheISE ... 302
> WORK WITH OBJECTS IN POWERSHELL 304
Understand Properties..........ooviiiiniininiininenn.n. 305

Create Your Own Custom Object........coovvivinnenen... 307

4 XIAN3ddV

Ithough the chapters in this book cover the fundamentals of PowerShell from an IT
perspective, you may want a guide for scripting some processes to make the IT team’s
job a lot easier. The first part of this appendix is for any developer who is not familiar
with or comfortable developing at a command prompt or with such simple tools.

Understanding objects and how to write scripts for objects can be a little intimidat-
ing because some developers struggle with understanding the concepts of objects
and object-oriented programming. In the second part of this appendix, you will
look at objects and how properties are tied to these objects, learning about object-
oriented concepts with PowerShell.

Choose Between the ISE and the Command Prompt

As a developer, you may be used to working in Visual Studio, WebMatrix, LightSwitch,
or another integrated development environment (IDE), rather than working at a
command prompt. In fact, some developers may panic and get writer’s block when
they see a command prompt. However, as intimidating as it may seem to write code
without a GUI and without IntelliSense, PowerShell is fairly easy to work with and can
be a good experience even for the most timid developer at the command prompt.

You may see the Integrated Scripting Environment (ISE) and find comfort in that
environment. Although you may prefer to do all of your work in the GUI, there will
be times when you should load just the command prompt. For example, if you have
to scramble at work to resolve an emergency and need to use PowerShell to solve it,
it is quicker to just type the code at the command prompt, rather than loading all of
the goodies that come with the ISE. This section covers these two environments and
explains when you would want to work in each particular environment.

STARTING POWERSHELL FROM THE TASKBAR

Although you can start PowerShell from the menu, you may find it tedious to go
through Start > All Programs > Accessories > Windows PowerShell every time you
want to start it. Save yourself time and take advantage of one of the operating system'’s
features: pin it to the taskbar. By doing this, you only have to click the shortcut on
the taskbar to start PowerShell. In addition, the Run As Administrator, Import system
modules, ISE, and help file shortcuts appear on the context menu of the taskbar icon.
This will be especially helpful when you need to open PowerShell quickly in order to
deal with an emergency.

CHOOSE BETWEEN THE ISE AND THE COMMAND PROMPT 301

Write Code at a Command Prompt

As noted in Chapter 2, starting PowerShell is simple. You can find it on your menu
under Start > All Programs > Accessories > Windows PowerShell. To work
strictly with a command prompt, choose one of the options without ISE in

their name.

When you open PowerShell, you start at its command prompt. Rather than panick-
ing at seeing the command prompt, remember the problem you are trying to solve.
Think about the problem in English first, and then use PowerShell’s commands to
resolve your issue.

Developing at a

Command
Prompt

Although there isn’t any IntelliSense to help you remember syntax, you do have the

following tools to help you:

» Get-Help
» Get-Command
» Tab completion

Suppose you notice that a print spooler on a particular server has been problematic
and needs to be restarted, and this just happens to be broken when the CEO needs
to print handouts for a meeting that started a few minutes ago. Although you could
go through the windows in the operating system to start and stop the print spooler,
you could get the job done quicker with a script. Try the following command:

Restart-Service Spooler

If this spooler were on a remote machine and if remoting and security allowed it,
you could restart the spooler remotely with the following command:

Invoke-Command -ComputerName Serverl -ScriptBlock {Restart-

Service Spooler}

With a script that short and without having to connect to the server and navigate
through various screens to restart the service, you could quickly get the print
spooler back up and running.

When you can solve your problem in a few lines of code, go with the command
prompt. If you happen to find yourself writing more than a few lines of code in the
command prompt, then it’s time to move to the ISE. You can launch the ISE from
the command prompt by running the following alias:

ise

302 APPENDIX B °

DEVELOPING AT A COMMAND PROMPT

Write Scripts in the ISE

FIGURE B.1

The command prompt is great for quick solutions. But what if you need to write
more than one line of code? What if you wanted to add some logic, putting to
use what was covered in Chapter 5? Sure, you could use the command prompt.
However, the interface for working with logic can be a bit clunky.

Suppose your company hosts websites, and you need to allocate IP addresses to
machines in two environments — one for developers to work on proofs of concept
and one for production. Rather than set up the websites manually, you should find
it helpful to script the website setup. The following code sample is a snippet of what
you might use in your script:

SComputerName = Get-Content Env:\COMPUTERNAME
if ($ComputerName -contains "Developer") {
SWebsiteIPAddress = "172.16.42.1"
} else {
SWebsiteIPAddress = "10.10.42.1"
}
SWebsiteIPAddress

It’s already more than a few lines of code, and this is just the beginning of the script.
Although you could write this at the command prompt, it is a bit awkward to read.
Take a look at Figure B.1 to see what this looks like.

Script block at the command prompt

indows PowerShell

Windows PowerShell
Copyright <(C> 2089 Microsoft Corporation. All rights reserved.

GC:sUsersssdutkievicz> $ComputerName = Get—Content Enwv:“COMPUTERNAME
[HEAN] b iewi if (EComputerName —contains "Developer'>{
i "172.16.42.1"

S$WebsiteIPAddr "1@.18.42.1"
>
S$WehsitelPAddress

Aa.18.42.1
C:slUsersssdutkiewicz>

Although the tabs help keep some of the code in line, it is hard to read when the
start of the code doesn’t line up with the rest of the code. This is one of those cases

CHOOSE BETWEEN THE ISE AND THE COMMAND PROMPT

where the command line isn’t ideal. So, in this case, you should start the ISE.
Figure B.2 shows how readable the code is when displayed in the script pane of the ISE.

FIGURE B.2 Scriptblockin the ISE

TABLE B.1

EJ '\ Windows'System32 WindowsPowerShell',v1.0% powershell_ise.exe

File Edit View Debug Help
Dodicoxoepal|e|8|Boog
| untitiedz.ps1* x @
2 S$ComputerName Get-Content Env:\COMPUTERNAME -
2 if (SComputerName -contains “Developer”){ I
3 $WebsiteIPAddress = “172.16.42.1"
4 1 else { |
5 SWebsiteIPAddress = “10.10.42.1"
6§
7 SwWebsiteIPAddress _I
. Ps C:\Windows'system32> $ComputerName = Get-Content Env:‘\COMPUTERNAME =
if (SComputerName -contains “Developer™){
SWebsiteIPAddress = "172.16.42.1"
} else {
$WebsiteIPAddress = "10.10.42.1" —
¥
SWebsiteIPAddress
10.10.42.1
[~
PS C:\Windows\system32:> ®
=
Completed

In addition to readability, the ISE lets developers who are familiar with Visual
Studio adapt quickly thanks to the shared keyboard shortcuts between the two.
These shared shortcuts help alleviate some of the pains that come with adjusting to
anew development environment. Take a look at some of these shared developer-
specific keyboard shortcuts in Table B.1.

Shared developer-specific keyboard shortcuts

Run/Continue F5

Stop Debugging Shift+F5
Toggle Breakpoint F9

Remove All Breakpoints Ctrl+Shift+F9
Step Over F10

Step Into F11

Step Out Shift+F11

303

Developing ata

Command
Prompt

APPENDIX B

304

APPENDIX B °

DEVELOPING AT A COMMAND PROMPT

TABLE B.2

Although the ISE comes with the script pane on top, the command pane in the mid-
dle, and the output pane on the bottom, you can reposition these default positions.
Table B.2 lists other positions for the script pane, as well as the keyboard shortcuts
to easily toggle through them.

Script pane positions

Top Ctrl+1
Right Ctrl+2
Maximized Ctrl+3

In addition to rearranging the script pane, you can toggle its visibility with the
keyboard shortcut Ctrl+R or with the arrow button in the upper-right corner of the
script pane. You can also flip the command and output panes, either using the green
arrow icons that appear in the upper-right corner of the command pane or via the
menu View > Command Pane Up.

By combining these shortcuts and positions, you can find a setup that you are com-
fortable working with while using the ISE. Once you are comfortable in the ISE, you
can use your developer understanding of logic plus the syntax of PowerShell to cre-
ate some powerful scripts to help simplify your processes.

Work with Objects in PowerShell

Objects can be a tough concept to understand. However, I find that it’s easier to under-
stand them if you think of a problem first in English and then translate it to code.

Step away from the code for a minute, and think about the computer you’re cur-
rently working with. Maybe you’re working on a multiprocessor server with a lot of
memory. It could be manufactured by Dell, IBM, Apple, or someone else. Perhaps it
is part of a domain. If I were to ask you to describe your current machine to me, you
probably could give me information like that.

In that exercise, your computer is considered an object. All of the other things I sug-
gested — manufacturer, number of processors, amount of memory, whether it’s on
a domain — tell me more about your computer. These can be considered properties.
Basically, objects have properties.

WORK WITH OBJECTS IN POWERSHELL 305

Understand Properties

Now that you have a basic understanding of what objects and properties are
in English, let’s look at them in terms of PowerShell. Start with the following
command:

SMyComputer = Get-WmiObject win32_computersystem

Here you're storing the computer information in a variable to get a better under-
standing of objects. $MyComputer is a variable, specifically, an object representing
the WmiObject that was returned by the Get-WmiObject cmdlet. Now what does
win32_computersystem really tell you about your computer? You can find out
that information — things that describe your computer, or its properties — just by
typing the variable name at the PowerShell command prompt. When you do this,

Developing at a

Command
Prompt

you should see something similar to Figure B.3.

FIGURE B.3 $MyComputer output

B windows PowerShell M=l &2

sdutkiewicz> S5MyComputer = Get-UmiObject win32_computersystem
sdutkiewicz?> SMyComputer

: WORKGROUP
: EC

8 S
: GeForce?7B858M-M
NINJA

PrimaryOunerName ; Windows User
TotalPhysicalMemory = 4294168576

PS8 C:\Usersssdutkiewicz>>

By default, it shows only a few properties of your computer. WMI usually has a

lot more information about the computer, and it is included in the $MyComputer
object. So if WMI has more information and yet you're seeing only a few properties
currently, how do you know what properties exist on your $MyComputer object?

As noted in Chapter 3, the Get-Member cmdlet can be useful when working with
objects and wanting to learn more about a particular one. Get -Member shows you
everything about an object, including the properties. Because WMI has a lot of

306

APPENDIX B

DEVELOPING AT A COMMAND PROMPT

information and because you are concerned only with properties at the moment,
you need to run this command:

SMyComputer | Get-Member -type property
The output should look similar to Figure B.4. Here are some things to note:

» Every property has a name. Although some appear in PascalCase (or
CamelCase) and others appear in ALL CAPS, these properties are not case
sensitive.

» The definition of each property contains two pieces of information:

The type of each property. In Figure B.4, these start with System. and are
followed by the type name.

What you can do with the property’s value. If get ; is present, then you
are able to get the value of that property. If set; is present, then you are
able to set the value of that property. More often than not, get; is present.
However, read-only properties have only get ;. They do not have set ;.

FIGURE B.4 Listof $MyComputer’s properties

indows PowerShell

TypeName: System.Management .ManagementObject#rooticimu2sWin32_Computers

MemberType Definition

AdminPasswordStatus Property System.UIntl6 AdminPasswordStatu...
futomaticManagedPagefile Property System.Boolean AutomaticManagedP...
AutomaticResetBootOption Property System.Boolean AutomaticResetBoo...
AutomaticResetCapability Property System.Boolean AutomaticResetCap...
BootOptionOnLimit Property System.UIntle BootOptionOnLimit ...
BootOpt ionOnWatchDog Property System.UIntl6 BootOptionOnWatchD.
BootROMSupported Property Syztem_.Boolean BootROMSupported
BootupState Property System.8tring BootupState {get;s.
Caption Property System.String Caption {get;set;>
ChassisBootupState Property System.UIntle ChassisBootupState...
CreationClassName Property System.8tring CreationClassMName ...
CurrentTimeZone Property System.Intl6 CurrentTimeZone {ge.-..
Property System.Boolean DaylightInEffect ...
Property System.8tring Description {get;s...
Property System.String DNSHostMHame {get;s...
Property System.8tring Domain {get;set;*
Property System.UIntls DomainRole {get;set;}

Now that you have used Get-Member to list the properties of your object, you can
take this one step further and use these properties. Suppose you need to take inven-
tory of the computers in your company. For this example, you need to keep track of
the machine name, manufacturer, model, domain, and total physical memory. You
may want to run something like this:

$MyComputer | Format-Table Name, Manufacturer, Model, Domain,

TotalPhysicalMemory

WORK WITH OBJECTS IN POWERSHELL 307

By looking at the list of properties provided while exploring $MyComputer with
Get-Member, you can tailor this command to meet whatever details you may need
to track if you did need to use this script. You could easily replace the list after
Format-Table with any of the properties in the list.

Create Your Own Custom Object

Now that you understand objects and properties, you may be wondering how to
create your own object so that you can use it with PowerShell’s powerful pipelining.
Although there are many ways to create custom objects, you will look at two ways to
do this in PowerShell 2.0:

Developing at a

Command
Prompt

» Using New-Object with a hash table

APPENDIX B

» Compiling a class written in a .NET language with Add-Type

Using New-Object with a Hash Table

Although the New-Object cmdlet was the only way to create objects in PowerShell
1.01, it still works in PowerShell 2.0. In fact, they stepped it up a little bit to make

it easier to create objects. You no longer have to pipe New-Object through
Add-Member to append properties to the object. In PowerShell 2.0, you can now
create a hash table with sample data to build your object. The following example
would be helpful if you had multiple servers across multiple buildings and wanted
to keep track of their location and wanted to create an object to track basic server
location and identification information:

$TrackedServerProperties = @{
SerialNumber = 'SN8675309';
Building = 'Building 42°';
IsDomainController = Strue;
Floor = 3;
Room = 311;
}
STrackedServer = New-Object PSObject -property
$TrackedServerProperties
$TrackedServer

STrackedServer.GetType () .Name

You can see the output in Figure B.5. Note that the $TrackedServer object comes
back as a PSCustomObject. When you want to create a custom object, rather

than derive from an existing type, use PSObject with New-Object to return a
PSCustomObject.

308 APPENDIX B * DEVELOPING AT A COMMAND PROMPT

FIGURE B.5 CustomobjectfromNew-Object

B c\Windows\5ystem32\WindowsPowerShell'\ v 1.0% powershell_ise.exe

File Edit View Debug Help
SE& 2 O» p W @& |Bm

| Untitled1.psi® %

i $TrackedServerProperties @l
2 SerialNumber 'SNB675309";
3 Building 'Building 42";
4+ IsDomainController $true;
s Floor - 3;
& Room 311;
7 1
&
9

[@

1
{Trackedserver = New-Object PSObject -property $TrackedServerProperties
$TrackedServer

10 STrackedserver. GetType() . Name

|
) &
SerialNumber : SNB675309
IsDomainController : True
Room : 311
Building : Building 42 J
Floor - 3
PSCustomObject
Completed Ln8 Col 58

In PowerShell, you do not have to specify the type for each parameter. However,

if you are curious as to how PowerShell handled those properties, pipe
$TrackedServer through Get-Member to see more details. You should see some-
thing similar to Figure B.6.

FIGURE B.6 Get-Member results of $TrackedServer

PS C:\Windows'\system32> $TrackedServer | Get-Member

TypeName: System.Management.Automation.PSCustomObject
Name MemberType Definition
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetType Method type GetType()
ToString Method string Tostring()
Building NoteProperty System.String Building=Building 42
Floor NoteProperty System.Int32 Floor=3
IsDomainController NoteProperty System.Boolean IsDomainController=True
Room NoteProperty System.Int32 Room=311
serialNumber NoteProperty System.String SerialNumber=SN8675309

Something to note about those properties is that they were added as a
NoteProperty property. Whenever you add a property to a PSObject that doesn’t

WORK WITH OBJECTS IN POWERSHELL 309

already exist, it gets added as NoteProperty. However, if you try adding a nonex-
istent property to any other type of object, PowerShell reports an error.

Creating objects with the New-Object cmdlet and a hash table of properties is
fairly simple, which is great if you are just starting out with a scripting language or
if you are in a hurry.

Compiling a Class with Add-Type

Although IT professionals with little developer experience may prefer using the
New-Object cmdlet with a hash table to create their custom object, developers
dabbling in PowerShell may feel more comfortable using the Add-Type cmdlet.

Developing at a

Command
Prompt

Developers may think of objects more in terms of classes, and the Add-Type cmdlet
is the way to bring the concept of classes to PowerShell 2.0. What’s nice about this is
that, as a NET developer, you can use the NET language of your choice to write the

class. Using the same scenario as the previous example, here’s what it would look

like if you used a C# class:

Add-Type @'

public class TrackedServer{
public string SerialNumber = "SN8675309";
public string Building = "Building 42";
public bool IsDomainController = true;
public int Floor = 3;
public int Room = 311;

}

'@

STrackedServer = New-Object TrackedServer
STrackedServer

STrackedServer.GetType () .Name

Notice in this case that $TrackedServer comes back as the TrackedServer
class, rather than PSCustomObject. If you pipe $STrackedServer through
Get-Member, as shown in Figure B.7, the properties are of the type Property
rather than NoteProperty. You have better control over defining your property
types when creating your own class.

If you want to create your own classes and work with your own data types, then use
this Add-Type method before creating your object.

310 APPENDIX B * DEVELOPING AT A COMMAND PROMPT

FIGURE B.7 Get-Member results from a custom type

TypeName: TrackedServer

PS C:\Windows\system32> $TrackedServer | Get-Member

Name MemberType Definition

Equals Method bool Equals(System.0Object obj)

GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string Tostring()

Building Property System.String Building {get;set;}

Floor Property System.Int32 Floor {get;set;}
IsDomainController Property System.Boolean IsDomainController {get;set;}
Room Property System.Int32 Room {get;set;}

SerialNumber Property System.String SerialNumber {get;set;}

At this point, you should be able to choose between the command prompt and the
ISE. Should you need more help with the ISE, run the following:

help about_Windows_PowerShell_ ISE

You should also be able to identify objects and properties in PowerShell or create

your own. If you do find yourself in PowerShell and drawing a blank on how to

work with objects or properties, the help system is there. You can always fall back

on the following commands:

help objects
help properties

APPENDIX

Providing for PowerShell

IN THIS APPENDIX, YOU WILL LEARN TO:

> WORK WITH BUILT-IN PROVIDERS 312
Understand ProviderBasicsccovvvviiiininnennn... 313
Use PowerShell-Specific Providers 314
Use Other Built-in Providersoiiiiiiiinae. 317

> WORK WITH ADDITIONAL PROVIDERS 322

> INSTALL AND REMOVE PROVIDERS 322

> CREATE YOUR OWN PROVIDER 323
Understand Basic Provider Concepts...........covvvnvnn.... 323

Build a Custom Provider.........covviiiiiiiiiiint 327

) XIAN3ddV

hether you are working with the registry, using environment variables, or even
working with the file system, providers are used for a variety of tasks. They make it
easier to access data and objects that are typically hard to reach at a command line.
Although the data is organized in a data store, there are few command-line utilities
that make these easily accessible. In the first part of this appendix, you will work
with the built-in providers. You will also look into some of the other providers that
have been created to make administration easier.

Although the built-in providers and additional providers from custom modules are
helpful, you may see a need to create your own provider. In the second part of this
appendix, you will create a custom provider.

The beauty of PowerShell is that you can administer a large part of your server
within PowerShell without having to open another administration tool. Providers
are one of the tools that open up various avenues of administration. Working with
certificate stores and managing parts of the registry are just a couple things that
providers help with.

Work with Built-in Providers

FIGURE C.1

As with many of the concepts in this book, there is a Get - cmdlet that shows all the
providers in your session. That command is Get-PSProvider. Figure C.1 shows a
list of the providers that come with the default installation of PowerShell.

List of built-in providers

B windows PowerShell
PS C:xWindowsssystem32> Get—PSProvider

Capabilities

Environment
FileSystem

Certificate

Credentials
ShouldProcess
ShouldProcess

Filter,. ShouldProcess
ShouldProcess

ShouldProcess. Transact..

ShouldProcess
ShouldProcess

PS C:sWindowsssystem32> _

{WUSHan2

{Alias>

{Enuv}

{C, E. F. G...»
{Function
{HKLM. HKCUZ
{Variabhle>
{cert?

WORK WITH BUILT-IN PROVIDERS

Some of these providers were created to make the PowerShell environment easier
to work with, but others help with parts of everyday server administration. Before
looking into the specific providers, there are a few concepts you need to understand.

Understand Provider Basics

Two columns in Figure C.1 need to be explained before going further. Capabilities
and drives are a couple of the basics of providers you should understand. While
you are looking at these, you will also learn about another unique feature called
dynamic parameters.

Provider Capabilities

TABLE C.1

Provider capabilities note features that are supported by the provider. As shown in
Figure C.1, a provider may have multiple capabilities. Table C.1 describes the sup-
ported capabilities.

Capabilities
e omaipion
None Has no additional support other than what is provided in the base class
Include Has the ability to include items via wildcards
Exclude Has the ability to exclude items via wildcards
Credentials Allows credentials to be included at the command line
Expand Wildcards Supports wildcards within an internal path
Filter Allows additional filtering via a string
ShouldProcess Supports user confirmation before running its cmdlets and allows the
-WhatIf parameter to be used
Transactions Supports its cmdlets to be used within a transaction

Provider Drives

These are the tools that make it easier to access data stores. For example, the
WebAdministration provider includes the IIS drive to access the IIS configura-
tion. As another example, the Registry provider includes two drives that are set
to the shortened versions of the long names of two popular Windows registry
hives — HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER.

313

Providing for
PowerShell

APPENDIX C

314 APPENDIX C * PROVIDING FORPOWERSHELL

These are listed as part of the default output of the Get-PSProvider cmdlet.
Navigating provider drives is as simple as navigating disk drives at the command
prompt. Thanks to the aliases provided by PowerShell, you can still use cd and dir
to gain a better understanding of a drive’s structure.

Dynamic Parameters

Dynamic parameters are parameters available only when a provider’s cmdlet is
being used with the provider’s drive. For example, the Certificate provider

has a CodeSigningCert parameter that can be used with the Get-Itemand
Get-ChildItem cmdlets when working with the cert : drive. Figure C.2 shows an
example of how this parameter can be used and what happens when you try to use
the CodeSigningCert parameter with a drive other than the cert: drive.

FIGURE C.2 cCodeSigningCert dynamic parameter

BT administrator: Windows PowerShell
PS C:\Windowsssysten32> Get-Item —path cert:“CurrentlUser —CodeSigningCert

Location : Currentlser
StoreNames : {SmartCardRoot, UserDS. AuthRoot,. CA...}

PE C:sWindowsssystend2> Get—Item —path d:% —CodefSigningCert

PE C:zWindowsssysten3d2> _

Use PowerShell-Specific Providers

The following providers are built around concepts within the PowerShell environ-
ment. Note that these providers do not support the Invoke-Item cmdlet.

Alias Provider

As noted in Chapter 4, you can create aliases to shorten commands in PowerShell.
The Alias provider gives you a quick way of working directly with the aliases as
objects. Although you can use Get-Alias to see a list of aliases currently available

WORK WITH BUILT-IN PROVIDERS

to you, you can also use Get-Item -path alias: to list these aliases. Another
way you can see all aliases is via the following steps:

1. Runcd alias:.

2. RunGet-Item -path *.

y 9 TIP If the path you are working with is in the current drive, you do not have to include

the drive name as part of the path variable.

Although the Alias provider can provide access to the aliases as objects, you
can still use the built-in cmdlets Import-Alias, Export-Alias, New-Alias,
Get-Alias, and Set-Alias to work with aliases. If you prefer to work with the
built-in cmdlets, you should not include the alias: drive.

Note that the built-in cmdlets do not include Copy-Alias, Rename-Alias, or
Remove-Alias. However, the Alias provider supports working with the
Copy-Item, Rename-Item, Clear-Item, and Remove-Item cmdlets. Thanks to
this provider, you can create these commands.

rg -
e NOTE Ifyouneed toremove aread-only item, then use the Remove-Itemcmdlet

TABLE C.2

with its Force parameter. Clear-Item will not work for read-only items.

As noted, the Alias provider has one dynamic parameter, the Options parameter,
which can be used with the New-Itemand Set-Item cmdlets. Table C.2 describes
the values that can be used with the Options parameter.

Options values

e oo

None Default value. No options.

AllScope Alias is copied to any new scopes.

Private Alias is in the current scope only.

Constant Alias cannot be deleted and cannot be changed. This option is available only

when creating an alias.

ReadOnly The properties cannot be changed except by using the Force parameter.
You need to use Remove-Item -Force toremove aliases that are marked
ReadOnly.

315

Providing for
PowerShell

APPENDIX C

316

APPENDIX C

PROVIDING FOR POWERSHELL

Function Provider

Chapter 4 introduced the concept of functions. The Function provider allows
you to work directly with the functions. As noted previously, Get-Function
does not exist. However, thanks to the Function provider, you can create your
own Get-Function command. Remove-Function, Rename-Function, and
Copy-Function could also be created, similar to what was described for the
Alias provider.

The Function provider gives you access to both functions and filters. The best way
to see this is by doing the following:

1. If you do not have any filters in your PowerShell session, add a filter to your
PowerShell session. For example, perhaps you want to list functions that do
not refer to Set-Location. You may have a filter like this:

filter NotSetLocation { $_.Definition &3

-notcontains "Set-Location" }

2. Rundir Function: *. This filter should appear in the output, with Filter
as its CommandType.

Note that although the item is a type of filter, it still is listed under the Function:
drive. There isno Filter: drive.

The Function provider has one dynamic parameter as well. Like the Alias
provider, the Function provider’s Options parameter can be used with the
New-Itemand Set-Item cmdlets. Its values are the same as those for the Alias
provider; however, they apply to functions rather than aliases.

Variable Provider

Chapter 5 explains the concept of variables. The Variable provider allows you to
work directly with variables as objects. Similarly to the Alias provider, there are
built-in cmdlets to work with variables: Get-vVariable, New-Variable, Set-
Variable, Remove-Variable, and Clear-Variable. As with the Alias provider,
you do not need to use the provider drive with the built-in Variable cmdlets. Also, if
you are referencing a variable by name — such as SComputerName — you

do not need to include the drive name.

WORK WITH BUILT-IN PROVIDERS 317

Use Other Built-in Providers

PowerShell also has built-in providers that bring administrative processes that nor-
mally occur outside of the PowerShell console to PowerShell. The following providers
come in the default PowerShell installation and help make outside processes easier.

Certificate Provider

The Certificate provider makes it easy to work with X.509 certificates and their
stores.

There are three levels when it comes to certificate stores:
» Store locations
» Certificate stores
» X.509 certificates
To gain a better understanding of how these work, follow these steps:

1. Inyour PowerShell session, run cd cert: to set your current location to the
certificate provider’s drive.

Providing for
PowerShell

APPENDIX C

2. Run dir to see a list of the store locations. The output should be similar to
Figure C.3.

FIGURE C.3 Listofstorelocations

B windows PowerShell
P8 cert:n> dir

Location : Currentlser
StoreNames : {SmartCardRoot. UserDS. AuthRoot. CA...>

Location : LocalMachine
StoreNames : {SmartCardRoot. AuthRoot. CA. Trust...}

318

APPENDIX C

PROVIDING FOR POWERSHELL

Let’s look into the certificate stores that are in the LocalMachine store loca-

tion. Change directories to LocalMachine.

Once the current location is set to LocalMachine, run dir to see the names

of the certificate stores.

The X.509 certificates themselves are within those stores. Let’s look into the

AuthRoot certificate store. Change directories to AuthRoot.

Once in the AuthRoot certificate store, run dir to see a list of the X.509

certificates with the store. The output should be similar to Figure C.4.

FIGURE C.4 Listof certificates

In addition to listing the data down to the certificates level, you can take it one step
further with the CodeSigningCert dynamic parameter, which will allow you to
find only the certificates that can be used for signing code. This can be extremely
beneficial if you run many secure servers and have only a certain set of certificates
that can be used to sign your developers’ applications. This dynamic parameter can

X windows Powershell

P8 cert:\LocalMachine“AuthRoot> dir

Directory: Microsoft.PowerShell.SecuritysCertificate::LocalMachine“Aut

hRoot

Thumbprint

D232A2AD23D314232174E40D7F?D62139786633A
B1BC?68BD4F42D622AAB?AB1F215A152A41D829C
72A62BE61AFEBB6B4D2B82AA7CEBB54FC317E1539
9?E2E?9636A547554F338FBA38BA2EV4F32A830A
97817958081 C267ACCI4DBA?CF7?4431367EF474
21C6D6EE3EBACB6384E548G299295C756081 7881
85371 CA6ES5A143DCE28A3471 BDE3AA? EBFE7?7AF
742C3192E6A7E424EB4549542BE1 BBCS3E61 74E2
627F8D7827656392D27D7F?044C?FEB3F33EFAZA
5@3886871 D9 7D4F5AE3?F?CBE?227D7D652D3431
4F65566336DB6598581D584A596C87234D5F2AB4
2796 BAE63F1801E277261BABDY 7770028 F2BEEE4
B2FAF3E221435468687857694DF5E45B68851868

PS cert:\LocalMachine“AuthRoot>

Subject

OU=Equifax Secure Certificate...
CH=GlohalS%ign Root CA. OU=Roo...
CN=Entrust.net Secure Server ...
OU=UeriSign Trust HNetwork, OU.
CN=GTE CyberTrust Global Root
CH=thawte Primary Root CA. OU
OU=UeriSign Trust Metwork. OU
0U=Class 3 Public Primary Cer
E=premium—server@thawte .com.
CN=Entrust.net Certification .
OU=Class 3 Public Primary Cer.
OU=Go Daddy Class 2 Certifica.
CN=AddTrust External CA Root....

be used with the Get-Itemand Get-ChildItem cmdlets.

One final thing to note with the Certificate provider is that, unlike the

PowerShell-specific providers, it does support the Invoke-Item cmdlet. When
you use the Invoke-Itemcmdlet with the Certificate provider, you invoke the
certificate manager. By running the following command, you should see something

similar to Figure C.5.

Invoke-Item cert:\CurrentUser

WORK WITH BUILT-IN PROVIDERS

FIGURE C.5 Certificate manager

= certmar - [Certificates - Current User]

File Action Wiew Help

Logical Store Mame

~| Personal I personal
| Trusted Roat Certification Authe | [Trusted Root Certification Authorities
_| Enterprise Trust | Enterprise Trusk

~| Intermediate Certification Authc
| Active Directory User Object

~| Trusted Publishers

| Untrusted Certificates

~| Third-Party Rook Certification AL
| Trusted People

~| Smart Card Trusted Rocts

| Intermediate Certification Authorities

" Active Directory User Object

| Trusted Publishers

I Untrusted Certificates

| Third-Party Root Certification Authorities
| Trusted People

| Smart Card Trusted Roots

« LY | KT | ol

Environment Provider

The Environment provider makes it easy to work with environment variables.
Listing environment variables’ name and value pairs is as simple as dir env:*.
The Environment provider supports adding, getting, setting, clearing, and
removing environment variables. Like the PowerShell-specific providers, the
Environment provider does not support the Invoke-Item cmdlet.

FileSystem Provider

The FileSystem provider makes it easy to work with the server’s files and directo-
ries. Its provider drives map your local machine’s drives — including those mapped
to network shares — and allow you to access them from within PowerShell. This
provider is what allows you to type dir c:\ and see the directory listing within
your PowerShell environment.

The FileSystem has a few dynamic parameters: Encoding, Delimiter, and
Wait. The Encoding dynamic parameter is used to note the file encoding, which is
ASCII by default. It can be used with the Add-Content, Get-Content, and

319

Providing for
PowerShell

APPENDIX C

320

APPENDIX C -

PROVIDING FOR POWERSHELL

Set-Content cmdlets. The Delimiter dynamic parameter is used to split a file
into a collection of objects, based on a string. By default, it uses the new line escape
(\n). This can be used with the Get-Content cmdlet. Finally, the Wait dynamic
parameter waits for a file to change and then returns either the updated content or
the entire file, depending on what change was made. Get -Content polls the file
every second until you stop it with Ctr1+C.

Registry Provider

FIGURE C.6

The Registry provider makes it easy to work with the registry. Although you
can use regedit to invoke the Registry Editor to make changes to the regis-
try, the Registry provider gives you the ability to maintain the registry via
PowerShell.

For example, let’s say you wanted to see what shell extensions were registered
on a computer. You could run the following command, with output similar to
Figure C.6:

Get-ItemProperty "hklm:software\microsoft\ 3

windows\currentversion\shell extensions\approved"

Registry properties

PSPath : Microsoft.PowerShell.Core'Registry: tHKEY_LOCAL_M
ACHINE'\software'microsoftwindows‘currentversion
“shell extensions'approved

PSParentPath : Microsoft.PowerShell.CoreyRegistry: tHKEY_LOCAL_M
ACHINE'\software'microsoftwindows‘currentversion
“shell extensions

PSChildName : approved
P5Drive ¢ HKLM
PSProvider : Microsoft.PowerShell.CoreiRegistry

{80009818-F38f-4af1-87b5-eadab9433e58} : MF ADTS Property Handler
{0907616E-F3E6-48D8-9D61-A91C3D281060} : Hyper-V Remote File Browsing
{B7056B8E-4F99-44f8-8CED-282390FE3428} : VirtualClaoneDrive
{42042206-2D85-11D3-8CFF-005004838597} : Microsoft Office HML Icon Handler
{993BE281-6695-4BA5 -8A2A-TAACBFAABGRSET : Microsoft Office Metadata Handler
{C41662BB-1FAD-4CEQ-8DC5-9B7F8279FF97} : Microsoft Office Thumbnail Handler

The registry provider has one dynamic parameter — Type. You can use this
dynamic parameter with the Set-Itemand Set-ItemProperty cmdlets. Table
C.3 shows the possible values.

Although the Certificate provider supports launching the certificate
manager via the Invoke-Item cmdlet, the Registry provider does not launch
the Registry Editor with Invoke-Item. This cmdlet is not supported by the
Registry provider.

WORK WITH BUILT-IN PROVIDERS

TABLE C.3

Registry types

String REG_SZ Null-terminated string

ExpandString REG_EXPAND_SZ Null-terminated string that contains unexpanded
references to environment variables

MultiString REG_MULTI_SZ An array of null-terminated strings, terminated by two
null characters

Binary REG_BINARY Binary

DWord REG_DWORD 32-bit binary number

Qword REG_QWORD 64-bit binary number
Unknown Unsupported registry data type

WSMan Provider

TABLE C.4

The WSMan provider makes it easy to work with Web Services for Management
(WS-Management, or WSMan for short) configuration information.
WS-Management is discussed in Chapter 6. The WSMan provider supports adding,
changing, clearing, and deleting WSMan configuration data. Of all the providers
covered here, the WSMan provider has the most dynamic parameters — more than
50 dynamic parameters. Table C.4 shows some of its dynamic parameters.

Some WSMan dynamic parameters

Address Get-Item Specifies an address for the selected
listener. This value can be bound to * (all
IP addresses), IP: (followed by a specific
IPv4 or IPv6 address), or MAC : (followed by
a specific MAC address).

AllowRemoteShellAccess Get-Item, Set-Item Enablesaccesstoremote shells. The
default value is true.

AllowUnEncrypted Get-Item, Set-Item Allows the clientto request unencrypted
traffic. As the name suggests, the client
defaults to requiring encrypted data.

Certificate Get-Item, Set-Item Allows certificates to be used for authenti-
cation purposes.

Port Get-Item, Set-Item Defines the listener's TCP port, withina
range of 1-65535.

321

Providing for
PowerShell

APPENDIX C

322 APPENDIX C * PROVIDING FORPOWERSHELL

For a detailed list of the WSMan dynamic parameters, see the following site:

http://technet.microsoft.com/en-us/library/dd819476.aspx

Work with Additional Providers

Other Microsoft teams and other vendors are creating their own providers

to further help automate administration. As mentioned in Chapter 10, the
WebAdministration module makes it easy to manage IIS at the command line.
Other providers that may be of interest to you as an administrator include providers
for Remote Desktop Services, BizTalk, Exchange Server, and Windows Mobile. Some
of these providers may be installed with the software package, as is the case with
Exchange Server. Others may be available when a server role is enabled, as is the case
with Remote Desktop Services. Finally, you can find others via a search engine online
and install them once downloaded, as is the case with BizTalk and Windows Mobile.

NOTE Although this book covers Windows Server 2008 R2, the WebAdministration
provider is also available for IIS 7. However, in order to install the WebAdministration
provider for IS 7, you have to add it using the Add-PSSnapIn cmdlet. You can download
the IIS 7 PowerShell snap-in from www.iis.net/download/PowerShell.

Install and Remove Providers

Providers can be loaded via two methods — modules and snap-ins. Appendix E
explains how to create your own custom modules and snap-ins. When you import
a custom module, such as the WebAdministration module, you automatically get
everything in the module, including providers. So when you run Import-Module
WebAdministration, you get the beauty of navigating the IIS setup through the
IIS: drive. Snap-ins are just as easy to work with. Use the Add-PsSnapin cmdlet
to add the snap-in to your session.

Removing providers is as easy as installing them. If you imported the provider
via a module, you can remove the provider when you remove the module via the
Remove-Module cmdlet. If you added the provider via a snap-in, you can remove
the provider via Remove-PSSnapIn cmdlet. If you want to remove only a drive
created by a provider, you can use the Remove-PSDrive cmdlet.

One thing to note about modules vs. snap-ins is that modules are the more modern
way of deploying providers, cmdlets, and functions. Appendix E discusses further
differences between modules and snap-ins.

CREATE YOUR OWN PROVIDER 323

Create Your Own Provider

Despite all the providers for management tasks, you may have an idea for creating
your own provider. Programming your own provider requires some developer
experience, because the tools to write them purely in PowerShell are still being
developed. You need to reference System.Management . Automation.Provider
in your Visual Studio Class Library project. Many of the objects discussed in this
section come from this library.

Understand Basic Provider Concepts

In addition to the provider basics discussed earlier, you need to understand a few
more concepts before creating your own provider. You will look at the functionality,
paths, supported cmdlets, and help file structure before you build your own custom
provider.

Providing for
PowerShell

Provider Functionality

When programming your provider, you need to state the functionality it supports
by inheriting from a base class or interface. Table C.5 explains the base classes and
interfaces that can be derived from.

TABLE C.5 Functionality

Container- ContainerCmdletProvider Allows users to manage containers

Enabled

Content- IContentCmdletProvider Allows users to manage items’ content;

Enabled allows getting, setting, and clearing
content

Drive- DriveCmdletProvider Defines what drives are available to the

Enabled user and whether drives can be added or
removed

Item- ItemCmdletProvider Allows users to manage the items in the

Enabled data store; allows getting, setting, and

clearing items

Navigation- NavigationCmdletProvider Allows users to move items in the data
Enabled store

Property- IPropertyCmdletProvider, Allows users to manage items’ properties;
Enabled IDynamicPropertyCmdletProvider allows getting, setting, clearing, remov-

ing, moving, and renaming

324 APPENDIX C * PROVIDING FORPOWERSHELL

Provider Paths

Because your provider will be accessing a data store at some time, it needs to
support paths. Table C.6 explains the types of paths that a provider can support.

TABLE C.6 Provider paths

Drive-Qualified Combines the Windows PowerShell drive, the container and any subcon-
tainers, and the object name. For example: D: \Projects\PowerShell.

Provider-Qualified Allows PowerShell to initialize and uninitialize your object. These start
with the provider name. For example: FileSystem: : \\netserver\
shared\folder.

Provider-Direct Allows remote access to your provider. For example, the Registry pro-
vider supports \\remoteserver\registrypath.

Provider-Internal Allowsaccessing data via non-PowerShell APIs. This is the part after : : in
the provider-qualified path. So, in line with the provider-qualified example,
the provider-internal path would be \\netserver\shared\folder.

Provider Cmdlet and Cmdlet Parameters

In addition to functionality and paths, there are certain cmdlets that can be used in
providers. Many of these cmdlets are described throughout the book. Table C.7
breaks them down into different categories and includes some notes on their
implementations.

TABLE C.7 Provider cmdlets

ooy cnatrame o

PSDrive Get-PSDrive Does not need any overrides
(DriveCmdletProvider)

New-PSDrive Overrides NewDrive and
NewDriveDynamicParameters

Remove-PSDrive Overrides RemoveDrive

Item Clear-Item Overrides ClearItemand
(ItemCmdletProvider) ClearItemDynamicParameters
Copy-Item Overrides CopyItemand

CopyItemDynamicParameters

Get-Item Overrides GetItemand
GetItemDynamicParameters

CREATE YOUR OWN PROVIDER

N T

Item content
(IContentCmdletProvider)

Item property

Get-ChildItem

Invoke-Item

Move-Item

New-Item

Remove-Item

Rename-Item

Set-Item

Add-Content

Clear-Content

Get-Content

Set-Content

Clear-
ItemProperty

Copy-
ItemProperty

Get-
ItemProperty

Move-
ItemProperty

Overrides GetChildItems,
GetChildItemsDynamicParameters,
GetChildNames,
GetChildNamesDynamicParameters

Overrides InvokeDefaultAction

Overrides MoveItemand
MoveItemDynamicParameters

Does not need any overrides

Overrides RemoveItemand
RemoveltemDynamicParameters

Overrides RenameItemand
RenameltemDynamicParameters

Overrides SetItemand
SetItemDynamicParameters

Does not need any overrides

Overrides ClearContent and
ClearContentDynamicParameters

Overrides GetContentReader and
GetContentReaderDynamicParameters

Overrides GetContentWriter and
GetContentWriterDynamicParameters

Overrides IPropertyCmdletProvider
.ClearProperty and
IPropertyCmdletProvider
.ClearPropertyDynamicParameters

Overrides
IDynamicPropertyCmdletProvider
.CopyProperty and
IDynamicPropertyCmdletProvider
.CopyPropertyDynamicParameters

Overrides IPropertyCmdletProvider
.GetPropertyand
IPropertyCmdletProvider
.GetPropertyDynamicParameters

Overrides
IDynamicPropertyCmdletProvider
.MoveProperty and
IDynamicPropertyCmdletProvider
.MovePropertyDynamicParameters

(continues)

325

Providing for
PowerShell

APPENDIX C

326

APPENDIX C -

PROVIDING FOR POWERSHELL

TABLE C.7

Provider Cmdlet Help

(continued)

(rsgory T cnatrame o

Location

Path

New-
ItemProperty

Remove-
ItemProperty

Rename-
ItemProperty

Set-
ItemProperty

Get-Location
Set-Location
Push-Location
Pop-Location

Join-Path

Split-Path
Convert-Path
Resolve-Path

Test-Path

Overrides
IDynamicPropertyCmdletProvider
.NewProperty and
IDynamicPropertyCmdletProvider
.NewPropertyDynamicParameters

Overrides
IDynamicPropertyCmdletProvider
.RemoveProperty and
IDynamicPropertyCmdletProvider
.RemovePropertyDynamicParameters

Overrides
IDynamicPropertyCmdletProvider
.RenameProperty and
IDynamicPropertyCmdletProvider
.RenamePropertyDynamicParameters

Overrides IPropertyCmdletProvider
.SetProperty and
IPropertyCmdletProvider
.SetPropertyDynamicParameters

Does not need any overrides
Does not need any overrides
Does not need any overrides
Does not need any overrides

Overrides NavigationCmdletProvider
.MakePath

Does not need any overrides
Does not need any overrides
Does not need any overrides

Overrides TtemCmdletProvider
.ItemExistsDynamicParameters

PowerShell has a great internal help system for figuring out the language. Adding

Get-Help support to provider cmdlets is easy to do once you understand the

format. For more information on writing help files, see Appendix E.

CREATE YOUR OWN PROVIDER 327

Build a Custom Provider

It’s time to bring all the previous knowledge together and write a provider! As
noted earlier, there are tools that are being developed to write your providers in
PowerShell, but they are not stable as of this writing. Since these tools are still in
beta, you will create your custom provider in Visual Studio 2010 using C#. For
this example, you are taking the module approach of working with providers, as
opposed to working with a snap-in.

Before you get started writing code, let’s take a look at what the goals are for
this provider. For this appendix, you will look at the basics of implementing

a provider with the premise of being able to work with Windows 7 Libraries,
including Documents, Pictures, and Music. The sample code in this book allows
you to change directories to a special drive for these libraries and list what is in
the Libraries. Appendix D covers custom cmdlets related to these Windows 7
Libraries that would be included in a module. Appendix E walks through creat-
ing that module to distribute this Windows 7 Library provider and the custom
cmdlets.

Providing for
PowerShell

To work with these Libraries, you need to get the Windows API code pack version 1.1
or higher for Microsoft NET Framework:

http://code.msdn.microsoft.com/WindowsAPICodePack

Once you have the code pack downloaded and unpacked, you are ready to get into
the code. To get started, create a new project within Visual Studio, complete with the
necessary references, by following these steps:

1. Open Visual Studio.
2. Select File > New Project.
3. Change the following settings:

a. The target framework should be NET Framework 3.5. Note: NET
Framework 4.0 will not work, as PowerShell 2.0 console and ISE run on the
.NET 2.0 core rather than the .NET 4.0 core.

b. The type of project should be Class Library.
Your screen should look similar to Figure C.7.

4. Click OK.

328

APPENDIX C

PROVIDING FOR POWERSHELL

FIGURE C.7 New Project window

New Project ? =
L —
Recent Templates [.NI:T Framework 3.5 ']Sal‘t by: [NamaA;cendmg | Search Installed Tem 2 |
Installed T lat:
SRS il)) © Type: Visual C#
X X ~ ;;/’ ASP.MET Dynamic Data Entiti... Visual C#
Visual Basic L A project for creating a C# class library
4 Visual C& L* X .din
Windows |=ch ASP.MET MVC 2 Web Applica...Visual C#
Web
Office ;5 ASP.NET Web Application Visual C#
Cloud ==
Reporting Class Library Wisual C#
SharePoint
Silverlight - =) Console Application WVisual C&
i+ | =
Online Templates ‘?CV Crystal Reports application Visual C2 -
Name: SamplePSProvider
Location: D\ PowerShellt -
Solution name: SamplePSProvider Create directory for solution
"] Add to source control

At this point, you should be in the application. To access the PowerShell libraries,

you need to add a couple references. To do so, follow these steps:

1. Open the Solution Explorer. You can access it via the View > Solution

Explorer menu.

2. Right-click the References folder, and select Add Reference.

to Figure C.8 should appear.

FIGURE C.8 AddReference window

A window similar

o0 Add Reference ?

‘ NET | COM | Projects |Browse | Racent‘

Project Mame Project Directory

CREATE YOUR OWN PROVIDER 329

3. Click the .NET tab. Select System.Management, and then click OK.
4, Repeat step 2. This time, click the Browse tab.

5. Navigate to the following path: C: \Program Files\Reference
Assemblies\Microsoft\Windows PowerShell\vl.O0. Note thatifyou
are working on a 64-bit machine, you may need to check in the Program Files
(x86) folder rather than the Program Files folder.

6. Select System.Management .Automation.dll, and then click OK.

At this point, System.Management and System.Management . Automation
should appear in your references list, as shown in Figure C.9.

FIGURE C.9 References listin the Solution Explorer

Solution Explorer *AX

=2 .
(F] SamplePSProvider - =
- o O
=d| Properties 2c
4 | _v References :E ?
-3 System S g
-3 Systemn.Core E (<]
e aa

-3 System.Data
-3 Systemn.Data.DataSetExtensions
-3 Systern.Management
3 System.Management.Automation
-3 System.Xml
-3 Systemn.Xml.Ling

#] Classl.cs

& Toolbox ':3 LI s el % Team Explorer Bl Server Explorer

7. Using steps 5 and 6 as a guide, add references to Microsoft
.WindowsAPICodePack.dll, Microsoft.WindowsAPICodePack
.Shell.dll, and Microsoft.WindowsAPICodePack
.ShellExtensions.dll, which should be in the folder where you have
unpacked the Windows API code pack for Microsoft NET Framework.

At this point, all the references should be set up at the project level. Now let’s look
at the code. First, set up the using statements, specifying which namespaces to
refer to. Because this example uses the file system (specifically files and directories),
include a reference to System. I0. Also, because this example references collec-
tions, include a reference to System.Collections.ObjectModel. The other
namespaces listed here should look familiar:

using System.Collections.ObjectModel;
using System.IO;

using System.Management.Automation;

330

APPENDIX C

PROVIDING FOR POWERSHELL

using System.Management.Automation.Provider;
using Microsoft.WindowsAPICodePack;
using Microsoft.WindowsAPICodePack.Shell;

Once the namespaces are set up, you need to write the code to name your
provider and declare the provider type. In this example, you will call the provider
Win7LibraryProvider. The namespace declaration will be used in Appendix D
as well. Here is what the provider’s namespace and naming code should look like:

namespace Win7LibraryProvider
{

[CmdletProvider ("Win7LibraryProvider", <3
ProviderCapabilities.None)]

public class Win7LibraryProvider :e3
NavigationCmdletProvider

{

The CmdletProvider attribute tells the compiler that this Win7LibraryProvider
class is going to be a provider for PowerShell. The ProviderCapabilities option
allows you to specify which capabilities, as noted in Table C.1, are supported. For
this example, you will leave it at None. However, this book’s companion web page
includes examples of how to implement these provider capabilities.

This is an example of a NavigationCmdletProvider, which is also included in
that declaration. Table C.5 notes other types of providers that you can implement.

You need to set up some variables that will be used throughout this example. Set up
the following variables:

private string _defaultlibrarylocation = <3
ShellLibrary.LibrariesKnownFolder.Path;
private string _libraryExtension = ".library-ms";

private const string _pathSeparator = @"\";

These variables set up important default variables — the default library location, the
file extension for library files, and the path separator.

Ideally, the path structure you are going for is as follows:
lib:\LibraryName\

Since you know which drive you want to use (1ib:), create the drive. To do this,
override the InitializeDefaultDrives () method and have it create the 1ib
drive. Here is the code for that:

CREATE YOUR OWN PROVIDER

protected override Collection<PSDriveInfo>
InitializeDefaultDrives ()
{

Collection<PSDriveInfo> driveInfoCollection =
new Collection<PSDriveInfo> () ;

PSDriveInfo info = new PSDriveInfo("lib", 3
this.ProviderInfo, _defaultlibraryLocation,
"Libraries", PSCredential.Empty) ;

driveInfoCollection.Add (NewDrive (info)) ;

return driveInfoCollection;

}

The PSDrive line is configuring the 1ib: drive, and the line after it is adding it to
the collection of drives. Finally, InitializeDefaultDrives returns the collec-
tion of drives that the provider is using.

Now that the drive is created, you need to work with its path and items. For this
example, the drive level (1ib:) is considered the Root, the library level of the path
will be the Library, and everything else will not be a concern, so you will call it
Invalid. First, set up the path segment types:

private enum PathType
{

Root,

Library,

Invalid

}

Next, create a method to determine the path and type of segment you may be
working with:

private PathType GetTypeFromPath(string path)
{
bool bPathTest =
(path == (_defaultlibraryLocation + "\\"));
path = GetLibraryFromPath (path) ;
string[] pathSegments = &
path.Split(_pathSeparator.ToCharArray());
PathType pathType;
if (path.Trim() == string.Empty || bPathTest)
pathType = PathType.Root;

331

Providing for
PowerShell

APPENDIX C

332 APPENDIX C * PROVIDING FORPOWERSHELL

else if (pathSegments.Length == 1)
pathType = PathType.Library;
else
pathType = PathType.Invalid;
return pathType;
}

The previous code mentions a method called GetLibraryFromPath (string).
This method will get the library name based on a path. The code for this is as follows:

protected string GetLibraryFromPath (string path)
{
return path.Replace(_defaultlibrarylLocation + "\\", &
")
}

To add PowerShell support to this NavigationCmdletProvider parameter, over-
ride IsValidPath (string). This code determines whether a path is valid. The
following code states that paths that are null or empty, as well as paths specified as
Invalid, are invalid:

protected override bool IsValidPath(string path)
{
bool IsvValid = true;
if (string.IsNullOrEmpty (path))
IsValid = false;
else
{
PathType pathType = GetTypeFromPath (path) ;
if (pathType == PathType.Invalid)
IsvValid = false;
}
return IsValid;

}

Although this is what you are using for the definition of valid in this example, you
can include the logic for any particular pattern and define a path’s validity based on
your own business requirements.

The following code determines whether an item is a container:

protected override bool IsItemContainer (string path)

{

CREATE YOUR OWN PROVIDER

bool IsContainer = true;

PathType ContainerPathType = GetTypeFromPath (path) ;

if (ContainerPathType == PathType.Invalid)
IsContainer = false;
return IsContainer;

}

Code needs to be in place to determine whether an item exists. This code is run at
various points, including whenever you try to use tab completion and when you run
a directory listing on the current folder. In this case, based on the path type, you are

checking to see whether the library exists:

protected override bool ItemExists(string path)
{
PathType pathType = GetTypeFromPath (path) ;
bool TestPath = false;
if (pathType == PathType.Invalid)
TestPath = false;
else
{
switch (pathType)
{
case PathType.Root:
TestPath = true;
break;
case PathType.Library:
try
{
ShellLibrary lib = &
ShellLibrary.Load(path, false);
TestPath = true;
}
catch
{
TestPath = false;
}
break;
default:
TestPath = false;

break;

333

Providing for
PowerShell

APPENDIX C

334 APPENDIX C * PROVIDING FORPOWERSHELL

}
return TestPath;

}

Executing dir on a path runs the Get-ChildItem cmdlet. Use the following code
to support Get-ChildItem in your provider

protected override void GetChildItems«?
(string path, bool recurse)
{
if (HasChildItems (path))
{
PathType pathType = GetTypeFromPath (path) ;
switch (pathType)
{
case PathType.Root:
string[] Files =&
Directory.GetFiles (e
Path.Combine (_defaultlibraryLocation, path), ¢
"xv 4+ libraryExtension);
foreach (string FileName in Files)
{
FileInfo FileDetails = new &
FileInfo (FileName) ;
PSDriveInfo thisDriveInfo = new &
PSDriveInfo (FileDetails.Name.Replace(_libraryExtension,
""), this.ProviderInfo, FileName, 2
FileDetails.Name.Replace(_libraryExtension, "") +&3
" Library", PSCredential.Empty) ;
WriteItemObject (thisDriveInfo, 3
Path.Combine (path, FileName), true);
}
break;
case PathType.Library:
string LibraryName =
GetLibraryFromPath (path) ;
ShelllLibrary lib = ShellLibrary.Load(path, <3
_defaultlibraryLocation, false);

WriteItemObject (lib, path, true);

CREATE YOUR OWN PROVIDER

break;
case PathType.Invalid:
default:

WriteWarning ("This has not been implemented.");
break;

}

If the path has child items, then the child items will be listed. Otherwise, nothing is
done. The HasChildItems code is as follows:

protected override bool HasChildItems (string path)
{
bool HasChildren = false;
PathType pathType = GetTypeFromPath (path) ;
switch (pathType)
{
case PathType.Root:
string[] Files = Directory.GetFiles (e
Path.Combine (_defaultlibraryLocation, path), e
"xv + JlibraryExtension);
if (Files.Length > 0)
HasChildren = true;
break;
case PathType.Library:
ShellLibrary lib = ShellLibrary.Load(path, €
false);
if (1lib.Count > 0)
HasChildren = true;
break;
case PathType.Invalid:
default:
WriteWarning ("Cannot determine child items.e3
Not implemented.");
break;
}

return HasChildren;

335

Providing for
PowerShell

APPENDIX C

336 APPENDIX C * PROVIDING FORPOWERSHELL

The GetChildItems code is displaying the Library names if the path is Root. If
you are running dir on a Library, it should output the list of items. Otherwise, it
will display the warning that the feature hasn’t been implemented. This is done to
add some simplicity to this example. WriteItemObject (object item, string
path, bool isContainer) is the way to write objects to the PowerShell session
when dealing with GetChildItems.

USING WARNING MESSAGES

When writing a provider, it might help to see when these methods are called. Try using
the following command in your methods to tell when a method is getting called:

WriteWarning ("MethodName") ;

An example of this is shown here.

B C\Windows\System32\WindowsPowerShellwl.0\powershell.exe |£I&J

:N\Documents> dir
ItemExists
ItemExists

: ItemExists
G: GetChildItenms
: ItemExists
:\Documents> _

Finally, for those piecing these snippets together in Visual Studio while reading this,
make sure to include the closing brackets for the class and the namespace declara-
tions, as follows:

}
}

NOTE Thisexample simply shows the general layout of a provider. This book’s com-
panion web page offers a more complete version of this code.

]

CREATE YOUR OWN PROVIDER

With the little work you have done so far, you have a provider to navigate the
Libraries. If you want to create, delete, and work further with libraries, continue to

Appendix D. If you are eager to deploy your provider, look at Appendix E, where
you can learn about snap-ins and modules.

If you are more comfortable in PowerShell than in C#, you may want to check out
the PowerShell Script Provider at http: //psprovider.codeplex.com/ .

Now that you have built a sample provider, use this as a guide for when you are
ready to create your own provider.

337

Providing for
PowerShell

APPENDIX C

APPENDIX

Custom Cmdlets and
Advanced Functions

IN THIS APPENDIX, YOU WILL LEARN TO:

> CHOOSE BETWEEN AN ADVANCED

FUNCTION AND A CMDLET 340
Parameters and Attributes. 340
OULPUL. et e e e e 346
RuntimeLifeCyclecooviiiii i 347
> CREATE AN ADVANCED FUNCTION 348

> CREATE A CUSTOM CMDLET 349

d XidN3ddV

Ithough you can do plenty of things with existing commands, you may find a need
that is not fulfilled by any existing commands. This is when you need to look into
advanced functions and custom cmdlets. The first thing you will look at in this
appendix is how to decide which to use.

After comparing and contrasting cmdlets and functions, I will show how you can
create advanced functions to fill some of the gaps you saw earlier. Specifically, you
will improve on the Get-Function example used in Chapter 4.

In Appendix C, I covered writing a custom provider for the libraries feature in
Windows 7. In this appendix, you will create some custom cmdlets to work with
those libraries. Finally, in Appendix E, you will deploy your cmdlets and provider
from the previous appendixes.

Choose Between an Advanced Function and a Cmdlet

Functions and cmdlets may seem similar in functionality, but they are created
differently. Functions are scripts written in PowerShell, whereas cmdlets are typi-
cally written in a .NET language and then compiled. Although you have to use

the verb-noun naming convention for cmdlets, it is not mandatory to follow that
convention for functions. Cmdlets and advanced functions are also similar in many
ways, including attributes, parameters, output, and runtime life cycle.

Parameters and Attributes

Both custom functions and custom cmdlets use attributes to identify important
parts of their code. The CmdletBinding attribute of functions — introduced

in PowerShell 2.0 — is similar to the Cmdlet attribute of cmdlets. If you use the
CmdletBinding attribute on a function and create an advanced function, you
unlock a lot of the Cmdlet capabilities and features. Both cmdlets and advanced
functions use the Parameter attribute to mark their parameters, specifying more
details via attribute keywords. Although these attribute keywords are optional,
they are beneficial to use. Table D.1 shows the shared attribute keywords for the
Parameter attribute.

CHOOSE BETWEEN AN ADVANCED FUNCTION AND A CMDLET

TABLE D.1 Parameter attribute keywords

eport oo

Mandatory

Position

HelpMessage

ParameterSetName

ValueFromPipeline

ValueFromPipelineByPropertyName

ValueFromRemainingArguments

HelpMessageBaseName

HelpMessageResourcelID

Notes whether a parameter is required when the
command is run. If this is omitted, the parameter is
optional.

Specifies the order of the parameter in the command.

If this is omitted, the parameter is considered a

named parameter and must be referenced by name in
commands. If the position is stated, the parameter is
considered a positional parameter and does not need its
name specified.

Provides a message to be displayed within context.

For example, if you run a cmdlet that has parameters
without its parameters, you may get prompted for the
parameter values. This message is displayed then. Note
that this is not the message that is displayed when you
run Get-Help.

Specifies the parameter set for a parameter. For more
information, see the note on parameter sets later in this
appendix.

Specifies whether the value can come from an incoming
pipeline object.

Specifies whether the value can come from a property
of an incoming pipeline object.

Specifies whether the parameter accepts all remaining
arguments for this parameter.

Specifies the name of a resource assembly that has help
messages for international support. If this is used, the
HelpMessageResourceID attribute keyword must
also be used. Note that this message is displayed only
when the command is run and does not appear when
you run Get-Help.

Specifies the resource identifier for the help message.

When creating parameters, be it for a cmdlet or an advanced function, you can-

not use certain parameter names because they belong to common parameters,

341

Custom Cmdlets
and Advanced

w
<
2
-
v
<
S
™S

APPENDIXD

x

342 APPENDIX D * CUSTOM CMDLETS AND ADVANCED FUNCTIONS

parameters added to all cmdlets, and CmdletBinding functions at runtime by
default. Those names include the following:

» Confirm

» Debug

» ErrorAction

» ErrorVariable
» OutVariable

» OutBuffer

» UseTransaction
» Verbose

» WarningAction
» WarningVariable
» WhatIf

There are a couple other things to be aware of when creating parameters. The
parameter needs to be marked as public in cmdlets to be seen by PowerShell. If a
parameter is not marked public, it is recognized as internal and cannot be seen
by PowerShell. Also, type selection makes a huge difference in terms of validation.
Use .NET types rather than assigning all of your parameters to a string in order to
get effective validation.

You can also use the Alias attribute to create aliases for a parameter. Suppose you
have a parameter named Overwrite. You may want to use shorter versions in the
command line, such as OW or Ovrwrt. Use the Alias attribute to specify these
aliases in a comma-delimited string, as shown here:

[Alias ("OW, Ovrwrt")]
[Parameter ()]
public SwitchParameter Overwrite
{

get { return _overwrite; }

set { _overwrite = value; }

CHOOSE BETWEEN AN ADVANCED FUNCTION AND A CMDLET

SWITCH PARAMETERS

The previous code sample shows a parameter of the type SwitchParameter. If this
type of parameter is present in the command line, then the value is true. Otherwise,
when omitted, the parameter is false. This is good for cases when something is either
true or false. For cases where a value may be true, false, or unspecified, use a nullable
Boolean (Nullable<bool>) parameter. This is a recommendation in Microsoft’s
“Strongly Encouraged Development Guidelines” documentation, which is available
here:

http://msdn.microsoft.com/en-us/library/dd878270 (VS.85) .aspx

A unique feature of PowerShell is the ability to work with parameter sets. These
parameter collections give the ability to return different results based on the sup-
plied parameters. Although you can use multiple parameter sets, each set must have
at least one unique parameter. It does not have to be specified for commands that
can run without parameters, but it is preferred to use a mandatory parameter as the
unique parameter. If multiple positional parameters are included in a parameter set,
then their positions will have to be explicitly declared in the parameter set — one
parameter per position. If a parameter is not marked as part of a specific parameter
set, it will appear in all sets. Finally, with regard to taking values from the pipeline,
multiple parameters can be marked with ValueFromPipel ineByPropertyName
set to true; however, only one parameter can be marked with ValueFromPipeline
set to true.

When using multiple parameter sets, you can set a default parameter set using the
DefaultParameterSetName cmdlet attribute. The cmdlet attributes, which come
from CmdletBindingAttribute for advanced functions and CmdletAttribute
for cmdlets, define the cmdlet name and some cmdlet capabilities. Table D.2
describes these attributes and which types support each one.

In addition to parameter and cmdlet attributes, cmdlets and advanced functions
also share validation attributes. These help validate the parameters before attempt-
ing to use them. Table D.3 describes the validation attributes.

343

Custom Cmdlets
and Advanced
Functions

APPENDIXD

344

APPENDIX D -

CUSTOM CMDLETS AND ADVANCED FUNCTIONS

TABLE D.2

TABLE D.3

Cmdlet attributes

VerbName

NounName

SupportsTransactions

SupportsShouldProcess

ConfirmImpact

DefaultParameterSetName

Validation attributes

Name of the cmdlet verb. This is
required for cmdlets.

Name of the cmdlet noun. This is
required for cmdlets.

Indicates whether the cmdlet
can be used in transactions — a
feature that allows you to group
actions and then run them
together and commit the actions
only if all actions complete
successfully. This is optional.

Indicates whether the

cmdlet supports calls to the
ShouldProcess method. This is
optional. An example is provided
in the “Create a Custom Cmdlet”
section of this appendix.

Sets a threshold for calling to the

ShouldProcess. This is optional.

An example is provided in the
“Create a Custom Cmdlet” section
of this appendix.

Sets the default parameter set
name. This is optional.

CmdletAttribute

CmdletAttribute

CmdletAttribute,
CmdletBindingAttribute

CmdletAttribute,
CmdletBindingAttribute

CmdletAttribute,
CmdletBindingAttribute

CmdletAttribute,
CmdletBindingAttribute

Name ________________Joesarptin __________|

Allows a parameter to have a null value. This can
be helpful if you want the parameter to have a
null value and PowerShell’s type conversion isn’t
treating the $null input as expected.

AllowNull

AllowEmptyString

AllowEmptyCollection

ValidateNotNull

ValidateNotNullOrEmpty

Allows a parameter to be an empty string (" "),
even if it is mandatory.

Allows a parameter to be an empty collection, even

if itis mandatory.

Does not allow a parameter to have a null value.
Empty values are allowed.

Does not allow a parameter to have a null or empty

value.

CHOOSE BETWEEN AN ADVANCED FUNCTION AND A CMDLET 345

N [

ValidateCount Sets the minimum and maximum numbers of
arguments for the parameter. For example, if a
parameter should take two to four arguments,
you would note it with the following attribute:
[ValidateCount (2,4)].

ValidateLength Sets the minimum and maximum parameter
length. For example, if you had a 128-bit IPv6
address written in hexadecimal with colons
as a parameter, it should be no longer than 39
characters. This attribute would be noted as
[ValidateLength(0,39)].

ValidatePattern Uses a regular expression to verify that the
parameter matches a particular pattern. If
the parameter is a collection, each item in
the collection must match the pattern. For
example, if you had to validate a parameter
for a port number, you could use the attribute
[ValidatePattern("~\d*$")] to verify the
value is solely digits. If the parameter does not
match the pattern, PowerShell will generate an error.

ValidateRange Sets the minimum and maximum values
acceptable for the parameter. For example,
if you had a script checking individual octets
of an IPv4 address, you would want a value
between 0 and 255. The attribute would look like
[ValidateRange (0,255)].

ValidateSet Sets a specific set of values that are acceptable for
the parameter. For example, if you are writing a
script to check a user’s groups, you may want to
specify that only administrators and power users
can do a particular action. If you have a user group
parameter, you could validate it like so:

[ValidateSet ("Administrators",
"Power Users")].

Custom Cmdlets
and Advanced

w
<
2
-
v
<
S
™S

x

ValidateScript Sets a script to handle the parameter validation. When
regular expressions, ranges, lengths, and counts are
not enough, you may need to use a script to validate
the parameter. Using the IPv4 octets example, you
could also use [ValidateScript ({$_ -le 255
- and $_ -ge 0})1.

Something else to keep in mind with PowerShell parameters is the concept of
dynamic parameters. These special parameters appear only when certain conditions
are met. As mentioned in Appendix C, the CodeSigningCert parameter appears

346 APPENDIX D * CUSTOM CMDLETS AND ADVANCED FUNCTIONS

only when the Path parameter references the cert: path. You can create dynamic
parameters based on your business requirements.

Output

Although parameters are helpful for getting user input, there is also the question
of output. Cmdlets and advanced functions have similar ways for writing output.
Table D.4 describes some of these writing cmdlets.

TABLE D.4 Writing methods

ame e

WriteCommandDetail Writes a string to the execution log. To see this in the Windows
PowerShell log, make sure that LogPipelineExecutionDetail
is turned on. Once that is turned on, these entries will appear under
“Pipeline execution detail.”

WriteDebug Writes a string to the host. This allows you to provide debugging
information for their cmdlets.

WriteError Writes an ErrorRecord of nonterminating errors to the error
pipeline and continues processing. If you have an error that causes
termination, look into using the ThrowTerminatingError
method.

WriteWarning Writes a warning string to the host. Although the output is normally
discarded, it can be seen with -Verbose and -Debug command
options or configured by the $WarningPreference shell variable.

WriteProgress Writes a ProgressRecord of the command to the host.

WriteObject Writes an object to the output pipeline. Note that this returns a single
object, which can include an enumerable object.

WriteVerbose Writes a user-level message to the host. This should not be used for
error messages, but it can be used to let a user know what is going on
while a command is processing.

The following example shows the different ways that some of these Write methods
display their output (see Figure D.1):

[Cmdlet (VerbsCommunications.Write, "Sample")]
public class WriteExamples : Cmdlet
{
protected override void ProcessRecord()
{
WriteDebug ("This is debugging information");

WriteWarning ("This is a warning");

CHOOSE BETWEEN AN ADVANCED FUNCTION AND A CMDLET

FIGURE D.1

WriteVerbose("This is verbose");
WriteObject (this);

Write-Sample example

PS C:\> Hrite-Sample -Verbose -Debug
DEBUG: This is debugging information

Confirm

Continue with this operation?

[Y] Yes L[A] Yes to All [H] Halt Command [S5] Suspend
[?7] Help(default is "Y"):

WARNING: This is a warning

Confirm
Continue with this operation?

[Y] Yes [A] Yes to All [H] Halt Command [S] Suspend
[?] Help(default is "Y"): A

VERBOSE: This is verbose

Stopping CommandRunt ime CurrentPSTrans CommandOrigin
action

False HWrite-Sample

E3 CAWindows\System32\WindowsPowerShell\wl.0\powershell.exa | =NAEl X

m »

Runtime Life Cycle

TABLE D.5

In addition to attributes and parameter functionality, advanced functions and cmd-
lets also have a similar runtime life cycle, as seen with the input processing methods.
When these commands are run, they execute code in the order shown in Table D.5.

Life cycle of input processing methods

Starting BeginProcessing Begin

Processing ProcessRecord Process

Ending EndProcessing End

Stopping (when the cmdlet is StopProcessing N/A (currently not supported in
stopped in the middle of running, advanced functions)

for example, by pressing Ctrl+C)

You can write a simple function without referencing these methods, but it helps
to tap into these methods to inject logic to handle parameters, for example, before

Custom Cmdlets
and Advanced
Functions

347

348 APPENDIX D * CUSTOM CMDLETS AND ADVANCED FUNCTIONS

processing the action. Another time this can be helpful is if you are trying to debug
a function and want to see whether it is hitting each of these phases; you could
insert write statements to write out something in each phase to indicate that the
function made it through that phase. A simple example and its output of this is
shown here (see Figure D.2):

function DoStuff{
Begin{
Write-Host "Beginning DoStuff"
}
Process{
Write-Host "Processing DoStuff"
}
End{
Write-Host "Ending DoStuff";

}

FIGURE D.2 Lifecycleinaction

Ps C:\windows\system32> DoStuff
Beginning DoStuff

Processing Dostuff

Ending Dostuff

How can you determine which to use when the CmdletBinding attribute
makes functions complementary to cmdlets? If you want to unlock the power
of NET and work with .NET libraries that may not have been designed for
PowerShell, you will need to use a cmdlet written in a .NET language that can

be compiled.

As mentioned throughout this book, PowerShell comes with a wealth of help. If you
want to learn more about functions vs. cmdlets, run Get-Help about_Functions_
Advanced and Get-Help about_Functions_CmdletBindingAttribute.

Create an Advanced Function

In Chapter 4, I noted that there is no Get-Function cmdlet in PowerShell.
However, I showed how to create a function to list all the functions with this code:

Function Get-Function { Get-ChildItem -path function: }

CREATE A CUSTOM CMDLET

Although this function is helpful for listing functions in general, it does not support
wildcards. If you tried running Get-Function m*, you would still get a list of all
the functions, not functions whose names start with the letter m. This is because
the code between the brackets does not take any user input into consideration.
However, now that you have an understanding of parameters, you can create a func-
tion with a parameter to take in user input. Using the building blocks from this
appendix and throughout this book, you can come up with something like this:

Function Get-Function{

Param (

[parameter (Mandatory=Strue,
ValueFromPipeline=Strue)]

[String[]]

$FunctionName

)

Get-ChildItem -path function: |
Where-Object {$_.Name -like S$FunctionName}
}

Now, if you run Get-Function m*, you should get something similar to
Figure D.3.

FIGURE D.3 Get-Function withwildcard support

PS C:\> Get-Function m*

CommandType Name pefinition
Function M: Set-Location M:
Function mkdir

Function more $_

While writing your custom functions, you may want to find out more about what you are
working with. Get-Help about_Functions_Advanced Methods and Get-Help
about_Functions_Advanced_Parameters cover more about these building blocks.

Create a Custom Cmdlet

The focus of this book is on Windows Server 2008 R2, but you may find yourself
dealing with Windows 7 clients. In Appendix C, I showed how to create a provider
to work with Windows 7’s libraries feature. Now I'll show how to create some

349

Custom Cmdlets
and Advanced
Functions

APPENDIXD

350 APPENDIX D * CUSTOM CMDLETS AND ADVANCED FUNCTIONS

cmdlets to work with the Windows 7 libraries feature using the building blocks
described in this appendix.

To work with these libraries, you need to include a reference to the Windows API
Code Pack for Microsoft .NET Framework, which you can download here:

http://code.msdn.microsoft.com/WindowsAPICodePack

These examples are written in C# and are being stored in a . cs file. The frame of
the . cs file looks like this:

using System.IO;
using System.Management.Automation;
using Microsoft.WindowsAPICodePack;

using Microsoft.WindowsAPICodePack.Shell;

namespace Win7LibraryProvider
{

// put cmdlet code here

}

What are some of the things you may want to do with these Windows 7 libraries
from PowerShell? Creating a new library and removing a library are a couple of the
common tasks that you may want to do. This first custom cmdlet will create a new
library, which is why the cmdlet is named New-Library:

[Cmdlet (VerbsCommon.New, "Library")]
public class NewLibrary : Cmdlet
{
private string _libraryname;
private string _path;

private bool _overwrite;

[Parameter (Mandatory = true, <3
HelpMessage = "Name of the library to create", &
Position = 0)]
[ValidateNotNullOrEmpty]
public string LibraryName
{
get { return _libraryname; }

set { _libraryname = value; }

CREATE A CUSTOM CMDLET

[Parameter (HelpMessage = "Folder path to createed
the library (optional)")]
public string FolderPath
{
get { return _path; }
set { _path = value; }

[Parameter (HelpMessage = "Whether to overwriteed
an existing library (optional)")]
public SwitchParameter Overwrite
{
get { return _overwrite; }

set { _overwrite = value; }

protected override void ProcessRecord()
{
ShellLibrary library;
if (string.IsNullOrEmpty (FolderPath))
library = new ShelllLibrary (LibraryName, <3
Overwrite) ;
else
library = new ShellLibrary (LibraryName, <3
FolderPath, Overwrite);
}
}

The bulk of the code in this case is consumed by setting up the param-

eters. The first parameter — LibraryName — is a mandatory string that will
always be the first parameter. Since the library needs a name, 'm using the
ValidateNotNullOrEmpty attribute to tell PowerShell that this must be filled in.
If this parameter is null or empty, you will get an error like Figure D.4.

The second parameter in the code is the FolderPath string, which is an optional
parameter to set the path of the library. The third parameter is the Overwrite
switch parameter, specifying whether to overwrite an existing library.

Once the parameters are specified, then you get into the actual action done by the
cmdlet via ProcessRecord. If the FolderPath string is null or empty, the library
is created in the default location. Otherwise, it is created in the specified path.

351

Custom Cmdlets
and Advanced
Functions

APPENDIXD

352

APPENDIX D

CUSTOM CMDLETS AND ADVANCED FUNCTIONS

FIGURE D.4 \Validation error

=

B3 C:\Windows\System32\WindowsPowerShell\wl.0\powershell.exe
PS C:N\windowsN\system3Z> New-Library

m.| »

cmdlet New-Library at command pipeline position 1
Supply values for the following parameters:

(Type '? for Help.)

LibraryName:

PS C:“windows\system32> _

The HelpMessage attribute keyword is used for adding the text seen when looking
for help with a cmdlet. This appears only as part of the help prompts and does not
appear when Get-Help is run. Figure D.5 shows this help output.

FIGURE D.5 HelpMessage inaction

EE—

B4 cAWindows\System32\WindowsPowerShellwl.0\powershell.exa
PS C:\Windows™~system> New-Library

cmdlet New-Library at command pipeline position 1
Supply values for the following parameters:
(Type 7?7 for Help.)
LibraryName: 7
Name of the library to create
LibraryName: eBooks
S C:\HindowsN\system?> .

m| »

Although the New-Library example shows some of the basics of custom cmdlets,
there are more things that can be done with a custom cmdlet. If you can add librar-
ies, then you should be able to remove them as well. Since removing a library cannot

CREATE A CUSTOM CMDLET 353

be undone, it would be helpful to require confirmation from the user before actually
removing the library. The following code for a Remove-Library cmdlet will do that:

[Cmdlet (VerbsCommon.Remove, "Library",
SupportsShouldProcess = true,
ConfirmImpact = ConfirmImpact.High)]
public class RemoveLibrary : Cmdlet
{
private string _libraryExtension = ".library-ms";
private string _defaultlibrarylLocation = &
ShellLibrary.LibrariesKnownFolder.Path;
private string _librarylocation;

private string _libraryname;

[Parameter (Mandatory = true, 3
HelpMessage = "Name of the library to remove",
Position = 0)]

[ValidateNotNullOrEmpty]

public string LibraryName

{

get { return _libraryname; }

wv
L
i = . 9 T
set { _libraryname value; } 5 9
} Ec ,
U B =
£35S
e=x%g
[Parameter (HelpMessage = "Location of the library to é E E
remove")]

APPENDIXD

public string LibraryLocation
{
get { return _librarylocation; }

set { _librarylocation = value; }

protected override void ProcessRecord()

{

if (base.ShouldProcess("",
"Removing library '" + LibraryName + 3
"', This CANNOT be undone.", "Removing a Library"))

{
if (string.IsNullOrEmpty(_librarylocation))

354 APPENDIX D * CUSTOM CMDLETS AND ADVANCED FUNCTIONS

File.Delete (e
Path.Combine (_defaultlibraryLocation, LibraryName) +e3
_libraryExtension) ;

else

File.Delete (L
Path.Combine(_librarylocation, LibraryName) +¢3
_libraryExtension) ;

}

}

A few things factor into displaying the confirmation message. The
SupportsShouldProcess attribute keyword indicates that the cmdlet supports
ShouldProcess, which is the method that requests confirmation before proceed-
ing. The ConfirmImpact attribute keyword — new in PowerShell 2.0 — indicates
how much of an impact the operation will make, based on what the developer
thinks. For this example, ConfirmImpact is set to High since the action removes
a file structure and cannot be undone. This keyword should be used only if
SupportssShouldProcess is set. By including SupportsShouldProcess and
ConfirmImpact, you enable the -whatif and -confirm parameters.

Although these are only a couple of custom cmdlets, you may want to see what other
cmdlets can be created to work with these libraries, such as for adding and remov-
ing locations to a library, listing the locations in a library, and changing the location
of the library’s default folder. Be sure to check the online companion site for other
custom cmdlets to work with the Windows 7 libraries feature (see Figure D.6). The
online examples also cover some of the topics mentioned in this appendix in more
detail.

FIGURE D.6 Cmdletson the online companion

[Cmdlet(VerbsCommon.Add, "Librarylocation")]
public class AddLibrarylocation : Cmdlet]. ..

[Cmdlet(VerbsCommon.Remove, "Librarylocation")]
public class Removelibrarylocation : Cmdlet|...

[Cmdlet(VerbsCommon.Get, "LibrarylLocation™)]
public class Getlibrarylocation : Cmdlet|...

[Cmdlet(VerbsCommon.Set, "Librarylocation™)]
public class Setlibrarylocation : Cmdlet|...

CREATE A CUSTOM CMDLET

DISPLAYING CMDLET CONFIRMATION WITH CONFIRMIMPACT

Although ConfirmImpact allows for the -confirm parameter, it does not necessarily
mean that the confirmation will appear by default. The trick to getting the confirmation to
appear is for your cmdlet to have an equal or higher ConfirmImpact value compared to the
PowerShell session’s $§ConfirmPreference value, which is High by default. For example,
if your cmdlet’s ConfirmImpact is set to Mediumand you try to run it in your PowerShell
session, the confirmation will not appear, because the cmdlet’s ConfirmImpact is lower
than the $ConfirmPreference. However, if your cmdlet’s ConfirmImpact is set to High,
the confirmation will appear because the cmdlet’s Conf i rmImpact is higher than or equal
to the $ConfirmPreference. Suppose you use the code for the Remove-Library cmdlet
and set its ConfirmImpact to Medium. The following example shows what happens when
the ConfirmImpact value is higher than the $ConfirmPreference value, what happens
when the ConfirmImpact valueis lower than the $ConfirmPreference value with the
-confirm parameter, and finally what happens when ConfirmImpact is lower than the
$ConfirmPreference without the -confirm parameter.

£3 CAWindows\System32\WindowsPowerShelltv1.0\powershell.exe EE—

C:\windowsN\system32? %$ConfirmPreference = "Low"
C:~windows\system32> Remove-Library eBooks

| »

moving a Librar

moving library ’eBooks’. This CANNOT be undone.

] Yes [A] Yes to All [N] No [L] No to All

1 Suspend[?] Help (default is "Y"): N
C:\windows\system3Z>

C:~windows\system32> %$ConfirmPreference = "High"
C:~windowsssystem32> Remove-Library eBooks -confirm

]
S
e
e
¥
]
S
]
S

emoving a lerary

emoving library 'eBooks’'. This CANNOT be undone.
Y]l Yes [A] Yes to All [M] No [L] No to All

S1 SuspendE?] Help (default is "¥Y"): N

S windows\system32>

S C “windows\system32> Remove-Library eBooks

S C:\windowsN\system32> _

VUUO4 UUUmAdd Uy

Now that you have an understanding of what it takes to build your own functions
and cmdlets, use the examples here as guides for creating your own custom func-
tions and cmdlets. To learn more about distributing your custom functions and
cmdlets, see Appendix E.

355

Custom Cmdlets
and Advanced
Functions

APPENDIX

Packaging PowerShell
Extensions

IN THIS APPENDIX, YOU WILL LEARN TO:

> WORK WITH EXISTING SNAP-INS 358
> CREATE A CUSTOM MODULE 361
Understand Module Concepts.........vvvvivneineinnnnn... 361

368

BuildYourModule ...t

1 XIANiddV

hile working with PowerShell, you may become comfortable enough to extend it to
meet your business needs. If so, you can develop custom providers, cmdlets, and
functions to share with other people. Perhaps you looked at the sample provider

in Appendix C or the sample functions and cmdlets in Appendix D and wondered
how you could export them to your own machine to work with them.

In PowerShell 1.0, the packaging mechanism for custom extensions was the snap-in.
In PowerShell 2.0, modules replace snap-ins. This chapter explores the difference
between snap-ins and modules and how to create custom modules. This chapter
also shows how to package custom functions for reuse.

Work with Existing Snap-ins

Although snap-ins still work in PowerShell 2.0, they are considered to be the old
way of packaging extensions. It was the way to package custom cmdlets and provid-
ers in PowerShell 1.0. However, until Microsoft teams and third parties release their
snap-ins as modules for PowerShell 2.0, you may sometimes find yourself needing
to work with the snap-ins and their related cmdlets in PowerShell.

Snap-ins — including snap-ins for IIS 7.0, SQL Server, and Exchange — have to
be installed and registered on the server before you can use them. You may need
administrative rights to install a snap-in.

INSTALLING AND REGISTERING A SNAP-IN

Snap-ins need to be installed and registered via InstallUtil.exe. This installer
program comes as part of the .NET Framework. It helps to create an alias to work
with installutil from a PowerShell session. To create the alias, use the following
command:

Set-Alias installutil
$env:windir\Microsoft .NET\Framework\ e
v2.0.50727\installutil

To install the snap-in from a PowerShell session with this alias, use the following syntax:

installutil SnapInDLLName.dll

To see all snap-ins loaded for the current session, use the following command:

Get-PSSnapIn

WORK WITH EXISTING SNAP-INS 359

Figure E.1 shows some of the snap-ins that come installed with PowerShell.

FIGURE E.1 Get-PSSnapIn

3 administrator: Windows PowerShell

MNane : Microsoft.PowerShell.Diagnostics

PSUersion 2.

Description : Thisz Windows Powerfhell snap—in contains Windows Eventing an
d Performance Counter cmdlets.

MNane : Microsoft.WSMan.Management

PSUersion SR

Description : This Windows Powerfhell snap—in contains cmdlets <{such as Ge
t-WSHManInstance and Set-WSManInstance?» that are used by the
Windows Power8hell host to manage WSMan operations.

Mane : Microsoft.PowerShell.Core

PSUersion 8 #s

Description : This Windows Powerfhell snap—-in contains cmdlets used to man
age components of Windows PowerShell.

Nane : Microsoft._Powerfhell Utility

PSUersion = 2.

Description : This Windows Powerfhell snap—in contains uwtility Cmdlets use
d to manipulate data.

: Microsoft.PowerShell Host

To see all snap-ins registered on the server and not included by the PowerShell
installation, use the following command. The example in Figure E.2 shows the
CloudBerry Explorer snap-in, used for Amazon S3 cloud management, as a
registered snap-in.

Get-PSSnapIn -Registered

FIGURE E.2 Get-PSSnapIn -Registered

2 windows Powershell
PS C:s\Windows™\System32> Get-PSSnapin —Registered

Mane : CloudBerryLab.Explorer.PSSnapln
PSUersion : 2.
Description : CloudBerry Explorer snap—in for PowerShell

PE C:s\MWindows~System32> _

Packaging
PowerShell
Extensions

APPENDIX

To add a snap-in to the current PowerShell session, use the following command:

Add-PSSnapIn PSSnapInName

360 APPENDIX E * PACKAGING POWERSHELL EXTENSIONS

Using the CloudBerry example, the command is as follows:

Add-PSSnapIn CloudBerryLab.Explorer.PSSnapIn
Since snap-ins are used to package extensions, you may want to see what is
included in a particular snap-in. To see the contents of a snap-in, use the following
command:

Get-Command -PSSnapIn PSSnapInName
Using the CloudBerry example, the command is as follows:
Get-Command -PSSnapIn CloudBerryLab.Explorer.PSSnapIn

Figure E.3 shows the output from the previous command.

FIGURE E.3 Get-Command forthe CloudBerry snap-in

B windows PowerShell

CommandT ype Name

Add—CloudContentT ype Add—ClouwdContentType [-Ex...
Add—-CloudFolder Add-CloudFolder [-MNamel <...
Add-CloudHeader Add-CloudHeader [-Namel <
Add-CloudItemHeaders Add-CloudItemHeaders [[-F
Add-CloudItemPermission Add-CloudItemPermission [
Copy—Cloudltem Copy—CloudIltem [—Destinat
Copy—CloudSuyncFolders Copy—CloudSuyncFolders [-
Get—CloudContentTypes Get—ClouwdContentTypes [
Get—CloudFilesystemConnection Get—CloudFilesystemConnec
Get—CloudItem Get—CloudItem [[-Filterl
Get—CloudItemACL Get—CloudItemACL —Item <C
Get—CloudItemHeaders Get—CloudltemHeaders -It
Get—CloudRootFolder Get—CloudRootFolder [—Con
Get—Cloud83Connection Get—Clouwd83Connection [
Get—CloudlUrl Get—CloudlUrl [[-Filterl <
Move—CloudItem Move—CloudItem [—Destinat..
New—-CloudBucket New—CloudBucket [-MNamel <
New-CloudHeaders New—CloudHeaders [-Header
New—CloudPolicy Hew—CloudPolicy [-Private
Remove—CloudBucket Remove—CloudBucket Name
Remove—CloudItem Remove—CloudItem [-Filter.

With the advent of PowerShell 2.0, many snap-ins can be treated like binary
modules — DLL files that contain cmdlet classes. This means you can import a
snap-in rather than installing it on the machine. This also means you can pull in
snap-ins without having administrative rights. As long as you know the location of
the snap-in DLL, you can try running the following command:

Import-Module PathToSnapInDLL\SnapInDLLName.dll

Although many snap-ins may load properly this way, there are a few things to keep
in mind. For example, a snap-in could set up custom formats or configurations
that may not be included via Import-Module. If a snap-in has dependencies, the
dependencies will not be included by Import-Module. However, you can fix some
of these problems with a file; see the “Manifest File” section later in this chapter.

CREATE A CUSTOM MODULE 361

Create a Custom Module

Modules, introduced in PowerShell 2.0, make it easier to package PowerShell
extensions. Chapter 3 discussed how to work with modules. The benefits to using
modules rather than snap-ins include the following:

Portability Modules can be imported by their full paths. This means you can
copy modules you commonly use to a portable hard drive, USB stick, or memory
card and import them from whichever computer you are working with, as long as it
has PowerShell 2.0 installed.

Greater Amount of Supported Members Snap-ins include cmdlets and pro-
viders. Modules include functions, variables, aliases, and more, in addition to cmd-
lets and providers.

Ease of Import Unlike snap-ins, modules do not require administrative access to
use. Snap-ins had to be installed before use; modules do not have this problem.

With your custom extensions, you should take advantage of these benefits.

Understand Module Concepts

Before building your own module, you should understand what types of modules
are available, where modules are stored, how a manifest file works, and how to write
help for the module.
Types of Modules
PowerShell modules come in different forms:
» Binary modules

» Script modules

ckaging
owerShell
xtensions

» Manifest modules

©
. APPENDIX E
» Dynamic modules _

Binary modules are compiled .NET code assemblies that contain cmdlets. These

P
P
E

files have the .d11 file extension. By default, all cmdlets in a binary module are
exported. However, exported cmdlets can be controlled by a manifest file. An exam-
ple of a binary module is the module created later in this chapter for the Windows 7
libraries provider and cmdlets, as discussed in Appendixes C and D.

362 APPENDIX E * PACKAGING POWERSHELL EXTENSIONS

Script modules are modules written in PowerShell code. These files use the .psml
file extension. Script modules are especially convenient for those who prefer to work
strictly in PowerShell and not have to rely on another language, such as C#. Since
advanced functions are written in PowerShell, it makes sense to deploy advanced
functions via script modules. The script module later in this chapter will be used to
deploy the advanced functions from Appendix D.

Manifest modules are modules that take a manifest file, described in the “Manifest
File” section later in this chapter, without a root module. These are convenient for
loading assemblies, types, and formats — all noted within keys in the manifest file.

Dynamic modules are modules that are not persistent. Think of these as “modules
on demand.” These modules are created with the New-Module cmdlet and are not
seen with the Get-Module cmdlet, because they are meant to be around for short

periods of time.

Module Storage Locations

In addition to knowing which type of module to use, it also helps to know where
modules are stored. The PSModulePath environment variable stores this infor-
mation. By default, there are two locations — one in the system folder and one
in the user profile. Figure E.4 shows the default module path for a PowerShell 2.0

environment.

FIGURE E.4 ThePSModulePath environment variable

B windows Powershell

PS C +s \System32> Senv:PSModulePath

C:slse itkievicz\DocumentssWindowsPoverShellsHodules ; C:~Mindows system
32-Win werShellsvl .B\Modules™

PS C:hwindowssSystem32> _

If you have a centralized location for your organization’s PowerShell modules,
you will want to add it to the PSModulePath environment variable. For example,

CREATE A CUSTOM MODULE 363

if you store your modules on a server named central in amodules folder and
wanted to permanently update the environment variable, you would update the
PSModulePath permanently with the following command:

[Environment] : :SetEnvironmentVariable ("PSModulePath", &

Senv:PSModulePath + ";\\central\modules", "User")

PERFORMANCE CONCERN WITH PSMODULEPATH

When Get-Module -ListAvailable is run, it recursively searches all locations in
the PSModulePath environment variable. If you add a folder with a lot of files and
subfolders, this command will run slower.

Note that you could also update the environment variable with the following com-
mand, but it would apply only to the current PowerShell session and any PowerShell
sessions spawned from the current PowerShell session.

Senv:PSModulePath = $env:PSModulePath +e2

";\\central\modules"

Also note that although these folders can be named however you like, the folder
structure should look like this:

» ModuleBase (one of the folders in the PSModulePath environment variable)
Module folder
Module files
Figure E.5 shows an example of this folder structure.

In terms of manifest modules, script modules, and binary modules, the Module
folder should typically have the same name as the module.

Packaging
PowerShell
Extensions

One other thing to note is that if you are working with modules in the system loca-
tion, it is advantageous to use Windows PowerShell with administrator privileges,
because you need administrator permissions to read/write from the system folders.

Manifest File

The manifest file, also known as a PowerShell definition file, uses the .psdl file
extension. This optional file stores a variety of information about the module,
including metadata, dependencies, processing notes, and export restrictions. You

364 APPENDIX E *

PACKAGING POWERSHELL EXTENSIONS

can use the New-ModuleManifest cmdlet to generate this file. Table E.1 describes

the keys in a manifest file.

FIGURE E.5 Modulefolderstructure

l SampleScriptModule =] 3
@i I|v| .~ Modules ~ SampleScriptMadule - ml Search SampleScriptModule m
Organize v Sharewith + Mew Folder = o E;l @

- Favorites Documents libra
- y Arrange by: Folder
SampleScriptModule
B Lbraries Mame “ Diate modified | Type
B[] Documents
= '{_ My Documents || samplescriptModule 11942011 11:09 AM PSM
= | WindowsPowerShel L& WinFarmsGUI-Example 2/6{2011 10112 PM Ps11
= . Modules
SamplePSProvider
Public Documents
B ot Music
(=] Pictures
B videos
(8 Computer
?- Metwork.
| | [

, 2 itemns

TABLE E.1 Manifest file keys

ome ——oepion

ModuleToProcess

ModuleVersion

GUID

Author

CompanyName

Copyright

Description

Name of the root module. This will refer to a script or binary module. If
aroot module is not specified, the manifest file is considered the root,
and the module is then considered a manifest module.

Version of the module.

Unique identifier of the module. If the identifier is not specified, New-
ModuleManifest will generate its own GUID.

Name of the author(s) of the module.

Name of the company or vendor responsible for the module. If
unspecified, New-ModuleManifest will default it to Unknown.

Copyright text for the module. If unspecified, the default value takes
the (c) CurrentYear Author. All rights reserved. form.

Description of what is included in the module.

CREATE A CUSTOM MODULE

N L

Minimum version of the PowerShell engine. Acceptable values are 1.0
and 2.0. Versions higher than 2.0 are not enforced. This can be left as

PowerShellVersion

PowerShellHostName

PowerShellHostVersion

DotNetFrameworkVersion

CLRVersion

ProcessorArchitecture

RequiredModules

RequiredAssemblies

ScriptsToProcess

TypesToProcess

FormatsToProcess

NestedModules

an empty string (" ').

Name of the PowerShell host required by the module. The host name
can be gathered from $host . name. This can be left as an empty

string (' ').

Minimum version of the PowerShell host. This can be left as an empty

string (" ').

Minimum version of the .NET Framework. This can be left as an empty

string (' ').

Minimum version of the common language runtime. This can be left as

an empty string (" ').

Processor required by the module. Options include None (used for

unknown or unspecified), X86, Amd64, and IA64. If the value is
unspecified, the value can be left as an empty string (' *).

Modules the module depends on. These modules should be in the
global scope. Module names can be entered as strings or as a hash

table of ModuleName and GUID keys.

Note: PowerShell will not import these modules automatically. It just
checks that these modules are available. If these modules need to
be loaded, use a script to import them and include that script in the

ScriptsToProcess list.

Assemblies the module depends on. PowerShell will load these files
before loading types, formats, nested modules, and root modules.
Include any DLL files that are needed for formatting and object types.

Scripts the module depends on. These are run when the module is

imported.

Type files the module depends on. These files use the. ps1xm1 file
extension. These files define the custom .NET Framework types
used in a module. PowerShell processes these types via Update-

TypeData when it imports the module.

Format files the module depends on. These files use the .ps1xml file
extension. These files define the output of different types, controlling
how they display and what they display by default. For example,
these format files could force output to display as a table by default.
PowerShell processes these formats via Update-FormatData when

it imports the module.

Modules nested within the module. These are .psm1 and .d11 files
that are imported for the module to work with them but may not

be exposed to the user. These files can be exposed if the G1obal
parameter is included in the Import-Module line or if their parts are

included in one of the ..ToExport values.

Note: The files will be run in the order they are listed.

(continues)

365

ckaging
owerShell
Extensions

Pa
P

APPENDIX E

366 APPENDIX E °* PACKAGING POWERSHELL EXTENSIONS

TABLE E.1 (continued)

ame " owpion

FunctionsToExport

CmdletsToExport

VariablesToExport

AliasesToExport

ModuleList

FileList

PrivateData

Functions to export from the module. These are the functions that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Functions can be named explicitly, or an asterisk (*) can be used to
export all functions. If an asterisk is used, all functions, including
functions in nested modules, are exported to the PowerShell session.

Cmdlets to export from the module. These are the cmdlets that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Cmdlets can be named explicitly, or an asterisk(*) can be used to
export all cmdlets. If an asterisk is used, all cmdlets, including cmdlets
in nested modules, are exported to the PowerShell session.

Variables to export from the module. These are the variables that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Variables can be named explicitly, or an asterisk (*) can be used to
export all variables. If an asterisk is used, all variables, including
variables in nested modules, are exported to the PowerShell session.

Aliases to export from the module. These are the aliases that are
available to the PowerShell session or to the module’s session state, in
the case of nested modules.

Aliases can be named explicitly, or an asterisk (*) can be used to
export all aliases. If an asterisk is used, all aliases, including aliases in
nested modules, are exported to the PowerShell session.

All modules packaged in this module.

Note: PowerShell will not export the files in this list based on this list.
This is purely for tracking purposes.

All files packaged in the module. This can be used to keep track of all
files included in the module.

Note: PowerShell will not export the files in this list based on this list.
This is purely for tracking purposes.

Private data to pass to the root module. The data becomes available to
the module through the Sargs automatic variable.

Although the New-ModuleManifest cmdlet may not prompt for all of these keys,

you can easily add the missing values to the manifest file by editing the file with a

text editor. Figure E.6 shows the New-ModuleManifest cmdlet in action.

Figure E.7 shows part of the generated manifest file opened for editing.

CREATE A CUSTOM MODULE

FIGURE E.6 New-ModuleManifest

¥ windows PowerShell
PS C:n\Usersssdutkiewicz> Mew—ModuleManifest

cmdlet New—ModuleManifest at command pipeline position 1

Supply values for the following parameters:

PatRi Documents“WindowsPowerShell\Modules \SamplePSProvider~SanplePSProvider
.ps

NeztedModules [B1]:

Author: Sarah Dutkiewicz

ModuleToProcess: SamplePSProvider.dll

Description: Sample module for Automating Windows Server 2088 R2Z with Windo
ws Powerfhell 2.8. Includes a basic provider and some cmdlets to work with
Windows 7 Libraries, for those Windows ? clients that are typically found
in a shop that has Windows Server 2088 R2.

TypesToProcess[B]:

FormatsToProcess[B]1:

RequiredfAssemblies[A]1:

FileList[B1:

PS C:\Usersssdutkiewicz>

FIGURE E.7 Editing the manifest file

.SamplePSPruvider - Motepad H= B

File Edit Faormat Wiew Help

Ll

module manifest for module 'samplersprovider’
#

cenerated by: sarah putkiewicz

#

Generated on: 1/8/2011
#

@1

script module or binary module file associated with this manifest
ModuleToProcess = 'Samplepsprovider.dll’

version number of this module.
Moduleversion = '1.0°

ID used to uniquely identify this module
GUID = '894f6b7e-call-4a92-945f-0fad2ae?oec2’

Author of this module
author = 'sarah butkiewicz'

company or vendor of this module
CompanyMame = 'Unknown'

Copyright statement for this module
Copyright = '(c) 2011 sarah putkiewicz. All rights reserved.’

Description of the functionality provided by this module
pescription = 'sample module for automating windows sServer 2008 R2 with w_'ll;|
4| Ld |97

Once you are done editing a manifest, you may want to verify that you entered
everything correctly. The Test-ModuleManifest cmdlet can verify that the files
listed in the manifest exist in the proper paths. Figure E.8 shows what happens
when Test-ModuleManifest finds problems with a manifest file.

367
= »n
D o
£=85
58 2
S o=
c =&
© O X
oo W

>
]
-l
m
2
[
=

368 APPENDIX E * PACKAGING POWERSHELL EXTENSIONS

FIGURE E.8 Problems with manifest file

B windows PowerShell

cmdlet Test—ModuleManifest at command pipeline position 1
Supply values for the following parameters:
: DocumentssWindowsPowerShell~Hodules“SamplePSProvidersSamplePSProvider|

SamplePSProvider

PS8 C:slUsersssdutkiewicz>

Help File

As stated throughout this book, PowerShell has a great help system. Get-Help is
full of descriptions, details, and examples, providing a wealth of knowledge to the
PowerShell scripter. When you release your custom extensions, it would be helpful
to continue adding to this knowledge base.

The help files are stored in two formats: XML and UTF-8 formatted text files.
Help files for cmdlets, providers, functions, and scripts are written in HTML
files. Conceptual files — for help topics that start with about_ such as about_
Comment_Based_Help — are saved in UTF-8 formatted text files. Examples of
these files are included in the “Build Your Module” section later in this chapter.

The help files have a specific folder and file structure, as shown in Figure E.9.

The help files are imported to a PowerShell session when Import-Module is run.
As the previous folder structure suggests, help topics can be tailored to language-
specific files. PowerShell will look for the language of the current user first before
following the language fallback standards of Windows.

Build Your Module

Now that the building blocks have been laid out, here is the approach you want to take:
1. Identify which type of module to use.

2. Build the module.

CREATE A CUSTOM MODULE

3. Determine whether a manifest file is needed. If so, create it.
4. Write the help file.

5. Release for use.

FIGURE E.9 Helpfiledirectory structure

(_)v| ~ Modules ~ SamplePSProvider = en-US - @I I Search en-Us O]
Organize * |Open ¥ Sharewith + Print Mew folder = o« B @
¢ Favorites —| Documents library

Arrange by: Folder

en-l3

- Libraties
3 Documents

My Documents
| wWindowsPowerShel =] NestedModuletame, dil-help, xml
Modules 2] samplePsProvider, dli-help.<ml
. SamplePSProvider
. enls
1, SamplePSPravider
. SampleScriptMadule
. Public Documents
.J“. Music
| Pictures

B videos

1M Computer

€ Metwork, |

B about_windows?_Libraries.help.txt Date modified: 1/8/2011 8:31 PM Date created: 1/8/2011 5143 PM
Texk Document Size: 428 bytes

Binary Module Example

In Appendix C, you created a basic provider to work with Windows 7 libraries. In
Appendix D, you created custom cmdlets to work with these Windows 7 libraries.
Since the provider and the custom cmdlets were written in C#, it seems fitting to
package them in a binary module.

The module setup was actually established when you created the new project in
Appendix C. As noted in Figure C.7, the project name was SamplePSProvider,
which means that when you compile the project, you will get an assembly named
SamplePSProvider.dll. Figure E.10 shows the list of all files and references in
this project.

369

ckaging
owerShell
Extensions

Pa
P

APPENDIX E

370 APPENDIX E * PACKAGING POWERSHELL EXTENSIONS

FIGURE E.10 Solution Explorer for SamplePSProvider.dll

Solution Explorer =1

= el a
.E SamplePSProvider
4 | Properties
] Assemblylnfo.cs
4 | References
-3 Microsoft. WindowsAPICodePack
-3 Microsoft. WindowsAPICodePack.Shell
-3 Microsoft. WindowsAPICodePack.ShellExtensions
3 System
-3 System.Core
-3 System.Data
-3 System.Data.DataSetExtensions
-3 Systern.Management
-3 Systern.Management.Automation
-3 Systern.Xml
-3 System.Xml.Ling
] LibraryCmdlets.cs
&) Provider.cs

At this point, you can test whether your module will work in PowerShell without
having to complete the package. To test the module in PowerShell from Visual
Studio 2010, follow these steps:

1. Right-click the project name (SamplePSProvider in this case), and select
Properties.

2. From the tabs on the left, click the Debug tab.

3. Update your Start Action setting to Start External Program, and point it to
where PowerShell. exe is installed.

4. Under Start Options, update the command-line arguments to read as follows:

-noexit -command
"[reflection.assembly]: :loadFrom('SamplePSProvider.dll") |

import-module"
5. Close the Properties screen to save the settings.

Now you can start the debugger and test your module. Figure E.11 shows the debug-
ging PowerShell session.

Notice that the result of Get -Module in Figure E.11 shows the Name as dynamic_
code_module_Sa... Since debugging is a short-lived process, PowerShell is naming

CREATE A CUSTOM MODULE 371

it as if it were a dynamic module. However, as noted in the ModuleType column,
this is indeed a binary module.

FIGURE E.11 Debugging abinary module

£3 CAWindows\System32\WindowsPowerShellw1.0\powershell.exe =8 =
PS D:NPowerShel INSamplePSProvider\SamplePSProvidersbinN\Debugll
> Get-Module

ModuleType Name ExportedCommands

m

ES D:\PowerShel l\SamplePSProvider\SamplePSProvider:\bin\Debug

Now that you are in the debug session, you can test the functionality, as described
in Appendixes C and D. Once you are done debugging, exit the PowerShell session.
Deploy the module as follows:

1. In Visual Studio, go to the Build menu, and select Build SamplePSProvider.
2. Right-click the project name, and select Open Folder in Windows Explorer.
3. Navigate to bin and then the folder with the most recently modified date.

4. Copy the SamplePSProvider.dl1l file and all other DLL files into the
[USER] \Documents\WindowsPowerShell\Modules\SamplePSProvider
folder. Note: If this file structure does not exist, create it.

25 2

5. Start PowerShell. S 2

=i

6. Run Get-Module -ListAvailable. You should see the nﬁ; S u‘;j'
SamplePSProvider module listed, similar to Figure E.12.

You should be able to run Import-Module SamplePSProvider and work with
the provider and cmdlets, as documented in Appendixes C and D. If you get an
error about not being able to load the module because PowerShell can’t find the
dependencies, make sure you copied all the DLL files from step 4.

372 APPENDIX E °* PACKAGING POWERSHELL EXTENSIONS

FIGURE E.12 Module deployed

¥ Windows PowerShell

ModuleType Name

SamplePSProvider
AppLocker
BitsTransfer
PSDiagnostics
TroubleshootingPack
WebAdministration

PS C:\Users\sdutkiewicz> _

A manifest file can help track these dependencies, so in this case it would be
advantageous to have one. For this example, you will reuse the manifest file cre-
ated earlier in this chapter. To make note of the required assemblies, update
RequiredAssemblies to match this:

RequiredAssemblies = @ (3
"Microsoft.WindowsAPICodePack.dll", «3
"Microsoft.WindowsAPICodePack.Shell.dll")

The last thing you need to do is create some help files for this module. Since libraries
are a new concept to Windows 7, you may want to create a conceptual help file:

1. Create an en-US folder in [USER] \Documents\WindowsPowerShell\
Modules\SamplePSProvider.

2. Create a text file named about_Windows7_Libraries.help. txt within
this en-US folder.

3. Add the following text:

TOPIC
about_Windows7_Libraries

CREATE A CUSTOM MODULE 373

SHORT DESCRIPTION
Describes the capabilities of Windows 763

Libraries.

LONG DESCRIPTION

This is a sample help file included with &
the SamplePSProvider example for &3
"Automating Windows Server 2008 R2 with <
Windows PowerShell 2.0" book.

For more information on the Libraries feature

included in Windows 7, see:

http://windows.microsoft.com/en-us/windows7/e3

products/features/libraries

4. Save and close the file.

5. If you do not have a PowerShell session already open, start PowerShell.
6. Run Import-Module SamplePSProvider.

7. Run Get-Help about_Windows7_Libraries. You should see something
similar to Figure E.13.

FIGURE E.13 Conceptual help

B windows Powershell

PS C:slUsersssdutkiewicz> Get—Help about_Windows?_Libraries
TOPIC

about_Windows?_Libraries

SHORT DESCRIPTION
Describes the capabhilities of Windows 7 Libraries.

LONG DESCRIPTION
This iz a sample help file included with the SamplePSProvider examp|

le for
"Automating Windows Server 28A8 R2 with Windows PowerShell 2_B" hook.

ckaging
owerShell
Extensions

Pa
P

For more information on the Libraries feature included in Windows 7|

SEEE APPENDIX E

. http:/7windows .microsoft.comnsen—us windows? products features/libral
ries

PS C:\Usersssdutkiewicz>>

The other type of help file for binary modules is an XML-based help file. The file
should be located in the en-US folder (or your native language’s folder) and

374 APPENDIX E °* PACKAGING POWERSHELL EXTENSIONS

named ModuleName.d11-help.xml. For a detailed explanation of the XML lay-
out for cmdlet help files, see the following MSDN article:

http://msdn.microsoft.com/en-us/library/bb525433 (VS.85) .aspx

Now that the binary module is built, complete with a manifest file and help files,
you need to package it to give to others. The easiest way to do this is as follows:

1. Navigate to [USER] \Documents\WindowsPowerShell\Modules\ in
Windows Explorer.

2. Right-click the SamplePSProvider folder, and navigate to Send
To > Compressed (zipped) folder.

3. Save the filename.
4. Place the ZIP file in a location where your targeted audience can access it.

5. Have them unzip the file into one of their folders listed in their
PSModulePath environment variable.

Script Module Example

In Appendix D, you created a function called Get -Function. Since it is
already written in PowerShell, it makes sense to package it in a script module.
Save Get-Function in a script file with the following file structure: [USER] \
Documents\WindowsPowerShell\Modules\SampleScriptModule\
SampleScriptModule.psml.

Since you want everything to be exported and do not need to include any depen-
dencies or types or formats, you do not need a manifest file in this case.

Script modules can take advantage of comment-based help. This means you use
comments within your code to generate the help file. I have added the comment-
based help comments toward the end of this function:

Function Get-Function{
Param (
Part or full name of the function
Supports wildcards
[parameter (Mandatory=S$true,
ValueFromPipeline=$true)]
[String[]]
SFunctionName

)

CREATE A CUSTOM MODULE

Get-ChildItem -path function: | &
Where-Object {S$_.Name -like S$FunctionName}
<#
.SYNOPSIS
Lists all functions matching a name or wildcarded

pattern.

.DESCRIPTION
Lists all functions matching a name or wildcarded

pattern.

. INPUTS
System.String. Get-Function takes ine3

a function name or pattern.

.OUTPUTS
System.String. Get-Function returnse?

a string with the extension or file name.

.EXAMPLE
C:\PS> Get-Function *

Lists all functions.

.EXAMPLE
C:\PS> Get-Function m*

Lists all functions whose name starts with "m".

.EXAMPLE
C:\PS> Get-Function *port*

Lists all functions whose name contains "port".

.LINK
Get-ChildItem
#>
}

After saving this file, load PowerShell, and run Import-Module
SampleScriptModule. Once the module is loaded, if you run Get-Help Get-
Function, you will see output similar to Figure E.14.

375
=ﬁ§ @
£=85
S9P 5
S o=
c =&
© © X
o oW

APPENDIX E

376 APPENDIX E °* PACKAGING POWERSHELL EXTENSIONS

FIGURE E.14 Get-Help Get-Function

PS5 C:'Windows'system32= Get-Help Get-Function

NAME
Get-Function

SYNOPSIS
Lists all functions matching a name or wildcard pattern.

SYNTAX
Get-Function [-FunctionName] <String[]> [<CommonParameters=]

DESCRIPTION
Lists all functions matching a name or wildcard pattern.

RELATED LINKS
Get-ChildItem

REMARKS
To see the examples, type: “"get-help Get-Function -examples".
For more information, type: "get-help Get-Functicon -detailed”.
For technical information, twpe: "get-help Get-Function -full™.

If you run Get-Help Get-Function -examples,you will see each of the
.EXAMPLE lines from the earlier code, as shown in Figure E.15.

FIGURE E.15 Get-Help Get-Function -examples

C:\P5=Get-Function =

Lists all functions.

C:\P5=Get-Function m*

Lists all functions whose name starts with "m”.

C:\PS=Get-Function *port®

Lists all functions whose name contains “port™.

For more information about the different keywords that can appear in comment-
based help, run Get-Help about_Comment_Based_Help.

CREATE A CUSTOM MODULE 377

Now that the script module is built, complete with comment-based help, you need
to package it to give it to others. The easiest way to do this is as follows:

1. Navigate to [USER] \Documents\WindowsPowerShell\Modules\in
Windows Explorer.

2. Right-click the SampleScriptModule folder, and navigate to Send
To > Compressed (zipped) folder.

3. Save the filename.
4. Place the ZIP file in a location where your targeted audience can access it.

5. Have them unzip the file into one of their folders listed in their
PSModulePath environment variable.

Now that you have seen how to package PowerShell extensions, use these examples
as guides for packaging and sharing your extensions with your colleagues or even
the PowerShell community.

Packaging
PowerShell
Extensions

APPENDIX E

APPENDIX

Building Your Own GUI with
PowerShell

IN THIS APPENDIX, YOU WILL LEARN TO:

> CHOOSE BETWEEN WINFORMS AND WPF 380
> CREATE A GUI IN POWERSHELL 381
Create a WinForms Applicationcoveiennt 385

Create a WPF Application..........coovviiiiiiiniininenn., 391

4 XIONiddV

ommand-line scripts are great from an administrative perspective, but the people
who may work with these scripts or their output may not necessarily be comfortable
in a command-line realm. It would help to create a graphical user interface (GUI)
for them to feel a little more comfortable.

Since PowerShell can take advantage of the .NET Framework, GUI develop-
ment options include Windows Forms (WinForms) and Windows Presentation
Foundation (WPF). In this chapter, you will learn the strong points of these tech-
nologies and how to use PowerShell to create GUIs with them.

The example GUI gets much of its information from Windows Management
Instrumentation (WMI) Win32 classes. You can find more about WMI’s Win32
classes here:

http://msdn.microsoft.com/en-us/library/aa394084 (v=VS.85) .aspx

Choose Between WinForms and WPF

In terms of creating GUIs in the .NET Framework, the main technology choices
are WinForms and WPF. Knowing the strengths and weaknesses of both options
makes it easier to decide on the appropriate choice for a particular application.

If your end user is working with legacy applications, there may be a case to write
your application with WinForms. This is the older technology compared to WPF,
and the look and feel of WinForms controls is very similar to what you would get
out of applications written in a Microsoft language before the .NET Framework. If
you, as a developer, are more familiar with writing desktop applications in some-
thing such as Visual Basic 6, then WinForms should be easy to work with, because
many controls are still around in some form in WinForms. If the end user’s com-
puter consists of older hardware or running an older operating system such as
Windows XP, WinForms may run a lot better than WPF and therefore would be the
better choice.

If your end user is more familiar with applications that have been written in

NET or for the newer operating systems such as Windows Vista and Windows 7,
chances are that the end user is familiar with a prettier interface. If that is the case,
then you may consider leaning toward WPE. Rich user interfaces, easier anima-
tions, and better handling of vector graphics are just a few reasons why you would
choose WPF instead of WinForms. If you are one of those people who develop for
multiple platforms, you may find WPF and its use of the Extensible Application

CREATE A GUI IN POWERSHELL 381

Markup Language (XAML) more appealing, because XAML is used in both WPF
and Silverlight. With that consideration, by going with WPEF, your application is
one step closer to becoming portable to a web application or even a Windows Phone
application.

WHEN TO CHOOSE BOTH WINFORMS AND WPF

You may see that the benefits of each technology could work to your advantage if
only you could include both in the same application. There is no “if” about it—you can
include both WinForms and WPF in the same application! For example, you may have
a WinForms app that could benefit from newer technology. While tossing out the code
and starting from scratch sounds tempting, unless you have time in your work schedule
to rewrite the whole code, tossing out a complete code base is costly to a business. You
might consider replacing small pieces with WPF, if the technology makes sense for the
feature you are updating.

Create a GUI in PowerShell

Once you understand the technologies that are available to you, then you can build
your application. In this section, you will create a dashboard to look at various
attributes of your current machine. This could be useful for monitoring a server’s
configuration or perhaps be used to obtain information for an inventory database.

The application you create will show the following sections:
Basic System Information Including domain, manufacturer, model, and name
Hard Drive Information Including device ID, size, and free space

Memory Information Including physical memory, virtual memory, process
memory, and visible memory

Network Interface Information Including MAC address and description
Installed Applications Including version and name

Although you may be familiar with these commands and their output in the command-
line environment, there may be formatting and other output issues that could

uilding Your
wn GUI with
owerShell

B
0
P

confuse the end user who is familiar with friendly formatting in a GUI. Here are the
building blocks you will need for building your GUIL

382 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

Use the Win32_ComputerSystem WMI class to get basic system information:
Get-WmiObject win32_computersystem

The output should be similar to Figure F.1.

FIGURE F.1 Basic system information

- N
3 Windows PawerShell . -_— = B [t

PS C:\Users\sdutkiewicz> Get-WmiObject win32_computersystem [ig

Domain : WORKGROUP
Manufacturer : ASUSTek Computer Inc.
: G6RIX
: AL
PrimaryOwnerhame : sdutkiewicz
TotalPhysicalMemory : 6372376576

m

Use the Win32_LogicalDisk WMI class to get the hard drive information:
Get-WmiObject win32_LogicalDisk

The output should be similar to Figure F.2.

FIGURE F.2 Listoflogical drives

r

3] Windows PowerShell - - * L= |E|

DeviceID

DriveType

ProviderName

FreeSpace : 211069554688
Size : 290285678592
VolumeName

DeviceID

DriveType

ProviderName

FreeSpace : 218624
Size : 209715195904
VolumeName

-- More

CREATE A GUI IN POWERSHELL 383

The Win32_OperatingSystem WMI class contains a plethora of information
regarding a system’s operating system, including language, architecture, service
pack version, installation date, and memory information. To get the memory infor-
mation, use the following command:

Get-WmiObject win32_OperatingSystem |

Format-List *Memory*

The output should be similar to Figure F.3.

FIGURE F.3 Memoryinformation

-
B3 Windows PowerShell =NREN X |

PS C:\Users\sdutkiewicz> Get-WmiObject win32_OperatingSystemfg
| Format-List *Mem

FreePhysicalMemory

FreeVirtualMe

MaxProcessMemory: :
TotalVirtualMer 1 12444148
TotalvisibleMemory Y. 24

m

MPs C:\Users\sdutkiewicz> -

Use the Win32_NetworkAdapterConfiguration WMI class to get more infor-
mation about a system’s network interfaces. The following example shows DHCP,
DNS, and network address essentials.

Get-WmiObject win32_NetworkAdapterConfiguration |«3
Format-List *Address, DefaultIPGateway, IPSubnet,
Description, DHCP*, DNS*

The output should be similar to Figure F.4.

Use the Win32_Product WMI class to get more information about installed appli- 5 g
° =
cations. The following example shows how to list all applications installed on a &= 5 2
(=]
machine that did not come from Microsoft: £9 €
= £ =
Get-WmiObject Win32_Product | € @ g &

Where-Object {$_.Vendor -ne "Microsoft Corporation" }

384 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

FIGURE F.4 Networkinterface information

-
B3 Windows PowerShell =anen X

IPXAddress
MACAddress
DefaultIPGateway
IPSubnet :
Description : Atheros AR8131 PCI-E Gigabit
Ethernet Controller
Description : Atheros AR8131 PCI-E Gigabit
Ethernet Controller
DHCPEnabled : True
DHCPLeaseExpires :
DHCPLeaseObtained
s 7
: Atheros AR8131 PCI-E Gigabit
Ethernet Controller

The output should be similar to Figure F.5.

FIGURE F.5 Installed application information

5 Windows PowerShell = = =

PS C:\Users\sdutkiewic Get-WmiObject Wi Product | Where
-Object {$_.Vendor -ne "Microsoft Corporation” } | more

IdentifyingNumber : {36A415C2-7181-421 '9-8255766E0FF3}
WELIS o T i

\Vendor : Tortoi

Version :

Caption : TortoiseSVN 1.6.10.19898 (64 bit)

IdentifyingNumber : {CA: -EESF-495F-AD43
Name : AnkhSVN 2.1.8420.8
\Vendor : AnkhSVN Team

Version : 2.1.8420.8

Caption : AnkhSVN 2.1.8420.8

IdentifyingNumber : {B7@E5793-F912-4C62-AFE2-CAF@BO78FD31}

Now that the groundwork is established, let’s look into creating a GUT that will
display this information for those who are timid in a command-line environment.
This GUI will have buttons along the top for each section, with a panel below the
buttons to show all the information for that particular section.

CREATE A GUI IN POWERSHELL 385

Create a WinForms Application

As noted, working with WinForms is a good choice when you need to create a GUI
that has a look and feel similar to legacy applications.

The first thing you should do when creating a WinForms application in PowerShell
is load the assembly where WinForms comes from — System.Windows.Forms —
with the following command:

Add-Type -AssemblyName System.Windows.Forms

Once you load the assembly, you need to create the canvas to work on. To create a
WinForms form, use the following command:

Sform = New-Object Windows.Forms.Form

At this point, you have a generic form. To display the form, use the following command:

$form.ShowDialog ()

You should see something similar to Figure F.6.

FIGURE F.6 Default Windows form

Now that a form has been created, you can start adding objects and helper func-

tions to it to create your application. The code for these objects and helper functions
needs to be placed before $form. ShowDialog ().

Because this application will have buttons with similar attributes, you will want to
create a function so that you are not repeating code frequently. For this example,
you are using a function called Create-Button.

uilding Your
wn GUI with
PowerShell

B
0

APPENDIXF

386 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

function Create-Button([string]S$text, &
[object]$PreviousObject, [int]S$height,
[object] $Scontainer) {

Sbutton = New-Object Windows.Forms.Button

Sbutton.Text = $text

Sbutton.AutoSize = Strue

Sbutton.Left = $PreviousObject.Left +
$PreviousObject.Width

Sbutton.Top = $container.Top

Sbutton.Anchor = "Left"

Sbutton.Height = Sheight

return $button

}

For debugging purposes, you may want to use a MessageBox to display error
messages. Use the following function to help prevent writing the same call over
and over:

function Create-MessageBox (Stext) {
[Windows.Forms .MessageBox] : : Show (Stext)

}

The results will display in a table for each button. Since the table needs to be gener-
ated each time, use a function to generate the output. In the following function, the
Soutput variable is an array of objects with a Name property and a Value property.
The $outputpanel variable is the container object that will hold the table.

function Create-Table(Soutput, Soutputpanel) {
Soutputpanel.Controls.Clear ()
SbtnContainer = New-Object Windows.Forms.Panel
SbtnContainer.Width = Soutputpanel.Width - 25
SbtnContainer.Height = Soutputpanel.Height - 100
$TablePanel = New-Object Windows.Forms.¢3
TableLayoutPanel
STablePanel.Dock = "Fill"
STablePanel.CellBorderStyle = "Single"
$TablePanel.ColumnCount = 2
$TablePanel.ColumnStyles.Add«?
((new-object System.Windows.Forms.ColumnStyle (3
[System.Windows.Forms.SizeType] : : Percent,50)))
$TablePanel.ColumnStyles.Added

CREATE A GUI IN POWERSHELL

((new-object System.Windows.Forms.ColumnStyleed
([System.Windows.Forms.SizeType] : : Percent,50)))
$TablePanel .AutoScroll = Strue
$output | ForEach-Object {
$label = New-Object Windows.Forms.Label
Slabel.Text = $_.Name
$label.AutoSize = Strue
STablePanel.Controls.Add($1label)
$label2 = New-Object Windows.Forms.Label
$label2.Text = $_.Value
$label2.AutoSize = S$Strue
$TablePanel.Controls.Add($1label2)
}
S$btnContainer.Controls.Add ($TablePanel)
Soutputpanel.Controls.Add (SbtnContainer)
}

You will want a function to help format each of the results so that they conform to
the Name/Value pairs. The following function will loop through the properties for
each object and break them down into Name/Value pairs:

function Create-ExampleObject ($Soutput) {
Scleanedoutput = Soutput | ForEach-Object {
$_ | Get-Member -MemberType NoteProperty¢d
| Select Name, Definition | ForEach-Object {
New-Object PSObject -Propertyed
@{Name=$_ .Name;Value=e3
$_.Definition.Substring($_.Definition.IndexOf ('="')+1)
}

}
return S$cleanedoutput

}

Since memory and hard drive sizes will be displayed, you will want a function to
handle the output formatting. The following function will test the value against
known values and append the size abbreviation to the value.

function Format-Size(S$Ssizeinbytes) {
Sformatted = ""
if ($sizeinbytes/lgb -gt 0){

387

i
5 E
o —
S 3=
52 =
co ¢
= =
=53
DSa

APPENDIXF

388 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

$formatted = ("{0:N2}" -f ($sizeinbytes/lgb))e3
+ "GB"
} else {
$formatted = ("{0:N2}" -f (S$sizeinbytes/lmb))e
+ "MB"

}

return $formatted

}

Now that the helper functions are in place, you can use those while adding the
controls and other functionality.

First up, set some form defaults, including the form caption, the dimensions, and a
constant value for button height, because the buttons will be the same size:

Sform.Text = "WinForms Inventory Example"
Sform.wWidth = 600

Sform.Height = 400

$buttonHeight = 30

Next, create the panels that will hold the buttons and the output area and add them
to the form’s controls:

SpnlButtonBar = New-Object Windows.Forms.Panel
SpnlButtonBar.Dock = "Top"

SpnlButtonBar.Width = $form.Height
SpnlButtonBar.Height = S$buttonHeight
$form.Controls.add($SpnlButtonBar)

$pnlOutput = New-Object Windows.Forms.Panel

SpnlOutput.Width = $form.Height

$pnlOutput.Height = $form.Height - S$pnlButtonBar.Height
SpnlOutput.Top = SpnlButtonBar.Top + S$pnlButtonBar.Height + 20
$form.Controls.add ($pnlOutput)

Once the panels are created, then the objects that belong in those panels can be cre-
ated and placed in their respective placeholders. For the button bar, there will be
a label with the text Show: to give the user an idea that those buttons are there for

some reason.

$1blShow = New-Object Windows.Forms.Label
$1blShow.Text = "Show : "
$1blShow.Width = 50

CREATE A GUI IN POWERSHELL 389

$1blShow.Left = S$pnlButtonBar.Left
$1blShow.Top = SpnlButtonBar.Top
$1blShow.Anchor = "Left"
SpnlButtonBar.Controls.add($1blShow)

Now that the label is in there to give the user some guidance, you should add the
buttons. These buttons will get created using the Create-Button helper function
mentioned earlier.

$btnSysInfo = Create-Button "System Information" $1blShowed
SbuttonHeight S$pnlButtonBar
$pnlButtonBar.Controls.Add (SbtnSysInfo)

$btnDrives = Create-Button "Hard Drives" $btnSysInfoed
SbuttonHeight S$pnlButtonBar
S$pnlButtonBar.Controls.Add (SbtnDrives)

$btnMemory = Create-Button "Memory" $btnDrivesed
SbuttonHeight S$pnlButtonBar
SpnlButtonBar.Controls.Add ($SbtnMemory)

$btnNetwork = Create-Button "Network" $btnMemory«ed
SbuttonHeight S$pnlButtonBar
SpnlButtonBar.Controls.Add (SbtnNetwork)

$btnInstalledApps = Create-Button "Installed Apps"ed
SbtnNetwork $buttonHeight $pnlButtonBar
SpnlButtonBar.Controls.Add ($SbtnInstalledApps)

Once the button bar is created, add one more label with instructions for the end
user that will appear when the program loads where the command output would
appear:

$1lblInstructions = New-Object Windows.Forms.Label
$1blInstructions.Text = "Click a button to see moreed
details."

$1lblInstructions.AutoSize = Strue
$1lblInstructions.Left = $pnlOutput.Left
$1lblInstructions.Top = $pnlOutput.Top

uilding Your
wn GUI with
PowerShell

B
0

$1blInstructions.Anchor = "Left"
SpnlOutput.Controls.add($S1lblInstructions)

390 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

Now that the objects are created, you need to assign the event handler to each
button to handle the C1ick event. For each button click, you will call out to the
respective WMI class and display an identified group of fields. Once the WMI
objects are gathered, then they need to be formatted to fit the Name/Value pairs
by calling the Create-ExampleObject helper function. Finally, the output gets
generated by the Create-Table helper function.

For the system information section, show all fields:

SbtnSysInfo.add _Click({
$output = Get-WmiObject win32_computersystem |3
Select *
Soutput = Create-ExampleObject Soutput
Create-Table $output $pnlOutput
1)

For the hard drives section, show only the drives that have a specific size. With
those drives, show the total space, the free space, and how full the drive is:

$btnDrives.add_Click ({

$output = Get-WmiObject win32_LogicalDisk | Where-Object {$_
.Size -gt 0} | Select Name, FreeSpace, Size | ForEach-Object
{ New-Object PSObject -Property @{Drive=$_.Name;Size=Format-
Size($_.Size); FreeSpace=Format-Size($_.FreeSpace) ;
PercentageUsed=("{0:N2}" -f (100-(($S_.FreeSpace/S$S_.Size) *
100))) + "s"} }

Soutput = Create-ExampleObject Soutput

Create-Table Soutput $pnlOutput
})

For the memory section, show all fields containing the word Memory from the
Win32_OperatingSystem WMI class:

SbtnMemory.add_Click({
Soutput = Get-WmiObject win32_OperatingSysteme3
| Select *Memory*
Soutput = Create-ExampleObject S$output
Create-Table Soutput $pnlOutput
1)

For the network section, suppose you are adding MAC authentication to your
network security. You would only be interested in connections that have a MAC

CREATE A GUI IN POWERSHELL

address. Fields that may be relevant include the connection name and the MAC
address.

SbtnNetwork.add_Click({

Soutput = Get-WmiObjecte3
win32_NetworkAdapterConfiguration |&3
Select MACAddress, Description |+3
Where-Object {$_.MACAddress -ne S$null }

Soutput = Create-ExampleObject Soutput

Create-Table $output $pnlOutput

1)

Finally, for the installed apps section, suppose you care only about the applica-
tion names and respective versions that are installed on the machine, sorted

alphabetically.

SbtnInstalledApps.add_Click({
$output = Get-WmiObject Win32_Product |
Select Name, Version | Sort-Object -property Name |«J
ForEach-Object {
New-Object PSObjected
-Property @{Application=$_.Name + " " + S$_.Version}
}
Soutput = Create-ExampleObject Soutput
Create-Table $output $pnlOutput
})

Once all this code is entered, you now have a basic program to display some infor-
mation about the current machine. Figure F.7 shows the final output.

This example shows a miniscule portion of the Win32 libraries in WMI, and it
shows a basic introduction to WinForms in PowerShell. Use this as a guide as you
are getting started with writing WinForms applications in PowerShell.

Create a WPF Application

As mentioned earlier, WPF is a good choice when you are developing GUIs for a
newer operating system such as Windows 7. The prettiness that is seen in the oper-
ating system can be carried on easily in a WPF application.

WPF also allows for the GUI layout to be separated easily from the functional-
ity, using XAML for the GUI and the language of choice as the functionality. In

391

uilding Your
wn GUI with
PowerShell

B
0

APPENDIXF

392 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

the examples that follow, the GUI code will be stored in a XAML file and read
in PowerShell. The functionality for those XAML controls will be written in
PowerShell.

FIGURE F.7 Final WinForm output

Shoak System Infarmatian Hard Drives Memany | Metwork Inzstalled Apps
Dirive C: -
FreeSpace 157.07GE
Percentagel)sed BE.27%
Size 465 BEGE
Dirive E:
FreeSpace 157.29GE
Percentagel)sed 8311%
Size 931.50GB
Crive F:
FreeSpace 99.82GE
Percentagellzed 89.28%
Size 931.50GB
Crive G:
FreeSpace E5.52GE [t
Percentagellsed 85.93%
Size 4E5 7EGE
Dirive H: ﬂ
A

In this section, you will see how to create a WPF application from scratch within
PowerShell.

WRITING WPF IN POWERSHELL

Although the following instructions will have you use the Integrated Scripting Engine
(ISE), you can also use the PowerShell console to do this. However, when you start
a PowerShell console session for WPF development, you need to include the -STa
switch, because WPF needs to be run in single-threaded apartment (STA) mode. The
PowerShell console starts in multithreaded apartment (MTA) mode by default. The
ISE, however, starts in STA mode by default and does not need an extra switch when
starting.

For more on apartments and threads, see http://msdn.microsoft.com/en-us/
library/ms693344 (v=VS.85) .aspx.

To see whether STA is enabled, check that the following value is set to STA:

$host .Runspace.ApartmentState

CREATE A GUI IN POWERSHELL 393

Since there is a separation between the GUI and the functionality, you should
become familiar enough with XAML to know how to work with it. As shown with
WinForms, let’s take a look at the default WPF form. The XAML for the WPF form
looks like this:

<Window xmlns=e3
"http://schemas.microsoft.com/winfx/2006/xaml /e
presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Sample WPF Form" Height="150" Width="300">

</Window>

For this example, the XAML is stored in D: \MainWindow.xaml.

WRITING XAML FILES

You can download many tools to help you write XAML, including the following:
» Kaxaml
» Microsoft Expression Blend
» Microsoft Visual Studio
» XamlHack
» XamlPad

Until you get familiar with XAML and its syntax, it would be easiest to use one of these
tools when creating XAML files.

Once the XAML file is created, you can work on adding functionality to the con-
trols. When writing a WPF application in PowerShell, you need to load the WPF
libraries:

Add-Type -Assembly PresentationFramework
Add-Type -Assembly PresentationCore

After the WPF libraries are loaded, you can load the XAML file into a variable with
the help of a Xam1lReader. The code looks like this:

uilding Your
wn GUI with
PowerShell

$Form=[Windows .Markup.XamlReader] : :Load ([IO.File]
: :0OpenText ('D: \MainWindow.xaml') .basestream)

B
0

394 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

At this point, you can display a basic WPF form with the following command:
$Form.ShowDialog() | Out-Null

You should see something similar to Figure F.8.

FIGURE F.8 Basic WPFform

3 Sample WPF Form l = |[ET éj

Now that a window has been created, you can start adding objects to it to create
your application. Using the XAML editor of your choice, update D: \MainWindow
.xaml with the following XAML:

<Window xmlns="http://schemas.microsoft.com/
winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/e3
winfx/2006/xaml"
Title="WPF Inventory Example" Height="600"&3
width="600">
<Canvas>
<DockPanel VerticalAlignment="Top" 3
Grid.Row="0" Grid.ColumnSpan="2">
<StackPanel Height="30"
Orientation="Horizontal">
<Label Content="Show: "></Label>
<Button x:Name="btnShowSysInfo"
Content="System Information"></Button>
<Button x:Name="btnShowDrives" 3
Content="Hard Drives"></Button>
<Button x:Name="btnShowMemory" 3
Content="Memory"></Button>
<Button x:Name="btnShowNetwork" 3
Content="Network"></Button>
<Button x:Name="btnShowInstalledApps"
Content="Installed Apps"></Button>
</StackPanel>

CREATE A GUI IN POWERSHELL 395

</DockPanel>
<Grid x:Name="pnlOutput" Canvas.Top="40"&
ShowGridLines="False" Width="550" &
HorizontalAlignment="Left" Height="500">
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*" >3
</ColumnDefinition>
<ColumnDefinition Width="*" >3
</ColumnDefinition>
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition Height="40">&3
</RowDefinition>
<RowDefinition Height="*">&3
</RowDefinition>
</Grid.RowDefinitions>
<Label x:Name="lblInstructions"e3
Grid.Row="1" Grid.ColumnSpan="2">«3
Click a button to see more details.</Label>
</Grid>
</Canvas>

</Window>

The previous XAML creates a layout similar to the WinForms application. Make
note of the x : Name fields, because you will need to reference them in PowerShell
when adding the functionality.

The code for these objects and helper functions needs to be placed before $Form
.ShowDialog () | Out-Null.

Using the WinForms example, copy the Create-ExampleObject and Format-
Size helper functions. Since these do not necessarily deal with the GUT directly,
they can be shared.

The Create-Table helper function needs to be altered. Since you are working with
WPE, you will want to reference controls in System.Windows.Controls, instead
of System.Windows.Forms. The new Create-Table helper function sets up the
WPF Grid control and adds labels to the appropriate grid positions.

uilding Your
wn GUI with

function Create-Table (Soutput) {

SpnlOutput = $Form.FindName ('pnlOutput')
SpnlOutput.RowDefinitions.Clear ()

PowerShell

B
0

396 APPENDIX F * BUILDING YOUR OWN GUI WITH POWERSHELL

SpnlOutput.Children.Clear ()
SpnlOutput.ShowGridLines = Strue
Srowcount = 0;
$output | ForEach-Object {
$rowDefinition = New-Objected
system.windows.controls.rowdefinition
SrowDefinition.height = "Auto"
SpnlOutput.RowDefinitions.Add (SrowDefinition)
$label = New-Object Windows.Controls.Label
$label.Content = $_.Name
[system.windows.controls.grid] 3
::SetColumn ($label, 0)
[system.windows.controls.grid] e
::SetRow (Slabel, Srowcount)
SpnlOutput.Children.Add (Slabel)
$label2 = New-Object Windows.Controls.Label
Slabel2.Content = $_.Value
[system.windows.controls.grid] €@
:SetColumn($Slabel2,1)
[system.windows.controls.grid] €@
::SetRow ($1label2, Srowcount)
SpnlOutput.Children.Add ($label2)

Srowcount++;

}

Now that the helper functions are in place, use them while adding functionality to
the UL Once the XAML is loaded, then you can access the buttons as follows:

SbtnSysInfo = $Form.FindName ('btnShowSysInfo')
S$btnDrives

S$Form.FindName ('btnShowDrives')

SbtnMemory = $Form.FindName ('btnShowMemory')
$btnNetwork = $Form.FindName ('btnShowNetwork')
SbtnInstalledApps = S$Form.FindName ('btnShowInstalledApps')

Did you remember the x: Name fields from the XAML? They are what you need to
use with the FindName function in order to find controls within the XAML.

After the buttons are in place, you can use the same add_Click code that was used
in the WinForms example, because the examples were set up specifically with code
reuse in mind. Once the add_Click code is in place, you should have the same
functionality and output in the WPF application that you had in the WinForms
application. Figure F.9 shows the final output for the WPF application.

CREATE A GUI IN POWERSHELL 397

FIGURE F.9 Final WPF application

r ™
L4 WPF Inventory Example E@ﬂ

Show: System Informatioanard DrivesIMemorleetworklInstalled Apps)

EASIER WPF IN POWERSHELL

Certain tools can make writing WPF in PowerShell much simpler. Some of these tools
include the following:

» WPK, a module that is part of the PowerShell Pack, is available at: http://
code.msdn.microsoft.com/PowerShellPack.

» PowerBoots, a module, is available at http: / /powerboots.codeplex.com/ .

Now that you have seen how to write GUIs from within PowerShell, use
these examples as guides for creating GUIs for your own end users. Those who
are timid at a command prompt will thank you for taking the time to cater to

Own GUI with

Building Your
% PowerShell

their preference. APPENDIX

INDEX

Symbols

* (asterisk) wildcard, 45

[] (brackets) wildcard, 45

- (hyphen), in parameter syntax, 43

| (pipes operator). see pipes operator (|)
? (question mark) wildcard, 45

A

about_parameters, using with Get-Help command,
52,52
account lockout policy, 212
AD (Active Directory)
cmdlets supporting, 8
creating managed service accounts, 186-188, 187-188
domains, domain controllers, and forests, 178-180,
178-180
enabling recycle bin, 191-193, 192-193
FSMO roles, 180-182, 181-182
Group Policy. see Group Policy
installing/using managed service accounts, 188-189,
189
loading AD module, 174-177, 176-177
managed service accounts, 185-186
module for, 56, 56
overview of, 174
populating AD test environment, 293-295
recovering multiple users from recycle bin, 195
recovering users with pipe operator, 81
recycle bin, 189-191, 193-195, 194-195
users, groups, and OUs, 182-185, 183
AD CS (Active Directory Certification Services), 152
AD DS (Active Directory Domain Services), 152
Add-ADGroupMember, 184
Add-Computer, 41
Add, description of common verbs, 39
Add-Image switch, WDSUTIL, 250

Add-NLBClusterNode, 161
Add-PSSnapin

adding snap-ins, 359-360

MDT snap-in, 258
Add-Type cmdlet

creating objects, 309-310, 310

creating WinForms application, 385
Add-WBVolume, 158
Add-WebConfiguration, 226
Add-WindowsFeature

cmdlets for working with server features, 149-150

installing backup tools, 156

installing Hyper-V, 269

installing WDS, 246
administration, benefits of modules for, 38
administration.config, IIS Manager, 225
Administrative template file (ADMX), 199
administrators, running sessions as, 61, 113, 113
ADMX (Administrative template file), 199
adprep /domainprep, 186
adprep /forestprep, 186
aliases

built-in, 67-69

creating, 69-71, 291-292

exporting using file extensions, 73-77, 73-77

getting help with, 67

making permanent, 72

not loaded error, 72, 72

overview of, 66-67

parameter error, 78, 78

for parameters, 342

provider for, 314-315
AllowEmptyCollection, validation attribute, 344
AllowEmptyString, validation attribute, 344
AllowNull, validation attribute, 344
AllSigned, execution policy, 109
analyzing servers

loading BPA module, 151

overview of, 150

using BPA, 151-155

400

APPHOSTSVC - COMPUTERNAME PARAMETER

AppHostSvce (Application Host Helper Service), 229-230
application pools, 236-240, 237-238
Application Server role, BPA, 153
applicationhost.config, IIS Manager, 225
AppLocker

configuring, 219-222, 220-222

overview of, 217-218

policy, 218-219
Apply permissions, Group Policy, 206
$args variable, 101-102, 102
arithmetic operators, using logic in scripts, 103
assignment operators, using logic in scripts, 103
attributes, cmdlet and function, 340-346

B

Background Intelligent Transfer Service (BITS) 4.0, 31
background jobs, 9, 9
Backup-GPO, 216
Backup-WebConfiguration, IIS, 226
backups
GPOs (group policy objects), 216
IIS configuration, 229-231, 230
installing backup tools, 156, 156
performing, 156-159, 157
recycle bin and, 189
scheduling, 293
Best Practices Analyzer. see BPA (Best Practices Analyzer)
binary modules
DLL files and, 360
example of, 369-374, 370-373
types of modules, 361
bindings, IIS websites and, 232-234
BITS (Background Intelligent Transfer Service) 4.0, 31
boot menu, WDS, 246
BPA (Best Practices Analyzer)
analyzing server roles with, 151-155, 152-155
loading module for, 151, 151
overview of, 150
scanning multiples roles, 153
breakpoints
debugging and, 11
setting with ISE, 121-122, 121-123
buttons, adding to WinForms application, 389

C

CA (certificate authorities), 116
capabilities, of providers, 313

case sensitivity, in PowerShell, 48
cd, description of common aliases, 68
certificate authorities (CA), 116
certificates, provider for, 317-319, 317-319
chdir, description of common aliases, 68
classes
compiling with Add-Type, 309
Hyper-V, 270-272, 272
provider functionality and, 323
Win32 classes, 380
Clear-Host, description of built-in functions, 80
Clear-WebConfiguration, IIS, 226
Cmdlet attribute, 340
CmdletBinding attribute, 340
cmdlets
as building blocks of PowerShell, 5
choosing between functions and, 340
combining verbs and nouns in, 41-42, 42
creating custom, 349-355, 352
displaying confirmation of, 355, 355
list of common, 41
multiple aliases and, 66
nouns in, 40
overview of, 38-39
parameters, 42-45, 43-44, 340-346
pipes operator (|) for combining, 81
properties, 46-47, 47
provider cmdlets, 324-326, 324-326
runtime life cycle, 347-348, 348
simple example, 7, 7
verbs in, 39-40
wildcards, 45-46, 46
writing methods for output, 346-347, 347
cn, containers in LDAP, 176
Code-Signing Certificates, 116
code, writing at command prompt, 301
.com files, AppLocker policies and, 219
COM objects
PowerShell access to, 5
for WDS, 248
Command, description of common nouns, 40
command processor, architectural features of PowerShell, 5
command prompt
PowerShell similarity to Microsoft, 6
vs. ISE, 300
writing code at, 301
writing scripts with, 302-304, 302-304
commands, categories used with pipes operator (|), 82
comparison operators, 93-94
Computer, description of common nouns, 40
ComputerName parameter
creating multiple remote sessions, 141

CONFIGURATION FILES - EDIT PERMISSIONS

help system and, 53, 53
remote session support, 8
remoting and, 138-139, 139
configuration files, IIS, 225-229, 227-229
configuring
AppLocker, 219-222, 220-222
IIS application pools, 189
NLB clusters, 159-160, 160
remoting, 126
virtual machines, 278-279, 279
WDS, 251
configuring PowerShell
installing ISE on Windows Server 2008 R2, 22, 22-24
overview of, 20-21
ConfirmImpact attribute, 344, 355
connectivity, troubleshooting/resolving network
connectivity issues, 168, 168-169
-contains, definition of comparison operators, 94
context sensitive help, ISE, 119
copy, description of common aliases, 68
cp, description of common aliases, 68
cpi, description of common aliases, 68

D

data execution prevention (DEP), 269
dc, domain component in LDAP, 176
DCs (domain controllers), 178-180
creating service accounts and, 186
overview of, 178-180
prerequisites for Group Policy module, 201
viewing, 178-179, 179
debuggers/debugging
binary modules, 371, 371
built into ISE, 120
ISE debug menu, 11
new feature in 2.0 release, 11-12
setting breakpoints in ISE, 121-122, 121-122
DefaultParameterSetName attribute, 344
DEP (data execution prevention), 269
deployment server, WDS, 245
deployment services
Microsoft Deployment Toolkit. see MDT (Microsoft
Deployment Toolkit)
overview of, 244
Windows Deployment Services. see WDS (Windows
Deployment Services)
deployment shares
creating, 260-262, 260-263, 296-297
overview of, 265-266, 266
deployment workbench, in MDT, 256

desktop management
AppLocker for. see AppLocker
Group Policy in. see Group Policy
overview of, 198
-detailed switch, 50
developers, PowerShell features benefitting, 15-17
DHCP, BPA roles and, 153
diagnostics, troubleshooter for, 167, 167
differencing VHDs, 280
digitally signing scripts, 116
dir
example of alias, 66-67, 67
using with Active Directory, 177
viewing domain you are working in, 183, 183
directory service-specific entries (DSEs), 178
Disable-PSRemoting, 133, 133-134
DLL files
AppLocker policies, 219
binary modules and, 360
DNS role, BPA, 152
Do-While statement, 104
domain controllers. see DCs (domain controllers)
Domain Naming Master, working with FSMO roles, 180-181
domains
functional modes, 191
order of precedence for policies, 213
password policies, 210-212, 211
scope in Group Policy management, 200
working with in AD, 178-180, 178-180
DOSKey tools, 53
drives
information sections of GUI application, 381-382, 382
provider for, 313-314
viewing available, 164, 164
viewing persistent, 261, 261
DSEs (directory service-specific entries), 178
dynamic modules, 361-362
dynamic parameters
Alias provider, 315
FileSystem provider, 319-320
providers and, 314, 314
Registry provider, 320
WSMan provider, 321-322
dynamic variables, in PowerShell, 101
dynamically expanding VHDs, 279

E

EC (Enterprise Client), starter GPOs for, 206
Edit permissions, Group Policy, 206

401

402

ENABLE-PSREMOTING - GET-APPLOCKERPOLICY

Enable-PSRemoting
overview of, 128-129, 129
tasks performed by, 131-133
XP mode and, 130, 130-131
ending phase, of runtime lifecycle, 347
Enter-PSSession cmdlet, 140
Enterprise Client (EC), starter GPOs for, 206
enterprise environment, using PowerShell in, 8-9, 9
environment variables
for module storage locations, 362-363
provider for, 319
-eq, definition of comparison operators, 93
event handlers, adding to WinForms application, 390
-example switch, 50
Excel, working with aliases in, 73-75
.exe files, AppLocker policies for, 219
execution policies
overview of, 109-110, 110
RemoteSigned execution policy, 110-111, 111
setting, 111-115, 112-115
Exit-PSSession cmdlet, 141
exporting aliases, 72-76
Extensible Application Markup Language (XAML)
choosing between WinForms and WPF, 380-381
writing XAML files, 393-396
extensions. see snap-ins
external virtual networks, 277

F

file extensions, exporting aliases and, 73-77, 73-77
File Services role, BPA, 153
file system, provider for, 319-320
filenames, for profiles, 61
filtering output
commands used with pipe operator, 82
overview of, 93-95, 94
firewalls
creating exception for WS-Management traffic,
132,132
disabling firewall exception for WinRM, 136, 136
fixed size VHDs, 279
flexible single master operation (FSMO) roles, 180-182,
181-182
For statement, common logic statements, 104
force switches
controlling FSMO roles and, 181
having commands bypass roadblocks, 50
manually updating Group Policy settings, 201
using with Enable-PSRemoting, 129
ForEach statement

common logic statements, 104

script example, 104-105, 105
forests

overview of, 178-180, 178-180

viewing/changing forest mode, 182, 182
Format-Custom cmdlet, 86
Format-List cmdlet

uses of formatting cmdlets, 86

using with Get-Service command, 82-83, 82-83

using with properties, 87
Format-Table cmdlet

uses of formatting cmdlets, 86

using with properties, 88
Format-Wide cmdlet, 86
formatting output

commands used with pipe operator, 82

example, 82-83

overview of, 85-88, 86-88

using with redirection cmdlets, 89
FQDN (fully qualified domain name), 138
FSMO (flexible single master operation) roles, 180-182,

181-182

-full switch, 50
fully qualified domain name (FQDN), 138
functionality, of providers, 323, 323
functions

adding helper functions to WinForms application,

385-388

built-in, 79, 79-80

choosing between cmdlets and, 340

creating advanced, 348-349, 349

creating own, 80-81

overview of, 77-79

parameters and attributes and, 340-346

provider for, 316

runtime life cycle, 347-348, 348

syntax of, 80

G

gcm, description of common aliases, 68

GCs (global catalog servers), 179-180, 180

-ge, definition of comparison operators, 94
Get-ADDefaultDomainPasswordPolicy, 211
Get-ADDomainController, 178-179, 179
Get-ADForest, 182

Get-ADobject, 183

Get-ADROOtDSE, 178, 178

Get-Alias, 67-69, 68
Get-AppLockerFileInformation, 220-221, 221
Get-AppLockerPolicy, 220

GET-BPAMODEL - GUIS

Get-BPAModel, 151-152, 152
Get-BPAResult, 151, 153-154, 154
Get-Children -path function, 79
Get-Command

description of common cmdlets, 41

in help system, 49, 49

for snap-ins, 360

writing code at command prompt, 300
Get, description of common verbs, 39
Get-ExecutionPolicy, 111-112, 112
Get-Function, 348-349, 374-376
Get-GPO, 202-203
Get-GPPermissions, 205, 205
Get-GPPrefRegistryValue, 208
Get-GPRegistryValue, 208
Get-GPResultantSetofPolicy, 215
Get-GPStarterGPO, 207
Get-Help

about_parameters, 52, 52

getting help with aliases, 67

help file formats, 368

in help system, 49-53, 51-53

writing code at command prompt, 301
Get-ItemProperty, 165, 165-166
Get-MDTPersistentDrive, 261, 261
Get-Member

description of common cmdlets, 41, 42

for WDS, 248, 248

working with objects, 305-307, 308
Get-Module

confirming AD loaded, 175

displaying currently loaded modules, 59, 59
Get-NLBCluster, 161
Get-NLBClusterNode, 162
Get-NLBClusterVip, 162
Get-PSDrive, 164, 164
Get-PSProvider, 312
Get-PSSession, 142, 142
Get-PSSnapin

verifying backup tools have loaded, 157

viewing loaded snap-ins, 358-359, 359

viewing snap-in, 258, 258
Get-Server switch, WDSUTIL, 250
Get-Service

with -name parameter, 43

overview of, 41, 42
Get-Verb

with all command that go with Format verb, 85

description of built-in functions, 80
Get-VMSnapshot, 286
Get-VMSnapshotTree, 286
Get-VMState, 284

Get-WBJob, 158
Get-WBPolicy, 158
Get-WebBinding, 233, 233
Get-WebConfigFile, 226-227
Get-WebConfigurationBackup, 226-227
Get-WebConfigurationProperty, 226-227
Get-WebSite, 235
Get-WebVirtualDirectory, 240-241
Get-WindowsFeature, 149, 149-150
Get-WmiObject, 271
global catalog servers (GCs), 179-180, 180
GPMC (Group Policy Management Console), 199, 201
GPO Administrator permissions, 206
GPOs (Group Policy Objects)
backing up and restoring, 216
creating, 204-206, 205-206
description of, 199
settings for, 208-209, 209
in SYSVOL, 204
templates for, 206-208, 207
viewing, 202
gpudate, manually updating Group Policy settings, 201
Group Policy
backing up and restoring GPOs, 216
controlling order of precedence, 213-214, 213-215
creating GPOs, 204-206, 205-206
default order of precedence, 212-213
domain password policies, 210-212, 211
how it works, 200-201
managing, 201-204, 202-204
overview of, 198-199
policies vs. preferences, 209-210
refresh intervals, 201
RSOP report, 215, 215-216
settings for GPOs, 208-209, 209
templates for GPOs, 206-208, 207
turning off display control panel, 295-296
XP mode settings, 131, 131
Group Policy link
description of, 199
setting link order, 214, 214
Group Policy Management Console (GPMC), 199, 201
groups, working with in AD, 182-185, 183
-gt, definition of comparison operators, 93
GUIs (graphical user interfaces)
ISE as. see ISE (Integrated Scripting Environment)
options for working with PowerShell, 10-13, 10-13
GUIs (graphical user interfaces), creating custom
choosing between WinForms and WPF, 380-381
creating WinForms application, 385, 385-391
creating WPF application, 391-397, 392, 394, 397
sections of application, 381-384, 382-384

403

404

HARD DRIVES - INSTALLING POWERSHELL

H

hard drives
information sections of GUI application, 381-382, 382
overview of, 279-281
understanding virtual, 279-281, 280-281
hardware requirements, for Hyper-V, 269
help file
directory structure, 368
modules and, 368, 369
Help, provider for, 326
help system
Get-Command cmdlet, 49, 49
Get-Help cmdlet, 49-53, 51-53
overview of, 48
tab autocomplete and DOSKey tools, 53
HelpMessage, keywords used with Parameter attribute, 341
HelpMessageBaseName, keywords used with Parameter
attribute, 341
HelpMessageResourcelD, keywords used with Parameter
attribute, 341
Hey, Scripting Guy! Blog, 54
high-touch deployment, MDT, 253
HKCU (HKEY_CURRENT_USER)
Get-PSDrive and, 164-165
provider drives, 313
HKLM (HKEY_LOCAL_MACHINE)
Get-PSDrive and, 164
provider drives, 313
HTML, GPO report in, 208-209
Hyper-V
BPA roles and, 153
configuring virtual machines, 278-279, 279
connecting to virtual machines, 283-284, 284
Get-BPAResult for, 153-155, 154-155
Hyper-V module for working with, 272-276, 273-276
installing, 269-270, 269-270
provider for managing, 15
snapshots, 285-287, 285-287
understanding virtual hard drives, 279-281, 280-281
virtual machine settings, 281-283, 282-283
as virtualization technology, 268
WMI for working with, 270-272, 271-272
working with virtual networks, 276-278, 277-278
hyphen (-), in parameter syntax, 43

IDE (integrated development environment), 300
If Else statement, common logic statements, 104

If Elseif Else statement, common logic statements, 104
If statement, common logic statements, 104
IIS Configuration History, 229-230
IIS (Internet Information Services)
application pools, 236-240, 237-238
backing up and restoring configuration, 229-231, 230
BPA roles and, 153
configuration files, 225-229, 227-229
configuring IIS application pools in managed service
accounts, 189
creating websites, 296
loading WebAdministration module, 224-225,
224-225
managing websites, 231-232, 232
overview of, 224
virtual directories, 240, 240-241
working with IIS provider, 234-235, 234-236
working with web bindings, 232-234, 233
imaging tools. see also MDT (Microsoft Deployment
Toolkit), 254-255
import, advantages of modules vs. snap-ins, 361
Import-GPO, 216
Import-Module
Active Directory, 175
AppLocker, 219
grouppolicy, 201
installing backup tools, 156
ServerManager, 148-149, 247
TroubleshootingPack, 167
importing aliases, 72-76, 73-77
ImportSystemModules, 58
Infrastructure Master role, FSMO, 180-181
Initialize-Server switch, WDSUTIL, 250
Install-ADServiceAccount, 188
installing
backup tools, 156, 156
Hyper-V, 269-270, 269-270
managed service accounts, 188-189, 189
MDT, 256-257, 257
providers, 322
snap-ins, 358
WDS, 246-247, 247
installing PowerShell, on other operating systems
list of systems supporting PowerShell, 29
obtaining and installing Windows Management
Framework components, 31, 31-35, 33-35
prerequisites for, 29-31, 30
installing PowerShell, on Windows Server 2008 R2
adding PowerShell to Server Core installation, 26-29,
27-28
installing .NET Framework support, 26, 27
overview of, 24-25

INSTALLUTIL.EXE - MODULES

prerequisites for, 20
XP mode and, 290
InstallUtil.exe, installing and registering
snap-ins, 358
integrated development environment (IDE), 300
internal virtual networks, creating, 277
internationalization, new feature in 2.0 release, 8
Internet Information Services. see IIS (Internet Information
Services)
Invoke-BPAModel, 151, 153
Invoke-Command
for running cmdlets on remote server, 140
using with remote sessions, 142-143, 143
IP addresses, 138
ISE (Integrated Scripting Environment)
breakpoints in, 121-122, 121-123
context sensitive help, 119
debug menu, 11
displaying scripts requiring parameters, 123-124,
123-124
features of, 21
GUI for working with scripts, 10, 10
installing on Windows Server 2008 R2, 22, 22-24
interface for, 117
locating on PowerShell start menu, 24, 24
multiple sessions in, 118, 118
NET Framework 3.51 and, 31
overview of, 116-117
remoting in, 143-145, 144
using it with scripts, 119-120, 120
view panes, 117, 117-118
vs. command prompt, 300
writing scripts with, 302
IT professionals, features benefitting, 14-15

K

keyboard shortcuts, developers and, 303
kill, description of common aliases, 68

L

LDAP (Lightweight Directory Access Protocol)
navigation terminology, 176
working with AD and, 174
-1e, definition of comparison operators, 94
learning curve, for starting with PowerShell, 6-7
light-touch deployment, MDT, 253

Lightweight Directory Access Protocol (LDAP)
navigation terminology, 176
working with AD and, 174
-1like, definition of comparison operators, 94
-ListAvailable parameter, using with Get-Module
command, 59, 59-60
listeners
creating for remoting, 132
deleting WinRM listener, 134
load balancing. see NLB (network load balancing)
local policies, order of precedence, 213
LocalAccountTokenFilterPolicy, 137, 137-138
logic, in scripts, 102-104
logon attempts, password policies and, 212
1s, example of alias, 66-67
-1t, definition of comparison operators, 94

M

man, description of common aliases, 68
managed service accounts
creating, 186-188, 187-188
installing/using, 188-189, 189
overview of, 185-186
Mandatory, keywords used with Parameter attribute, 341
manifest file (or definition file)
keys, 364-366
modules, 363-368, 364, 367-368
manifest modules, 361-362
-match, definition of comparison operators, 94
MDT (Microsoft Deployment Toolkit)
built-in cmdlets in, 15
creating deployment shares, 296-297
deployment shares, 260-262, 260-263, 265-266, 266
installing, 256-257, 257
overview of, 244, 253-254
task sequences, 263-265, 265
WIM (Windows Imaging Format) and, 254-256, 255
Windows Deployment Wizard, 254
working with, 257-260, 258-259
member support, advantages of modules vs. snap-ins, 361
memory, information sections of GUI application, 381
menus, managing Hyper-V, 282-283
Microsoft applications, PowerShell supported, 6
modules
AD module, 174-177, 176-177
benefits of, 38
binary module, 369-374, 370-373
creating custom, 361, 368-369
creating custom shell, 60-64, 63-64

405

406

MULTICAST - OPTIONS PARAMETER

modules (continued)
custom providers and, 16
getting familiar with, 58-59, 58-60
Group Policy module, 201-202, 202
help file, 368, 369
Hyper-V module, 272-276, 273-276
loading all modules into existing session, 58

manifest file (or definition file), 363-368, 364, 367-368

methods for loading providers, 322
overview of, 55
script module, 374-377, 376
Server Manager module, 148-149
storage locations for, 362, 362-363
TroubleshootingPack module, 166-169
types of, 361-362
using PowerShell in, 55-58, 56-57
viewing list of available, 149
WebAdministration module, 224-225, 224-225
.msi files, AppLocker policies, 219
.msp files, AppLocker policies, 219
multicast
vs. unicast, 245
WDS transport server supporting, 246

N

named parameters, 43-44, 44
names, parameter, 342
namespaces, WMI and, 270-271, 271
-ne, definition of comparison operators, 93
NET Framework
installing, 26, 27
installing .NET Framework 3.51, 22-23, 23, 31
as prerequisite for installing PowerShell, 20
requirements for enabling remoting, 127
use of NET objects in PowerShell, 5
NetBIOS names, 138
NetFx2-ServerCore, 26
Network Policy and Access Service role, BPA, 153
networks
remoting and network location, 127-128, 128
troubleshooting/resolving connectivity issues, 168,
168-169
working with virtual, 276-278, 277-278
New-ADgroup, 184
New-ADorganizationalunit, 184
New-ADServiceAccount, 186
New-ADuser, 184
New-Alias, 69-70
New-AppLockerPolicy, 220

New-GPLink, 203
New-GPO, 203
New-GPStarterGPO, 207
New-NLBCluster
creating load-balancing clusters, 159-160
parameters, 160
New-Object, 307-309, 308
New-PSSession, 141
New-VMSnapshot, 285
New-Website, 231-232, 232
NICs (network interface cards)
adding virtual NIC, 278, 278
information sections of GUT application, 381, 384
NLB (network load balancing)
cmdlets for managing port rules, 162-163
common cmdlets, 161-162
configuring NLB cluster, 159-160, 160
overview of, 159-163, 160-161
parameters used with New-NLBCluster, 160
None permissions, Group Policy, 206
-notcontains, definition of comparison operators, 94
Notepad
creating scripts in, 100
GUT as alternative for creating scripts, 116
working with aliases in, 73, 73
-notlike, definition of comparison operators, 94
-notmatch, definition of comparison operators, 94
NounName attribute, 344
nouns
combining verbs and nouns, 41-42, 42
list of common, 40

o)

ObjectGUID, finding with Out-Gridview, 193-194, 194
objects
Add-Type cmdlet for creating, 309-310, 310
adding to WinForms application, 385
New-Object cmdlet for creating, 307-309, 308
options for creating, 307
overview of, 304
properties of, 305-306, 305-307
restoring AD object from recycle bin, 193-195
online resources
help system and, 54
script repository, 107-108
OO (object orientation), in .Net Framework, 5
operating systems (OSs), supporting PowerShell, 29
operators, using logic in scripts, 102-103
Options parameter, Alias provider, 315

ORDER OF PRECEDENCE - PROPERTIES

order of precedence, for policies
controlling, 213-214, 213-215
default, 212-213
organizational units. see OUs (organizational units)
OSs (operating systems), supporting PowerShell, 29
OUs (organizational units)
LDAP and, 176
order of precedence for policies, 213
populating AD test environment, 293-295
scope in Group Policy management, 200
working with in AD, 182-185, 183
out cmdlets. see redirecting output
Out-Default, 89
Out, description of common verbs, 39
Out-File, 89-90, 90
Out-Gridview
description of redirect output cmdlets, 89-90
finding ObjectGUID with, 193-194, 194
GUI option in PowerShell, 12-13, 13
overview of, 91-92
Out-Host, 89
Out-Null, 89
Out-Printer, 89, 93
Out-String, 89
output, cmdlet writing methods for, 346-347, 347
output path example, pipes operator (|), 83-84

P

panels, adding to WinForms application, 388
Parameter attribute, 340-341
parameters
cmdlets, 42-45, 43-44, 340-346
functions, 78, 78, 340-346
names, 342
SwitchParameter, 343
ParameterSetName, keywords used with Parameter
attribute, 341
passwords
creating service accounts and, 187
domain policy, 210-212, 211
paths, providers, 324, 324
PDC Emulator role, FSMO, 180-181
permissions, Group Policy, 206
pipeline processor, architectural features of PowerShell, 5
pipelining, 81
pipes operator (|)
categories of commands used with, 82
combining cmdlets with, 81
filtering output, 93-95

formatting example, 82-83
formatting PowerShell output, 85-88
listing all commands for use with specific verb, 85
output path example, 83-84
overview of, 81
redirection example, 83
sorting example, 83-84
sorting PowerShell output, 89
policies. see also Group Policy
AppLocker, 218-219
vs. preferences, 209-210
portability, advantages of modules vs. snap-ins, 361
Position, keywords used with Parameter attribute, 341
positional parameters, 43-45, 44
PowerBoots, writing WPF with, 397
The PowerShell Guy, 54
PowerShell, introduction to
benefits to different types of users, 13-14
cmdlet example, 7
features benefitting developers, 15-17
features benefitting IT professionals, 14-15
GUI features, 10-13,10-13
integration with other Microsoft applications, 6
learning curve of, 6-7
new feature in 2.0 release, 7-8
reasons for using, 2-3
use in enterprise environment, 8-9, 9
use of .NET objects in, 5
what it can do, 3-5
what it is, 3, 4
PowerShell Management Library, for Hyper-V,
274-276, 276
PowerShell Community.org, 54
powershell.exe, 169-170
Preboot Execution Environment (PXE), 244-245
preferences, vs. policies, 209-210
private virtual networks, 277
processing phase, of runtime lifecycle, 347
profiles
creating, 63-64, 63-64, 290-291
defined, 61
filenames, 61
locations for, 61-62
modifying to make aliases permanent, 76-77
modifying to make functions permanent, 80
setting up remote session and, 292-293
types of, 62
/progress switch, viewing progress on WDS, 252
properties
cmdlets, 46-47, 47
objects, 305-306, 305-307
Registry provider, 320

407

PROVIDERS - RID MASTER ROLE

providers
Alias provider, 314-315
built-in, 312-313
built in roles and services, 6
capabilities of, 313
Certificate provider, 317-319, 317-319
cmdlet help, 326
cmdlets, 324-326, 324-326
custom, 327-337, 328-329, 336
drives, 313-314
dynamic parameters, 314, 314
Environment provider, 319
FileSystem provider, 319-320
Function provider, 316
functionality of, 323, 323
11S, 234-235, 234-236
installing/removing, 322
overview of, 312
paths, 324, 324
registry and, 163
Registry provider, 320-321, 320-321
Variable provider, 316
working with built-in, 312
WSMan provider, 321, 321-322
PS., description of common nouns, 40
.psdl files, 362
PSModulePath, environment variable for module storage
locations, 362, 362-363
public parameters, 342
PXE (Preboot Execution Environment), 244-245

R

RDS (Remote Desktop Services), 152
Read permissions, Group Policy, 206
recovery
Restore-GPO, 216
Restore-VMSnapshot, 286-287, 287
Restore-WebConfiguration, 229-231, 230
recycle bin, AD
accessing, 20
enabling, 191-193, 192-193
overview of, 189-191
recovering multiple users from, 195
using, 193-195, 194-195
redirecting output
commands used with pipe operator, 82
example, 83
overview of, 89-93, 90-92
redirection.config, IIS Manager, 225

registering snap-ins, 358
registry
computer and user policies, 210
execution policy in, 115, 115
provider for, 320-321, 320-321
server administration and, 163-166, 164-165
Remote Desktop Connection, compared with remoting in
PowerShell, 126
Remote Desktop Services (RDS), 152
Remote Installation Services (RIS), 245
Remote Procedure Call (RPC), 127
Remote Server Administration Tools (RSAT), 175, 201
RemoteSigned, 109-111, 111
remoting
configuring, 126
Enable-PSRemoting, 131-133
enabling, 128-129, 128-129
Invoke-Command, 140
in ISE, 143-145, 144
network location and, 127-128, 128
overview of, 126
requirements for enabling, 126-128
running commands, 138-140, 139
setting up remote sessions, 292-293
support for remote sessions, 8-9, 9
using remote sessions, 140-143, 140-143
WinRM firewall port for, 132, 132
WMEF component for, 31
XP mode and, 130-131, 130-131
remoting, disabling
deleting WinRM listener, 134, 134
Disable-PSRemoting, 133, 133-134
disabling firewall exception for WinRM, 136, 136
restoring value of Local AccountTokenFilterPolicy to 0,
137,137-138
stopping/disabling WinRM service, 135, 135-136
Remove-ADServiceAccount, 187-188, 188
Remove-ADuser, 184
Remove All Breakpoints, keyboard shortcut for, 303
Remove-Module, 322
Remove-NLBClusterNode, 161
Remove-WebConfigurationProperty, 226
Remove-WindowsFeature, 149-150
repository, for scripts, 108, 108
Restart, description of common verbs, 39
Restore-GPO, 216
Restore-VMSnapshot, 286-287, 287
Restore-WebConfiguration, 231
Restricted, execution policy, 109

Resultant Set of Policies. see RSOP (Resultant Set of Policies)

Resume-NLBCluster, 162
RID Master role, FSMO, 180-181

RIS - SET-VMCPUCOUNT

RIS (Remote Installation Services), 245
role IDs, BPA tool and, 152-153
RPC (Remote Procedure Call), 127
RSAT (Remote Server Administration Tools), 175, 201
RSOP (Resultant Set of Policies)

description of, 199

overview of, 212

working with, 215, 215-216
Run/Continue, keyboard shortcut for, 303
runtime life cycle

cmdlets, 347-348, 348

functions, 347-348, 348

S

Save-VM, 284
scheduling
backups, 293
scripts, 169-172
Schema Master role, FSMO, 180-181
script modules
example of, 374-377, 376
types of modules, 361-362
script pane, position shortcuts, 304
script parser, architectural features of PowerShell, 5
scripting languages, need for PowerShell and, 2-3
Scripting with Windows PowerShell, online resources, 54
scripts
AppLocker policies, 219
backup schedule, 293
with command prompt, 302-304, 302-304
creating, 100
digitally signing, 116
displaying scripts requiring parameters, 123-124,
123-124
example of, 105-106, 106
execution policies, 109-110, 110
for finding startup programs, 292
ForEach loop example, 104-105, 105
inventorying, 290
ISE used with, 119-120, 120
logic in, 102-104
overview of, 98-100
RemoteSigned execution policy, 110-111, 111
repository for, 108, 108
resources for, 107
running, 106-107, 107
scheduling, 169-172
security and, 108, 108
setting execution policy for, 111-115, 112-115

variables in, 101-102, 102
security

digitally signing scripts, 116

execution policies, 109-110, 110

RemoteSigned execution policy, 110-111, 111

scripts and, 108, 108

setting execution policy, 111-115, 112-115
Select-VMSnapshot, 286
server administration

analyzing server, 150

Get-WindowsFeature, 149, 149

installing backup tools, 156, 156

load balancing, 159-163, 160-161

loading BPA module, 151, 151

overview of, 148

performing backups, 156-159, 157

registry and, 163-166, 164-165

scheduling scripts, 169-172

Server Manager cmdlets, 148-150

troubleshooting packs for, 166-169, 167-168

using BPA, 151-155, 152-155

viewing available drives, 164
Server Manager

importing Server Manager module, 148-149, 148-150

installing ISE on Windows Server 2008 R2, 22
service accounts

managed. see managed service accounts

overview of, 185
Service, description of common nouns, 40
services, displaying commands running against, 49, 49
sessions

defined, 8

loading all modules into existing session, 58

multiple sessions in ISE, 118, 118

remote session support, 8-9, 9

running sessions as administrator, 61

setting up remote session, 292-293

using remote sessions, 140-143, 140-143
Set-ADaccountpassword, 184
Set-ADDefaultDomainPasswordPolicy, 211
Set-ADForestMode, 182
Set-Alias cmdlet, 69-71, 70-71
Set-AppLockerPolicy, 220
Set-BPAResult, 151
Set, description of common verbs, 39
Set-ExecutionPolicy, 111-115
Set-GPPermissions, 205
Set-GPPrefRegistryValue, 203
Set-GPRegistryValue, 203
Set-NLBClusterVip, 162
Set-Server switch, WDSUTIL, 250
Set-VMCPUCount, 281

409

410

SET-VMMEMORY - UTF-8

Set-VMMemory, 281
Set-WBPolicy, 158
Set-WBSchedule, 158
Set-WebConfigurationProperty, 226-227
shells
creating custom, 60-64, 63-64
PowerShell similarity to UNIX shells, 6
Show-HyperVMenu, 282
Show-VHDMenu, 283
Show-VMDiskMenu, 283
Show-VMMenu, 282, 283
ShutDown-VM, 284
sites
order of precedence for policies, 213
scope in Group Policy management, 200
s1, description of common aliases, 68
SMS (Systems Management Server), 255
snap-ins
advantages of modules vs., 361
custom providers and, 16
installing and registering, 358
loading MDT snap-in, 258, 258
methods for loading providers, 322
verifying backup tools have loaded, 157
working with existing, 358-360, 359-360
snapshots
taking, 297-298
of virtual machines, 285-287, 285-287
software restriction policies. see also AppLocker, 217
Sort-Object cmdlet, 83-84, 84, 89
sorting output
commands used with pipe operator, 82
example, 83-84
overview of, 89
Specialized Security Limited Functionality (SSLF), 206
spps, description of common aliases, 68
SSLF (Specialized Security Limited Functionality), 206
Start, description of common verbs, 39
start menu, locating PowerShell on, 24, 24
Start-NLBClusterNode, 162
Start-vmM, 284
Start-WBBackup, 158
starting phase, of runtime lifecycle, 347
static variables, in PowerShell, 101
Step Into, keyboard shortcut for, 303
Step Out, keyboard shortcut for, 303
Step Over, keyboard shortcut for, 303
Stop Debugging, keyboard shortcut for, 303
Stop, description of common verbs, 39
Stop-NLBClusterNode, 162
Stop-VM, 284

stopping phase, of runtime lifecycle, 347
storage locations, for modules, 362, 362-363
SupportsShouldProcess attribute, 344
SupportsTransactions attribute, 344
Suspend-NLBCluster, 161
switches
force switch. see force switches
WDSUTIL, 250
SwitchParameter, 343
system information, information sections of GUI
application, 381-382, 382
Systems Management Server (SMS), 255
SYSVOL, GPOs in, 204

T

tab autocomplete
overview of, 53
writing code at command prompt, 300
TabExpansion function, 80
Task Scheduler, 170-171
task sequences, for deploying custom image,
263-265, 265
templates
ADMX (Administrative template file), 199
for GPOs, 206-208, 207
for task sequences, 264
Terminal Services, 126
Test-AppLockerPolicy, 220, 222
Test-ModuleManifest, 367-368, 368
Toggle Breakpoint, keyboard shortcut for, 303
tombstoneLifetime attribute, 190
transport server, WDS, 245
troubleshooting packs, for server administration, 166-169,
167-168

U

unary operators, 103

unicast, 245

UNIX shells, 6

Unrestricted execution policy, 109-110, 110

UpdateServerfiles switch, WDSUTIL, 250

users
recovering multiple users from recycle bin, 195
working with in AD, 182-185, 183

UTF-8, 368

VALIDATECOUNT - WINDOWS SERVER 2008 R2 SERVER

\'

ValidateCount, validation attributes, 345
ValidateLength, validation attributes, 345
ValidateNotNull, validation attributes, 344
ValidateNotNullOrEmpty, validation attributes, 344
ValidatePattern, validation attributes, 345
ValidateRange, validation attributes, 345
ValidateScript, validation attributes, 345
ValidateSet, validation attributes, 345
validation attributes, 344-345
ValueFromPipeline, keywords used with Parameter
attribute, 341, 343
ValueFromRemainingArguments, keywords used with
Parameter attribute, 341
variables
environment variables, 319
provider for, 316
in scripts, 101-102, 102
VBScript, converting to PowerShell, 99
VerbName attribute, 344
/verbose switch, WDS, 252
verbs
combining verbs and nouns, 41-42, 42
list of common, 39-40
pipes operator for listing all commands for use with
specific verb, 85
VHDs (virtual hard drives), 279-281, 280-281
virtual directories, 240, 240-241
virtual hard drives (VHDs), 279-281, 280-281
virtual machines
configuring, 278-279, 279
connecting to, 283-284, 284
creating, 297-298
settings, 281-283, 282-283
snapshots of, 285-287, 285-287
virtual networks, 276-278, 277-278
virtualization technology. see Hyper-V

w

WAIK (Windows Automated Installation Kit), 256-257, 257
WDS (Windows Deployment Services)

boot menu, 246

configuration, 251

installing, 246-247, 247

overview of, 244, 244-246

verbose and progress switches, 252

WDSUTIL, 248-251, 249

working with, 247-248, 248
WDSUTIL
switches, 250
working with WDS, 248-251, 249
web bindings, IIS websites and, 232-234, 233
WebAdministration module, 224-225, 224-225
websites
creating, 296
managing IIS, 231-232, 232
working with web bindings, 232-234
Where-Object, 93
While statement, common logic statements, 104
wildcards, 45-46, 46
WIM (Windows Imaging Format). see also MDT (Microsoft
Deployment Toolkit), 254-256, 255
Windows 7
accessing PowerShell tools, 21, 21
AppLocker. see AppLocker
choosing between WinForms and WPF, 380
creating custom cmdlets for, 350-355
managing AD on Windows 7 clients, 175
PowerShell built into, 20
XP mode and, 34
Windows Automated Installation Kit (WAIK),
256-257, 257
Windows Deployment Services. see WDS (Windows
Deployment Services)
Windows Deployment Wizard, 254
Windows Embedded, PowerShell support for, 29
Windows Forms. see WinForms (Windows Forms)
Windows Imaging Format (WIM). see also MDT (Microsoft
Deployment Toolkit), 254-256, 255
Windows Management Framework (WMF), 31, 31-35,
33-35
Windows Management Instrumentation. see WMI
(Windows Management Instrumentation)
Windows Presentation Foundation. see WPF (Windows
Presentation Foundation)

Windows Remote Management service. see WinRM
(Windows Remote Management) service
Windows Server 2003 SP2, PowerShell support for, 29

Windows Server 2008 R2 server
accessing PowerShell tools on, 21
administration of. see server administration
AppLocker. see AppLocker
installing ISE on, 22-24
installing .NET Framework 3.51 on, 22-23, 23
installing PowerShell on. see installing PowerShell, on
Windows Server 2008 R2
PowerShell built into, 6, 20
PowerShell features for IT professionals, 15

411

412

WINDOWS SERVER 2008 R2 - ZONE IDENTIFIERS

Windows Server 2008 R2, Server Core installation
adding PowerShell to, 26-29
installing .NET Framework support, 26
overview of, 24-25
viewing PowerShell features on, 25, 25
Windows Server 2008 SP1, PowerShell support for, 29
Windows Server 2008 SP2, PowerShell support for, 29
Windows Software Update Services role, BPA, 153
Windows Vista
choosing between WinForms and WPF, 380
PowerShell on, 34-35, 35
Windows Vista SP1, PowerShell support, 29
Windows XP
choosing between WinForms and WPF, 380
PowerShell on, 33, 34
PowerShell support for SP 3, 29
WinForms (Windows Forms)
choosing between WPF and, 380-381
creating WinForms application, 385, 385-391
PowerShell integration with, 16
WinRM (Windows Remote Management) service
deleting WinRM listener, 134, 134
disabling firewall exception for, 136, 136
firewall port for, 132, 132
remote session support, 8
requirements for enabling remoting, 127
starting, 131
stopping/disabling, 135, 135-136
WMF components, 31

WMF (Windows Management Framework), 31, 31-35,

33-35
WMI (Windows Management Instrumentation)

PowerShell cmdlet for interfacing with WMI objects, 5

Win32 classes, 380
working with Hyper-V, 270-272, 271-272
WPF (Windows Presentation Foundation)

choosing between WinForms and, 380-381
creating WPF application, 391-397, 392, 394, 397
PowerShell integration with, 16
tools for writing, 397
writing in PowerShell, 392
WriteCommandDetail, 345
WriteDebug, 345
WriteError, 345
WriteObject, 345
WriteProgress, 345
WriteVerbose, 345
WriteWarning, 345
WS-Management protocol
provider for, 321, 321-322
remote session support, 8
WinRM service and, 127

X

X.509 certificates, 317

XAML (Extensible Application Markup Language)
choosing between WinForms and WPF, 380-381
writing XAML files, 393-396

XML, help file formats, 368

XP mode
installing PowerShell and, 290
remoting and, 130-131, 130-131

Z

zero-touch deployment, MDT, 253-254
zone identifiers, for scripts, 110-111

	Automating Microsoft® Windows Server® 2008 R2 with Windows PowerShell® 2.0
	TABLE OF CONTENTS
	Introduction
	Chapter 1 What Is PowerShell, and Why Do You Need It?
	Why PowerShell?
	Overview of PowerShell
	The Power Behind PowerShell
	What About the Learning Curve?

	What’s New in PowerShell 2.0?
	PowerShell in the Enterprise
	PowerShell with a GUI

	PowerShell Has Something for Everyone
	What’s in It for IT Professionals?
	What’s in It for Developers?

	Chapter 2 Installing and Configuring PowerShell 2.0
	Configure PowerShell 2.0 on Windows Server 2008 R2
	Install the ISE on Windows Server 2008 R2

	Install PowerShell 2.0 on Windows Server 2008 R2 Core
	Install .NET Framework Support on Windows Server 2008 R2 Core
	Install PowerShell 2.0 on Windows Server 2008 R2 Core

	Install PowerShell 2.0 on Other Operating Systems
	Set Up the Prerequisites
	Obtain and Install PowerShell 2.0

	Chapter 3 PowerShell Grammar Lesson
	Break Down PowerShell: A Lesson on Cmdlets
	Learn the Verbs
	Learn the Nouns
	Put Verbs and Nouns Together: Cmdlets
	Use Parameters
	Use Wildcards
	Understand Properties

	Help Yourself with PowerShell
	Learn How to Help Yourself
	Use Tab Autocomplete
	Leverage Online Resources

	Use Even More Commands with Modules
	Use and Understand Modules
	Get to Know Your Modules
	Create a Custom PowerShell Shell

	Chapter 4 Aliases, Functions, and the Pipe, Oh My!
	Use Aliases
	Use Built-in Aliases
	Create Your Own Aliases

	Use Functions
	Understand Functions
	Use Existing Functions
	Create Your Own Function

	Work with the Pipe Operator
	Use the Pipe Operator to Combine PowerShell Cmdlets
	Control PowerShell Output

	Chapter 5 Creating Your Own Scripts
	Create Your Own Scripts
	PowerShell Scripting Overview
	Create a PowerShell Script
	Run Your Scripts
	Find Scripts

	Understand Security and PowerShell Scripts
	Work with Default Execution Policy of Scripts
	Understand the RemoteSigned PowerShell Execution Policy
	Set the PowerShell Execution Policy
	Understand Digital Signing

	Work with the GUI and the Shell
	Understand What the ISE Is
	Use the ISE with Scripts
	Display the Call Stack with Scripts Requiring Parameters

	Chapter 6 Remoting with PowerShell 2.0
	Configure PowerShell Remoting
	Learn the Requirements
	Enable PowerShell Remoting
	Disable PowerShell Remoting

	Run Commands on Remote Systems
	Use Invoke-Command
	Use PowerShell Remote Sessions
	Use Remoting in the ISE

	Chapter 7 Server Essentials in PowerShell
	Work with Your Server in PowerShell
	Work with Server Manager Cmdlets
	Analyze Your Server

	Add Reliability to Your Server
	Install the Backup Tools
	Perform a Backup with PowerShell
	Load-Balance Your Network

	Use Other PowerShell Utilities for the Server
	Use the Registry with PowerShell
	Use PowerShell Troubleshooting Packs
	Schedule PowerShell Scripts

	Chapter 8 Managing Active Directory with PowerShell
	Work with Active Directory
	Load the AD PowerShell Module
	Understand PowerShell Active Directory Basics
	Work with Users, Groups, and OUs

	Understand Managed Service Accounts
	Understand Managed Service Accounts
	Create Managed Service Accounts
	Install and Use Managed Service Accounts

	Work with the Active Directory Recycle Bin
	Understand How the Recycle Bin Works
	Enable the AD Recycle Bin
	Use the AD Recycle Bin

	Chapter 9 Managing Desktops with PowerShell
	Access Group Policy
	Understand Group Policy
	Understand How Group Policy Works

	Manage Group Policy
	Create Group Policy Objects
	Use Starter GPOs
	Work with Settings
	Understand the Difference Between Policies and Preferences
	Work with Domain Password Policies
	Understand Order of Precedence
	Control Group Policy Order of Precedence
	Work with RSOP
	Back Up and Restore Group Policy Objects

	Manage AppLocker
	Understand AppLocker
	Understand AppLocker Policy
	Configure AppLocker

	Chapter 10 Managing IIS Web Server with PowerShell
	Use PowerShell and IIS
	Work with Configuration Files
	Back Up and Recover IIS Configuration

	Deploy Websites, Application Pools, and Virtual Directories with PowerShell
	Manage Sites with PowerShell
	Work with Web Application Pools
	Work with Virtual Directories

	Chapter 11 PowerShell and Deployment Services
	Work with Windows Deployment Services
	Understand WDS
	Install WDS
	Work with WDS in PowerShell
	Use WDSUTIL

	Work with the Microsoft Deployment Toolkit
	Understand the MDT
	Deploy with Windows Imaging Format
	Install MDT
	Work with MDT in PowerShell
	Put It All Together

	Chapter 12 PowerShell and Virtualization
	Install and Access Hyper-V
	Install Hyper-V
	Access Hyper-V in PowerShell

	Work with Hyper-V
	Work with Virtual Networks
	Configure Virtual Machines
	Connect to Virtual Machines
	Work with Snapshots

	Appendix A Solutions to Exercises
	Solution 1: Inventory Your Scripts
	Solution 2: Install PowerShell
	Solution 3: Create a PowerShell Profile
	Solution 4: Create Your Own Alias
	Solution 5: Create a Script to Find Startup Programs
	Solution 6: Set Up a Remote PowerShell Session
	Solution 7: Create a Scheduled Backup with PowerShell
	Solution 8: Populate an Active Directory Test Environment
	Solution 9: Turn Off the Display Control Panel in Group Policy with PowerShell
	Solution 10: Create a Website with PowerShell
	Solution 11: Create a Deployment Share
	Solution 12: Create a Virtual Machine and Take a Snapshot

	Appendix B Developing at a Command Prompt
	Choose Between the ISE and the Command Prompt
	Write Code at a Command Prompt
	Write Scripts in the ISE

	Work with Objects in PowerShell
	Understand Properties
	Create Your Own Custom Object

	Appendix C Providing for PowerShell
	Work with Built-in Providers
	Understand Provider Basics
	Use PowerShell-Specific Providers
	Use Other Built-in Providers

	Work with Additional Providers
	Install and Remove Providers
	Create Your Own Provider
	Understand Basic Provider Concepts
	Build a Custom Provider

	Appendix D Custom Cmdlets and Advanced Functions
	Choose Between an Advanced Function and a Cmdlet
	Parameters and Attributes
	Output
	Runtime Life Cycle

	Create an Advanced Function
	Create a Custom Cmdlet

	Appendix E Packaging PowerShell Extensions
	Work with Existing Snap-ins
	Create a Custom Module
	Understand Module Concepts
	Build Your Module

	Appendix F Building Your Own GUI with PowerShell
	Choose Between WinForms and WPF
	Create a GUI in PowerShell
	Create a WinForms Application
	Create a WPF Application

	Index

